Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36497075

ABSTRACT

Excitatory (glutamatergic) synaptic transmission underlies many aspects of brain activity and the genesis of normal human behavior. The postsynaptic scaffolding proteins SAP90/PSD-95-associated proteins (SAPAPs), which are abundant components of the postsynaptic density (PSD) at excitatory synapses, play critical roles in synaptic structure, formation, development, plasticity, and signaling. The convergence of human genetic data with recent in vitro and in vivo animal model data indicates that mutations in the genes encoding SAPAP1-4 are associated with neurological and psychiatric disorders, and that dysfunction of SAPAP scaffolding proteins may contribute to the pathogenesis of various neuropsychiatric disorders, such as schizophrenia, autism spectrum disorders, obsessive compulsive disorders, Alzheimer's disease, and bipolar disorder. Here, we review recent major genetic, epigenetic, molecular, behavioral, electrophysiological, and circuitry studies that have advanced our knowledge by clarifying the roles of SAPAP proteins at the synapses, providing new insights into the mechanistic links to neurodevelopmental and neuropsychiatric disorders.


Subject(s)
Mental Disorders , SAP90-PSD95 Associated Proteins , Animals , Humans , SAP90-PSD95 Associated Proteins/chemistry , SAP90-PSD95 Associated Proteins/metabolism , Synapses/metabolism , Mental Disorders/metabolism
2.
ACS Chem Biol ; 14(10): 2252-2263, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31525028

ABSTRACT

Protein-protein interactions (PPIs) are vital to all biological processes. These interactions are often dynamic, sometimes transient, typically occur over large topographically shallow protein surfaces, and can exhibit a broad range of affinities. Considerable progress has been made in determining PPI structures. However, given the above properties, understanding the key determinants of their thermodynamic stability remains a challenge in chemical biology. An improved ability to identify and engineer PPIs would advance understanding of biological mechanisms and mutant phenotypes and also provide a firmer foundation for inhibitor design. In silico prediction of PPI hot-spot amino acids using computational alanine scanning (CAS) offers a rapid approach for predicting key residues that drive protein-protein association. This can be applied to all known PPI structures; however there is a trade-off between throughput and accuracy. Here we describe a comparative analysis of multiple CAS methods, which highlights effective approaches to improve the accuracy of predicting hot-spot residues. Alongside this, we introduce a new method, BUDE Alanine Scanning, which can be applied to single structures from crystallography and to structural ensembles from NMR or molecular dynamics data. The comparative analyses facilitate accurate prediction of hot-spots that we validate experimentally with three diverse targets: NOXA-B/MCL-1 (an α-helix-mediated PPI), SIMS/SUMO, and GKAP/SHANK-PDZ (both ß-strand-mediated interactions). Finally, the approach is applied to the accurate prediction of hot-spot residues at a topographically novel Affimer/BCL-xL protein-protein interface.


Subject(s)
Amino Acids/chemistry , Proteins/metabolism , Animals , Humans , Magnetic Resonance Spectroscopy , Mice , Molecular Dynamics Simulation , Mutagenesis, Site-Directed/methods , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Protein Binding , Protein Multimerization , Proteins/chemistry , Rats , SAP90-PSD95 Associated Proteins/chemistry , SAP90-PSD95 Associated Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/chemistry , Small Ubiquitin-Related Modifier Proteins/metabolism
3.
Cell Rep ; 21(13): 3781-3793, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29281827

ABSTRACT

The PSD-95/SAPAP/Shank complex functions as the major scaffold in orchestrating the formation and plasticity of the post-synaptic densities (PSDs). We previously demonstrated that the exquisitely specific SAPAP/Shank interaction is critical for Shank synaptic targeting and Shank-mediated synaptogenesis. Here, we show that the PSD-95/SAPAP interaction, SAPAP synaptic targeting, and SAPAP-mediated synaptogenesis require phosphorylation of the N-terminal repeat sequences of SAPAPs. The atomic structure of the PSD-95 guanylate kinase (GK) in complex with a phosphor-SAPAP repeat peptide, together with biochemical studies, reveals the molecular mechanism underlying the phosphorylation-dependent PSD-95/SAPAP interaction, and it also provides an explanation of a PSD-95 mutation found in patients with intellectual disabilities. Guided by the structural data, we developed potent non-phosphorylated GK inhibitory peptides capable of blocking the PSD-95/SAPAP interaction and interfering with PSD-95/SAPAP-mediated synaptic maturation and strength. These peptides are genetically encodable for investigating the functions of the PSD-95/SAPAP interaction in vivo.


Subject(s)
Disks Large Homolog 4 Protein/metabolism , SAP90-PSD95 Associated Proteins/metabolism , Synapses/metabolism , Amino Acid Sequence , Animals , Dendritic Spines/metabolism , Disks Large Homolog 4 Protein/chemistry , Humans , Intellectual Disability/genetics , Mice, Inbred C57BL , Models, Molecular , Mutation/genetics , Neurogenesis , Peptides/chemistry , Peptides/metabolism , Phosphorylation , Protein Binding , Rats , SAP90-PSD95 Associated Proteins/chemistry
4.
Mol Brain ; 10(1): 43, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28870203

ABSTRACT

The neurotransmitter glutamate facilitates neuronal signalling at excitatory synapses. Glutamate is released from the presynaptic membrane into the synaptic cleft. Across the synaptic cleft glutamate binds to both ion channels and metabotropic glutamate receptors at the postsynapse, which expedite downstream signalling in the neuron. The postsynaptic density, a highly specialized matrix, which is attached to the postsynaptic membrane, controls this downstream signalling. The postsynaptic density also resets the synapse after each synaptic firing. It is composed of numerous proteins including a family of Discs large associated protein 1, 2, 3 and 4 (DLGAP1-4) that act as scaffold proteins in the postsynaptic density. They link the glutamate receptors in the postsynaptic membrane to other glutamate receptors, to signalling proteins and to components of the cytoskeleton. With the central localisation in the postsynapse, the DLGAP family seems to play a vital role in synaptic scaling by regulating the turnover of both ionotropic and metabotropic glutamate receptors in response to synaptic activity. DLGAP family has been directly linked to a variety of psychological and neurological disorders. In this review we focus on the direct and indirect role of DLGAP family on schizophrenia as well as other brain diseases.


Subject(s)
Brain Diseases/metabolism , Neurons/metabolism , SAP90-PSD95 Associated Proteins/metabolism , Amino Acid Sequence , Animals , Brain/metabolism , Brain/pathology , Humans , Models, Biological , Protein Interaction Mapping , SAP90-PSD95 Associated Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...