Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.526
Filter
1.
PLoS One ; 19(5): e0302020, 2024.
Article in English | MEDLINE | ID: mdl-38701106

ABSTRACT

OBJECTIVES: The COVID-19 pandemic changed the future of work sustainably and led to a general increase in mental stress. A study conducted during the second and third pandemic wave with a retrospective survey of the first wave among 1,545 non-healthcare workers confirmed an increase in anxiety and depression symptoms and showed a correlation with the occupational SARS-CoV-2 infection risk. This online follow-up survey aims to examine changes in mental distress as the pandemic progressed in Germany and to identify factors influencing potential changes. METHODS: Longitudinal data from 260 subjects were available for this analysis. Mental distress related to anxiety and depression symptoms, assessed by the Patient Health Questionnaire-4 (PHQ-4), and occupational risk factors were solicited at the end of 2022 and retrospectively at the fifth wave. Categorized PHQ-4 scores were modelled with mixed ordinal regression models and presented with odds ratios (OR) and 95% confidence intervals (95% CI). RESULTS: A previous diagnosis of a depressive or anxiety disorder was a strong risk factor for severe symptoms (OR 3.49, 95% CI 1.71-7.11). The impact of occupational SARS-CoV-2 infection risk on mental distress was increased, albeit failing to reach the formal level of statistical significance (high risk OR 1.83, 95% CI 0.59-5.63; probable risk OR 1.72, 95% CI 0.93-3.15). Mental distress was more pronounced in those with a previous diagnosis of anxiety and depression. Confirmed occupational risk factors were protective measures against occupational SARS-CoV-2 infection perceived as inadequate, chronic work-related stress, overcommitment, reduced interactions with fellow-workers, and work-privacy conflicts. CONCLUSIONS: The pandemic had a negative impact on anxiety and depression symptoms among the studied non-healthcare workers, particularly early in the pandemic, although this effect does not appear to be permanent. There are modifiable risk factors that can protect workers' mental health, including strengthening social interactions among employees and reducing work-privacy conflicts.


Subject(s)
Anxiety , COVID-19 , Depression , Humans , COVID-19/epidemiology , COVID-19/psychology , Germany/epidemiology , Male , Female , Adult , Middle Aged , Depression/epidemiology , Depression/psychology , Anxiety/epidemiology , Anxiety/psychology , Retrospective Studies , Stress, Psychological/epidemiology , Risk Factors , Psychological Distress , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Pandemics , Surveys and Questionnaires , Longitudinal Studies
2.
J Med Virol ; 96(5): e29660, 2024 May.
Article in English | MEDLINE | ID: mdl-38727136

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic, known viral diseases declined in all ages. By using the current situation as a natural experiment, this study aimed to evaluate whether the change in the incidence of Kawasaki disease (KD) during the COVID-19 pandemic varies with age and whether a specific infectious disease mediates the occurrence of KD. Monthly number of KD patients were extracted from the nationwide inpatient database. Segmented regression analysis was conducted on the interrupted time series data. Additionally, causal mediation analysis was performed to examine the role of viral infections in the changes in the number of KD patients. After the first emergency declaration for COVID-19 in Japan, there was an immediate decrease in the number of KD patients per 100 000 population aged between 6 months and 4 years (immediate change = -2.66; 95% confidence interval [CI]: -5.16 to -0.16) and aged 5-15 years (immediate change = -0.26; 95% CI: -0.49 to -0.04). However, no immediate change was observed in patients under 6 months of age. In the causal mediation analysis for each viral infection, it was found that the decrease in the number of patients with KD was mediated by changes in the number of patients with pharyngoconjunctival fever and infectious gastroenteritis. The current results suggest that viral infections may be one of the etiological agents for KD, while they may not be the main cause in early infancy. Specifically, we found that adenovirus infection and gastroenteritis was closely related to the onset of KD in some areas of Japan.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , Humans , Mucocutaneous Lymph Node Syndrome/epidemiology , Mucocutaneous Lymph Node Syndrome/virology , COVID-19/epidemiology , COVID-19/complications , Child, Preschool , Japan/epidemiology , Infant , Child , Adolescent , Incidence , Male , Female , Virus Diseases/epidemiology , Virus Diseases/complications , SARS-CoV-2/pathogenicity
4.
Virus Res ; 345: 199391, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754785

ABSTRACT

Coronaviruses (CoVs) are enveloped single-stranded RNA viruses that predominantly attack the human respiratory system. In recent decades, several deadly human CoVs, including SARS-CoV, SARS-CoV-2, and MERS-CoV, have brought great impact on public health and economics. However, their high infectivity and the demand for high biosafety level facilities restrict the pathogenesis research of CoV infection. Exacerbated inflammatory cell infiltration is associated with poor prognosis in CoV-associated diseases. In this study, we used human CoV 229E (HCoV-229E), a CoV associated with relatively fewer biohazards, to investigate the pathogenesis of CoV infection and the regulation of neutrophil functions by CoV-infected lung cells. Induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells (iAECIIs) exhibiting specific biomarkers and phenotypes were employed as an experimental model for CoV infection. After infection, the detection of dsRNA, S, and N proteins validated the infection of iAECIIs with HCoV-229E. The culture medium conditioned by the infected iAECIIs promoted the migration of neutrophils as well as their adhesion to the infected iAECIIs. Cytokine array revealed the elevated secretion of cytokines associated with chemotaxis and adhesion into the conditioned media from the infected iAECIIs. The importance of IL-8 secretion and ICAM-1 expression for neutrophil migration and adhesion, respectively, was demonstrated by using neutralizing antibodies. Moreover, next-generation sequencing analysis of the transcriptome revealed the upregulation of genes associated with cytokine signaling. To summarize, we established an in vitro model of CoV infection that can be applied for the study of the immune system perturbations during severe coronaviral disease.


Subject(s)
Alveolar Epithelial Cells , Induced Pluripotent Stem Cells , Neutrophils , Humans , Neutrophils/immunology , Neutrophils/virology , Induced Pluripotent Stem Cells/virology , Alveolar Epithelial Cells/virology , COVID-19/virology , COVID-19/immunology , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , SARS-CoV-2/immunology , Interleukin-8/genetics , Interleukin-8/metabolism
7.
Sci Rep ; 14(1): 11628, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773200

ABSTRACT

This study aimed to analyze the impact of the lockdown period due to COVID-19 pandemic on the mental health status of healthcare workers and identify the related risk factors of psychosomatic distress. We conducted an online questionnaire survey to investigate the general demographic characteristics, perceived stress level, adult attachment style (AAS), family cohesion and adaptability, social support, sleep state, emotional state, and physical health of healthcare workers during the lockdown period due to the pandemic in 2022. We compared the mental health status between doctors and nurses, and further analyzed the factors influencing sleep, emotions, physical symptoms, and severe psychosomatic distress separately. For factors that showed statistical significance in the univariate analysis, forward stepwise regression was used for logistic regression analysis to identify risk factors for the corresponding issues. A total of 622 healthcare workers participated in the survey. Among the participants, 121 (19.5%) reported sleep problems, 209 (33.6%) had negative emotional states, and 147 (23.6%) reported physical health problems. There were 48 (7.7%) healthcare workers with severe psychosomatic distress. Compared to the group of nurses, the group of doctors exhibit a higher prevalence of emotional issues, physical health problems and psychosomatic distress. Perceived stress was identified as a risk factor for sleep disturbance, while living with others during quarantine and family adaptability were identified as protective factors. Higher educational background and perceived stress were identified as risk factors for negative emotion, while subjective support was identified as a protective factor. Perceived stress and coming from a rural area were also identified as risk factors for physical health. Overall, for the comparison between the no psychosomatic distress and severe psychosomatic distress groups, perceived stress was identified as a risk factor for severe psychosomatic distress, while subjective support was identified as a protective factor. Healthcare workers' potential mental and physical health problems are related to their educational background, family cohesion and adaptability, perceived stress and social support. This makes it clearer on how to deal with and prevent adverse consequences when facing stressful situations.


Subject(s)
COVID-19 , Health Personnel , Mental Health , Humans , COVID-19/epidemiology , COVID-19/psychology , Male , Female , Adult , Risk Factors , Health Personnel/psychology , Middle Aged , Surveys and Questionnaires , Stress, Psychological/epidemiology , Stress, Psychological/psychology , Protective Factors , SARS-CoV-2/pathogenicity , Pandemics , Quarantine/psychology , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/psychology
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732160

ABSTRACT

Despite the end of the pandemic, coronavirus disease 2019 (COVID-19) remains a major public health concern. The first waves of the virus led to a better understanding of its pathogenesis, highlighting the fact that there is a specific pulmonary vascular disorder. Indeed, COVID-19 may predispose patients to thrombotic disease in both venous and arterial circulation, and many cases of severe acute pulmonary embolism have been reported. The demonstrated presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the endothelial cells suggests that direct viral effects, in addition to indirect effects of perivascular inflammation and coagulopathy, may contribute to pulmonary vasculopathy in COVID-19. In this review, we discuss the pathological mechanisms leading to pulmonary vascular damage during acute infection, which appear to be mainly related to thromboembolic events, an impaired coagulation cascade, micro- and macrovascular thrombosis, endotheliitis and hypoxic pulmonary vasoconstriction. As many patients develop post-COVID symptoms, including dyspnea, we also discuss the hypothesis of pulmonary vascular damage and pulmonary hypertension as a sequela of the infection, which may be involved in the pathophysiology of long COVID.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/virology , COVID-19/pathology , SARS-CoV-2/pathogenicity , Lung/blood supply , Lung/pathology , Lung/virology , Pulmonary Embolism/virology , Pulmonary Embolism/etiology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/virology , Hypertension, Pulmonary/pathology , Post-Acute COVID-19 Syndrome , Thrombosis/virology , Thrombosis/etiology , Thrombosis/pathology
9.
Proc Natl Acad Sci U S A ; 121(22): e2314166121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768348

ABSTRACT

The nonstructural protein 1 (Nsp1) of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is a virulence factor that targets multiple cellular pathways to inhibit host gene expression and antiviral response. However, the underlying mechanisms of the various Nsp1-mediated functions and their contributions to SARS-CoV-2 virulence remain unclear. Among the targets of Nsp1 is the mRNA (messenger ribonucleic acid) export receptor NXF1-NXT1, which mediates nuclear export of mRNAs from the nucleus to the cytoplasm. Based on Nsp1 crystal structure, we generated mutants on Nsp1 surfaces and identified an acidic N-terminal patch that is critical for interaction with NXF1-NXT1. Photoactivatable Nsp1 probe reveals the RNA Recognition Motif (RRM) domain of NXF1 as an Nsp1 N-terminal binding site. By mutating the Nsp1 N-terminal acidic patch, we identified a separation-of-function mutant of Nsp1 that retains its translation inhibitory function but substantially loses its interaction with NXF1 and reverts Nsp1-mediated mRNA export inhibition. We then generated a recombinant (r)SARS-CoV-2 mutant on the Nsp1 N-terminal acidic patch and found that this surface is key to promote NXF1 binding and inhibition of host mRNA nuclear export, viral replication, and pathogenicity in vivo. Thus, these findings provide a mechanistic understanding of Nsp1-mediated mRNA export inhibition and establish the importance of this pathway in the virulence of SARS-CoV-2.


Subject(s)
Active Transport, Cell Nucleus , COVID-19 , Nucleocytoplasmic Transport Proteins , RNA, Messenger , RNA-Binding Proteins , SARS-CoV-2 , Viral Nonstructural Proteins , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Animals , COVID-19/virology , COVID-19/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Virus Replication , Cell Nucleus/metabolism , Vero Cells , Virulence , Chlorocebus aethiops , HEK293 Cells
10.
Adv Exp Med Biol ; 1451: 21-33, 2024.
Article in English | MEDLINE | ID: mdl-38801569

ABSTRACT

In the last 4 years, the world has experienced two pandemics of bat-borne viruses. Firstly, in 2019 the SARS-CoV-2 pandemic started and has been causing millions of deaths around the world. In 2022, a Monkeypox pandemic rose in various countries of the world. Those pandemics have witnessed movements and initiatives from healthcare and research institutions to establish a worldwide understanding to battle any future pandemics and biological threats. One Health concept is a modern, comprehensive, unifying ways to improve humans, animals, and ecosystems' health. This concept shows how much they are intertwined and related to one another, whether it is an environmental, or a pathological relation. This review aims to describe Poxviridae and its impact on the One Health concept, by studying the underlying causes of how poxviruses can affect the health of animals, humans, and environments. Reviewing the effect of disease transmission between animal to human, human to human, and animal to animal with pox viruses as a third party to achieve a total understanding of infection and viral transmission. Thus, contributing to enhance detection, diagnosis, research, and treatments regarding the application of One Health.


Subject(s)
One Health , Poxviridae Infections , Poxviridae , Humans , Animals , Poxviridae Infections/virology , Poxviridae Infections/transmission , Poxviridae Infections/epidemiology , Poxviridae/physiology , Poxviridae/pathogenicity , Poxviridae/genetics , COVID-19/virology , COVID-19/transmission , COVID-19/epidemiology , Zoonoses/virology , Zoonoses/transmission , Zoonoses/epidemiology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Pandemics , Viral Zoonoses/transmission , Viral Zoonoses/virology , Viral Zoonoses/epidemiology
11.
Eur Respir Rev ; 33(172)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38811032

ABSTRACT

Respiratory viral infections represent one of the major causes of death worldwide. The recent coronavirus disease 2019 pandemic alone claimed the lives of over 6 million people around the globe. It is therefore crucial to understand how the immune system responds to these threats and how respiratory infection can be controlled and constrained. Dendritic cells (DCs) are one of the key players in antiviral immunity because of their ability to detect pathogens. They can orchestrate an immune response that will, in most cases, lead to viral clearance. Different subsets of DCs are present in the lung and each subset can contribute to antiviral responses through various mechanisms. In this review, we discuss the role of the different lung DC subsets in response to common respiratory viruses, with a focus on respiratory syncytial virus, influenza A virus and severe acute respiratory syndrome coronavirus 2. We also review how lung DC-mediated responses to respiratory viruses can lead to the worsening of an existing chronic pulmonary disease such as asthma. Throughout the review, we discuss results obtained from animal studies as well as results generated from infected patients.


Subject(s)
Dendritic Cells , Respiratory Tract Infections , Dendritic Cells/immunology , Dendritic Cells/virology , Humans , Animals , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , Lung/immunology , Lung/virology , Host-Pathogen Interactions , COVID-19/immunology , Virus Diseases/immunology , Virus Diseases/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
12.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791489

ABSTRACT

The SARS-CoV-2 Omicron variants have replaced all earlier variants, due to increased infectivity and effective evasion from infection- and vaccination-induced neutralizing antibodies. Compared to earlier variants of concern (VoCs), the Omicron variants show high TMPRSS2-independent replication in the upper airway organs, but lower replication in the lungs and lower mortality rates. The shift in cellular tropism and towards lower pathogenicity of Omicron was hypothesized to correlate with a lower toll-like receptor (TLR) activation, although the underlying molecular mechanisms remained undefined. In silico analyses presented here indicate that the Omicron spike protein has a lower potency to induce dimerization of TLR4/MD-2 compared to wild type virus despite a comparable binding activity to TLR4. A model illustrating the molecular consequences of the different potencies of the Omicron spike protein vs. wild-type spike protein for TLR4 activation is presented. Further analyses indicate a clear tendency for decreasing TLR4 dimerization potential during SARS-CoV-2 evolution via Alpha to Gamma to Delta to Omicron variants.


Subject(s)
COVID-19 , Lymphocyte Antigen 96 , Protein Multimerization , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , SARS-CoV-2/pathogenicity , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , Lymphocyte Antigen 96/metabolism , Lymphocyte Antigen 96/genetics , Lymphocyte Antigen 96/chemistry , Computer Simulation , Protein Binding
13.
Hum Genomics ; 18(1): 52, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790075

ABSTRACT

The recent article by Harit et al. in Human Genomics reported a novel association of the C allele of rs479200 in the human EGLN1 gene with severe COVID-19 in Indian patients. The gene in context is an oxygen-sensor gene whose T allele has been reported to contribute to the inability to cope with hypoxia due to increased expression of the EGLN1 gene and therefore persons with TT genotype of EGLN1 rs479200 are more susceptible to severe manifestations of hypoxia. In contrast to this dogma, Harit et al. showed that the C allele is associated with the worsening of COVID-19 hypoxia without suggesting or even discussing the scientific plausibility of the association. The article also suffers from certain epidemiological, statistical, and mathematical issues that need to be critically elaborated and discussed. In this context, the findings of Harit et al. may be re-evaluated.


Subject(s)
Alleles , COVID-19 , Genetic Predisposition to Disease , Hypoxia-Inducible Factor-Proline Dioxygenases , SARS-CoV-2 , Humans , COVID-19/genetics , COVID-19/epidemiology , COVID-19/virology , India/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Polymorphism, Single Nucleotide/genetics , Severity of Illness Index , Hypoxia/genetics , Genotype
14.
Acta Neuropathol ; 147(1): 92, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801558

ABSTRACT

The SARS-CoV-2 virus that led to COVID-19 is associated with significant and long-lasting neurologic symptoms in many patients, with an increased mortality risk for people with Alzheimer's disease (AD) and/or Down syndrome (DS). However, few studies have evaluated the neuropathological and inflammatory sequelae in postmortem brain tissue obtained from AD and people with DS with severe SARS-CoV-2 infections. We examined tau, beta-amyloid (Aß), inflammatory markers and SARS-CoV-2 nucleoprotein in DS, AD, and healthy non-demented controls with COVID-19 and compared with non-infected brain tissue from each disease group (total n = 24). A nested ANOVA was used to determine regional effects of the COVID-19 infection on arborization of astrocytes (Sholl analysis) and percent-stained area of Iba-1 and TMEM 119. SARS-CoV-2 antibodies labeled neurons and glial cells in the frontal cortex of all subjects with COVID-19, and in the hippocampus of two of the three DS COVID-19 cases. SARS-CoV-2-related alterations were observed in peri-vascular astrocytes and microglial cells in the gray matter of the frontal cortex, hippocampus, and para-hippocampal gyrus. Bright field microscopy revealed scattered intracellular and diffuse extracellular Aß deposits in the hippocampus of controls with confirmed SARS-CoV-2 infections. Overall, the present preliminary findings suggest that SARS-CoV-2 infections induce abnormal inflammatory responses in Down syndrome.


Subject(s)
Alzheimer Disease , Brain , COVID-19 , Down Syndrome , Humans , Down Syndrome/pathology , Down Syndrome/metabolism , Down Syndrome/complications , Alzheimer Disease/pathology , Alzheimer Disease/virology , Alzheimer Disease/metabolism , COVID-19/pathology , COVID-19/complications , Male , Female , Aged , Middle Aged , Brain/pathology , Brain/virology , Aged, 80 and over , Astrocytes/pathology , Astrocytes/virology , Astrocytes/metabolism , Amyloid beta-Peptides/metabolism , SARS-CoV-2/pathogenicity , Microglia/pathology , Microglia/metabolism , Adult , tau Proteins/metabolism
15.
Viruses ; 16(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38793541

ABSTRACT

In the last twenty years, three deadly zoonotic coronaviruses (CoVs)-namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2-have emerged. They are considered highly pathogenic for humans, particularly SARS-CoV-2, which caused the 2019 CoV disease pandemic (COVID-19), endangering the lives and health of people globally and causing unpredictable economic losses. Experiments on wild-type viruses require biosafety level 3 or 4 laboratories (BSL-3 or BSL-4), which significantly hinders basic virological research. Therefore, the development of various biosafe CoV systems without virulence is urgently needed to meet the requirements of different research fields, such as antiviral and vaccine evaluation. This review aimed to comprehensively summarize the biosafety of CoV engineering systems. These systems combine virological foundations with synthetic genomics techniques, enabling the development of efficient tools for attenuated or non-virulent vaccines, the screening of antiviral drugs, and the investigation of the pathogenic mechanisms of novel microorganisms.


Subject(s)
SARS-CoV-2 , Humans , Animals , Virulence , SARS-CoV-2/pathogenicity , SARS-CoV-2/genetics , Containment of Biohazards , COVID-19/virology , Antiviral Agents/pharmacology
16.
Viruses ; 16(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38793545

ABSTRACT

Initially reported as pneumonia of unknown origin, COVID-19 is increasingly being recognized for its impact on the nervous system, despite nervous system invasions being extremely rare. As a result, numerous studies have been conducted to elucidate the mechanisms of nervous system damage and propose appropriate coping strategies. This review summarizes the mechanisms by which SARS-CoV-2 invades and damages the central nervous system, with a specific focus on aspects apart from the immune response and inflammatory storm. The latest research findings on these mechanisms are presented, providing new insights for further in-depth research.


Subject(s)
COVID-19 , Central Nervous System , Cytokine Release Syndrome , SARS-CoV-2 , Animals , Humans , Central Nervous System/virology , Central Nervous System/immunology , COVID-19/immunology , COVID-19/virology , Cytokine Release Syndrome/immunology , Inflammation/immunology , Inflammation/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
17.
Signal Transduct Target Ther ; 9(1): 140, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811528

ABSTRACT

Previous studies through targeted mutagenesis of K-D-K-E motif have demonstrated that 2'-O-MTase activity is essential for efficient viral replication and immune evasion. However, the K-D-K-E catalytic motif of 2'-O-MTase is highly conserved across numerous viruses, including flaviviruses, vaccinia viruses, coronaviruses, and extends even to mammals. Here, we observed a stronger 2'-O-MTase activity in SARS-CoV-2 compared to SARS-CoV, despite the presence of a consistently active catalytic center. We further identified critical residues (Leu-36, Asn-138 and Ile-153) which served as determinants of discrepancy in 2'-O-MTase activity between SARS-CoV-2 and SARS-CoV. These residues significantly enhanced the RNA binding affinity of 2'-O-MTase and boosted its versatility toward RNA substrates. Of interest, a triple substitution (Leu36 → Ile36, Asn138 → His138, Ile153 → Leu153, from SARS-CoV-2 to SARS-CoV) within nsp16 resulted in a proportional reduction in viral 2'-O-methylation and impaired viral replication. Furthermore, it led to a significant upregulation of type I interferon (IFN-I) and proinflammatory cytokines both in vitro and vivo, relying on the cooperative sensing of melanoma differentiation-associated protein 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). In conclusion, our findings demonstrated that alterations in residues other than K-D-K-E of 2'-O-MTase may affect viral replication and subsequently influence pathogenesis. Monitoring changes in nsp16 residues is crucial as it may aid in identifying and assessing future alteration in viral pathogenicity resulting from natural mutations occurring in nsp16.


Subject(s)
COVID-19 , Methyltransferases , SARS-CoV-2 , Virus Replication , Humans , SARS-CoV-2/genetics , SARS-CoV-2/enzymology , SARS-CoV-2/pathogenicity , COVID-19/virology , COVID-19/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Methyltransferases/chemistry , Virus Replication/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , RNA, Viral/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/enzymology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Animals , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism
19.
PLoS One ; 19(4): e0302436, 2024.
Article in English | MEDLINE | ID: mdl-38662786

ABSTRACT

Severe cases of COVID-19 are characterized by development of acute respiratory distress syndrome (ARDS). Water accumulation in the lungs is thought to occur as consequence of an exaggerated inflammatory response. A possible mechanism could involve decreased activity of the epithelial Na+ channel, ENaC, expressed in type II pneumocytes. Reduced transepithelial Na+ reabsorption could contribute to lung edema due to reduced alveolar fluid clearance. This hypothesis is based on the observation of the presence of a novel furin cleavage site in the S protein of SARS-CoV-2 that is identical to the furin cleavage site present in the alpha subunit of ENaC. Proteolytic processing of αENaC by furin-like proteases is essential for channel activity. Thus, competition between S protein and αENaC for furin-mediated cleavage in SARS-CoV-2-infected cells may negatively affect channel activity. Here we present experimental evidence showing that coexpression of the S protein with ENaC in a cellular model reduces channel activity. In addition, we show that bidirectional competition for cleavage by furin-like proteases occurs between 〈ENaC and S protein. In transgenic mice sensitive to lethal SARS-CoV-2, however, a significant decrease in gamma ENaC expression was not observed by immunostaining of lungs infected as shown by SARS-CoV2 nucleoprotein staining.


Subject(s)
COVID-19 , Epithelial Sodium Channels , Furin , Mice, Transgenic , Proteolysis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Epithelial Sodium Channels/metabolism , Animals , Humans , Mice , Furin/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/metabolism , COVID-19/virology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Lung/metabolism , Lung/virology , Lung/pathology , HEK293 Cells
20.
Viruses ; 16(4)2024 03 29.
Article in English | MEDLINE | ID: mdl-38675880

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often causes severe viral pneumonia. Although many studies using mouse models have examined the pathogenicity of SARS-CoV-2, COVID-19 pathogenesis remains poorly understood. In vivo imaging analysis using two-photon excitation microscopy (TPEM) is useful for elucidating the pathology of COVID-19, providing pathological insights that are not available from conventional histological analysis. However, there is no reporter SARS-CoV-2 that demonstrates pathogenicity in C57BL/6 mice and emits sufficient light intensity for two-photon in vivo imaging. Here, we generated a mouse-adapted strain of SARS-CoV-2 (named MASCV2-p25) and demonstrated its efficient replication in the lungs of C57BL/6 mice, causing fatal pneumonia. Histopathologic analysis revealed the severe inflammation and infiltration of immune cells in the lungs of MASCV2-p25-infected C57BL/6 mice, not unlike that observed in COVID-19 patients with severe pneumonia. Subsequently, we generated a mouse-adapted reporter SARS-CoV-2 (named MASCV-Venus-p9) by inserting the fluorescent protein-encoding gene Venus into MASCV2-p25 and sequential lung-to-lung passages in C57BL/6 mice. C57BL/6 mice infected with MASCV2-Venus-p9 exhibited severe pneumonia. In addition, the TPEM of the lungs of the infected C57BL/6J mice showed that the infected cells emitted sufficient levels of fluorescence for easy observation. These findings suggest that MASCV2-Venus-p9 will be useful for two-photon in vivo imaging studies of the pathogenesis of severe COVID-19 pneumonia.


Subject(s)
COVID-19 , Disease Models, Animal , Lung , Mice, Inbred C57BL , SARS-CoV-2 , Animals , Mice , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , COVID-19/virology , Lung/virology , Lung/pathology , Lung/diagnostic imaging , Humans , Genes, Reporter , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...