Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(1): e0278448, 2023.
Article in English | MEDLINE | ID: mdl-36638102

ABSTRACT

SHP-1 is a cytosolic tyrosine phosphatase that is primarily expressed in hematopoietic cells. It acts as a negative regulator of numerous signaling pathways and controls multiple cellular functions involved in cancer pathogenesis. This study describes the binding preferences of SHP-1 (pY536) to c-Srcopen (pY416) and c-Srcclose (pY527) through in silico approaches. Molecular dynamics simulation analysis revealed more conformational changes in c-Srcclose upon binding to SHP-1, as compared to its active/open conformation that is stabilized by the cooperative binding of the C-SH2 domain and C-terminal tail of SHP-1 to c-Src SH2 and KD. In contrast, c-Srcclose and SHP-1 interaction is mediated by PTP domain-specific WPD-loop (WPDXGXP) and Q-loop (QTXXQYXF) binding to c-Srcclose C-terminal tail residues. The dynamic correlation analysis demonstrated a positive correlation for SHP-1 PTP with KD, SH3, and the C-terminal tail of c-Srcclose. In the case of the c-Srcopen-SHP-1 complex, SH3 and SH2 domains of c-Srcopen were correlated to C-SH2 and the C-terminal tail of SHP-1. Our findings reveal that SHP1-dependent c-Src activation through dephosphorylation relies on the conformational shift in the inhibitory C-terminal tail that may ease the recruitment of the N-SH2 domain to phosphotyrosine residue, resulting in the relieving of the PTP domain. Collectively, this study delineates the intermolecular interaction paradigm and underlying conformational readjustments in SHP-1 due to binding with the c-Src active and inactive state. This study will largely help in devising novel therapeutic strategies for targeting cancer development.


Subject(s)
CSK Tyrosine-Protein Kinase , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , src Homology Domains , CSK Tyrosine-Protein Kinase/chemistry , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 6/chemistry , SH2 Domain-Containing Protein Tyrosine Phosphatases/chemistry , Neoplasms
2.
Biochemistry ; 48(6): 1399-409, 2009 Feb 17.
Article in English | MEDLINE | ID: mdl-19166311

ABSTRACT

Protein tyrosine phosphatases (PTPs) are known to be regulated by phosphorylation, localization, and protein-protein interactions. More recently, redox-dependent inactivation has emerged as a critical factor in attenuating PTP activity in response to cellular stimuli. The tandem Src homology 2 domain-containing PTPs (SHPs) belong to the family of nonreceptor PTPs whose activity can be modulated by reversible oxidation in vivo. Herein we have investigated in vitro the kinetic and mechanistic details of reversible oxidation of SHP-1 and SHP-2. We have confirmed the susceptibility of the active site cysteines of SHPs to oxidative inactivation, with rate constants for oxidation similar to other PTPs (2-10 M(-1) s(-1)). Both SHP-1 and SHP-2 can be reduced and reactivated with the reductants DTT and gluthathione, whereas only the catalytic domain of SHP-2 is subject to reactivation by thioredoxin. Stabilization of the reversible oxidation state of the SHPs proceeds via a novel mechanism unlike for other PTPs wherein oxidation yields either a disulfide between the catalytic cysteine and a nearby "backdoor" cysteine or a sulfenylamide bond with the amide backbone nitrogen of the adjacent amino acid. Instead, in the reversibly oxidized and inactivated SHPs, the catalytic cysteine is rereduced while two conserved backdoor cysteines form an intramolecular disulfide. Formation of this backdoor-backdoor disulfide is dependent on the presence of the active site cysteine and can proceed via either active site cysteine-backdoor cysteine intermediate. Removal of both backdoor cysteines leads to irreversible oxidative inactivation, demonstrating that these two cysteines are necessary and sufficient for ensuring reversible oxidation of the SHPs. Our results extend the mechanisms by which redox regulation of PTPs is used to modulate intracellular signaling pathways.


Subject(s)
Cysteine/metabolism , SH2 Domain-Containing Protein Tyrosine Phosphatases/chemistry , SH2 Domain-Containing Protein Tyrosine Phosphatases/metabolism , Biocatalysis/drug effects , Catalytic Domain , Disulfides/metabolism , Dithiothreitol/pharmacology , Enzyme Activation/drug effects , Glutathione/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Kinetics , Mutagenesis/drug effects , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Oxidation-Reduction/drug effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Structure-Activity Relationship , Thioredoxin-Disulfide Reductase/metabolism , Thioredoxins/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...