Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.778
Filter
1.
World J Microbiol Biotechnol ; 40(6): 183, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722449

ABSTRACT

Heterologous production of proteins in Escherichia coli has raised several challenges including soluble production of target proteins, high levels of expression and purification. Fusion tags can serve as the important tools to overcome these challenges. SUMO (small ubiquitin-related modifier) is one of these tags whose fusion to native protein sequence can enhance its solubility and stability. In current research, a simple, efficient and cost-effective method is being discussed for the construction of pET28a-SUMO vector. In order to improve the stability and activity of lysophospholipase from Pyrococcus abyssi (Pa-LPL), a 6xHis-SUMO tag was fused to N-terminal of Pa-LPL by using pET28a-SUMO vector. Recombinant SUMO-fused enzyme (6 H-S-PaLPL) works optimally at 35 °C and pH 6.5 with remarkable thermostability at 35-95 °C. Thermo-inactivation kinetics of 6 H-S-PaLPL were also studied at 35-95 °C with first order rate constant (kIN) of 5.58 × 10- 2 h-1 and half-life of 12 ± 0 h at 95 °C. Km and Vmax for the hydrolysis of 4-nitrophenyl butyrate were calculated to be 2 ± 0.015 mM and 3882 ± 22.368 U/mg, respectively. 2.4-fold increase in Vmax of Pa-LPL was observed after fusion of 6xHis-SUMO tag to its N-terminal. It is the first report on the utilization of SUMO fusion tag to enhance the overall stability and activity of Pa-LPL. Fusion of 6xHis-SUMO tag not only aided in the purification process but also played a crucial role in increasing the thermostability and activity of the enzyme. SUMO-fused enzyme, thus generated, can serve as an important candidate for degumming of vegetable oils at industrial scale.


Subject(s)
Enzyme Stability , Escherichia coli , Pyrococcus abyssi , Recombinant Fusion Proteins , Temperature , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Kinetics , Pyrococcus abyssi/genetics , Pyrococcus abyssi/enzymology , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Genetic Vectors/metabolism , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , SUMO-1 Protein/chemistry , Cloning, Molecular , Solubility
2.
Commun Biol ; 7(1): 532, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710927

ABSTRACT

Golgin tethers are known to mediate vesicular transport in the secretory pathway, whereas it is relatively unknown whether they may mediate cellular stress response within the cell. Here, we describe a cellular stress response during heat shock stress via SUMOylation of a Golgin tether, Golgin45. We found that Golgin45 is a SUMOylated Golgin via SUMO1 under steady state condition. Upon heat shock stress, the Golgin enters the nucleus by interacting with Importin-ß2 and gets further modified by SUMO3. Importantly, SUMOylated Golgin45 appears to interact with PML and SUMO-deficient Golgin45 mutant functions as a dominant negative for PML-NB formation during heat shock stress, suppressing transcription of lipid metabolism genes. These results indicate that Golgin45 may play a role in heat stress response by transcriptional regulation of lipid metabolism genes in SUMOylation-dependent fashion.


Subject(s)
Heat-Shock Response , Lipid Metabolism , Sumoylation , Ubiquitins , Humans , Lipid Metabolism/genetics , Heat-Shock Response/genetics , Gene Expression Regulation , Promyelocytic Leukemia Protein/metabolism , Promyelocytic Leukemia Protein/genetics , HeLa Cells , SUMO-1 Protein/metabolism , SUMO-1 Protein/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , HEK293 Cells , Transcription, Genetic , beta Karyopherins/metabolism , beta Karyopherins/genetics
3.
Int J Biol Macromol ; 268(Pt 2): 131678, 2024 May.
Article in English | MEDLINE | ID: mdl-38657921

ABSTRACT

BACKGROUND: Glia maturation factor beta (GMFB) is a growth and differentiation factor that acts as an intracellular regulator of signal transduction pathways. The small ubiquitin-related modifier (SUMO) modification, SUMOylation, is a posttranslational modification (PTM) that plays a key role in protein subcellular localization, stability, transcription, and enzymatic activity. Recent studies have highlighted the importance of SUMOylation in the inflammation and progression of numerous diseases. However, the relationship between GMFB and SUMOylation is unclear. RESULTS: Here, we report for the first time that GMFB and SUMO1 are markedly increased in retinal pigment epithelial (RPE) cells at the early stage of diabetes mellitus (DM) under hyperglycemia. The GMFΒ protein could be mono-SUMOylated by SUMO1 at the K20, K35, K58 or K97 sites. SUMOylation of GMFB led to its increased protein stability and subcellular translocation. Furthermore, deSUMOylation of GMFΒ downregulates multiple signaling pathways, including the Jak-STAT signaling pathway, p38 pathway and NF-kappa B signaling pathway. CONCLUSIONS: This work provides novel insight into the role of SUMOylated GMFB in RPE cells and provides a novel therapeutic target for diabetic retinopathy (DR).


Subject(s)
Hyperglycemia , Protein Stability , Retinal Pigment Epithelium , Signal Transduction , Sumoylation , Retinal Pigment Epithelium/metabolism , Hyperglycemia/metabolism , Humans , Epithelial Cells/metabolism , Cell Line , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , NF-kappa B/metabolism , SUMO-1 Protein/metabolism
4.
PeerJ ; 12: e16971, 2024.
Article in English | MEDLINE | ID: mdl-38495765

ABSTRACT

Stem cells are critical for replenishment of cells lost to death, damage or differentiation. Drosophila testes are a key model system for elucidating mechanisms regulating stem cell maintenance and differentiation. An intriguing gene identified through such studies is the transcription factor, chronologically inappropriate morphogenesis (Chinmo). Chinmo is a downstream effector of the Jak-STAT signaling pathway that acts in testis somatic stem cells to ensure maintenance of male stem cell fate and sexual identity. Defects in these processes can lead to infertility and the formation of germ cell tumors. While Chinmo's effect on testis stem cell behavior has been investigated in detail, there is still much to be learned about its structure, function, and interactions with other proteins. Using a two-hybrid screen, we find that Chinmo interacts with itself, the small ubiquitin-like modifier SUMO, the novel protein CG11180, and four other proteins (CG4318, Ova (ovaries absent), Taf3 (TBP-associated factor 3), and CG18269). Since both Chinmo and CG11180 contain sumoylation sites and SUMO-interacting motifs (SIMs), we analyzed their interaction in more detail. Using site-directed mutagenesis of a unique SIM in CG11180, we demonstrate that Chinmo's interaction with CG11180 is SUMO-dependent. Furthermore, to assess the functional relevance of both SUMO and CG11180, we performed RNAi-mediated knockdown of both proteins in somatic cells of the Drosophila testis. Using this approach, we find that CG11180 and SUMO are required in somatic cells of adult testes, and that reduction of either protein causes formation of germ cell tumors. Overall, our work suggests that SUMO may be involved in the interaction of Chinmo and CG11180 and that these genes are required in somatic cells of the adult Drosophila testis. Consistent with the CG11180 knockdown phenotype in male testes, and to underscore its connection to Chinmo, we propose the name Chigno (Childless Gambino) for CG11180.


Subject(s)
Drosophila Proteins , Neoplasms, Germ Cell and Embryonal , Animals , Male , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Neoplasms, Germ Cell and Embryonal/metabolism , Nerve Tissue Proteins/genetics , STAT Transcription Factors/genetics , Testis , SUMO-1 Protein
5.
J Biol Chem ; 300(4): 105778, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395307

ABSTRACT

The mechanistic target of rapamycin (mTOR) signaling is influenced by multiple regulatory proteins and post-translational modifications; however, underlying mechanisms remain unclear. Here, we report a novel role of small ubiquitin-like modifier (SUMO) in mTOR complex assembly and activity. By investigating the SUMOylation status of core mTOR components, we observed that the regulatory subunit, GßL (G protein ß-subunit-like protein, also known as mLST8), is modified by SUMO1, 2, and 3 isoforms. Using mutagenesis and mass spectrometry, we identified that GßL is SUMOylated at lysine sites K86, K215, K245, K261, and K305. We found that SUMO depletion reduces mTOR-Raptor (regulatory protein associated with mTOR) and mTOR-Rictor (rapamycin-insensitive companion of mTOR) complex formation and diminishes nutrient-induced mTOR signaling. Reconstitution with WT GßL but not SUMOylation-defective KR mutant GßL promotes mTOR signaling in GßL-depleted cells. Taken together, we report for the very first time that SUMO modifies GßL, influences the assembly of mTOR protein complexes, and regulates mTOR activity.


Subject(s)
Signal Transduction , Sumoylation , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , HEK293 Cells , SUMO-1 Protein/metabolism , SUMO-1 Protein/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , mTOR Associated Protein, LST8 Homolog/metabolism , mTOR Associated Protein, LST8 Homolog/genetics , Ubiquitins/metabolism , Ubiquitins/genetics , Lysine/metabolism
6.
Oncol Rep ; 51(2)2024 02.
Article in English | MEDLINE | ID: mdl-38186303

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is currently one of the most common malignancies with a poor prognosis worldwide. Meanwhile, small ubiquitin­like modifier (SUMO) specific peptidase 1 (SENP1) was associated with ferroptosis. However, the specific functions and underlying mechanisms of action of SENP1 in ferroptosis and tumor progression of HNSCC remain to be established. The findings of the present study implicated a novel ferroptosis pathway in the initiation and progression of HNSCC, providing new functional targets to guide future therapy. In the present study, The Cancer Genome Atlas database was employed to establish a gene model related to ferroptosis and verified SENP1 as a key gene via transcriptome sequencing. Expression of SENP1 in HNSCC tissue and CAL­27 cells was detected based on reverse transcription­quantitative PCR and western blot analysis. Proliferation and migration abilities of cells were determined using Cell Counting Kit­8, wound healing and Transwell experiments. Expression levels of iron, glutathione (GSH) and lipid peroxidation end­product malondialdehyde (MDA) under conditions of silencing of SENP1 with shRNA lentivirus were assayed. Additionally, the relationship between SENP1 and long­chain acyl­coenzyme A synthase 4 (ACSL4) was validated with the aid of immunoblotting and co­immunoprecipitation (co­IP). Finally, the influence of shSENP1 on the expression of key ferroptosis proteins, glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11, was evaluated via western blotting. It was revealed that SENP1 was significantly overexpressed in HNSCC and associated with low patient survival. Silencing of SENP1 led to significant suppression of cell proliferation, migration and invasion, increase in the contents of iron ions and MDA and decline in GSH levels in HNSCC cells, thereby enhancing ferroptosis and inhibiting disease progression. Conversely, overexpression of SENP1 suppressed ferroptosis and promoted progression of HNSCC. Co­IP and western blot analyses revealed a SUMOylation link between SENP1 and ACSL4. SENP1 reduced the stability of ACSL4 protein through deSUMOylation, leading to inhibition of ferroptosis. SENP1 silencing further inhibited the expression of the key iron death protein, GPX4, to regulate ferroptosis. Taken together, SENP1 deficiency promoted ferroptosis and inhibited tumor progression through reduction of SUMOylation of ACSL4 in HNSCC. The collective results of the present study supported the utility of SENP1 as an effective predictive biomarker for targeted treatment of HNSCC.


Subject(s)
Ferroptosis , Head and Neck Neoplasms , Humans , Cysteine Endopeptidases/genetics , Ferroptosis/genetics , Head and Neck Neoplasms/genetics , Iron , Protein Stability , Squamous Cell Carcinoma of Head and Neck/genetics , SUMO-1 Protein/genetics
7.
J Cell Physiol ; 239(3): e31080, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37450667

ABSTRACT

SUMOylation plays an essential role in diverse physiological and pathological processes. Identification of wild-type SUMO1-modification sites by mass spectrometry is still challenging. In this study, we produced a monoclonal SUMO1C-K antibody recognizing SUMOylated peptides and proposed an efficient streamline for identification of SUMOylation sites. We identified 471 SUMOylation sites in 325 proteins from five raw data. These identified sites exhibit a high positive rate when evaluated by mutation-verified SUMOylation sites. We identified many SUMOylated proteins involved in mitochondrial metabolism and non-membrane-bounded organelles formation. We proposed a SUMOylation motif, ΨKXD/EP, where proline is required for efficient SUMOylation. We further revealed SUMOylation of TFII-I was stimulated by growth signals and was required for nucleus-localization of p-ERK1/2. Mutation of SUMOylation sites of TFII-I suppressed tumor cell growth in vitro and in vivo. Taken together, we provided a strategy for personalized identification of wild-type SUMO1-modification sites and revealed the physiological significance of TFII-I SUMOylation in this study.


Subject(s)
Neoplasms , SUMO-1 Protein , Sumoylation , Transcription Factors, TFII , Humans , Antibodies, Monoclonal , Mass Spectrometry , Neoplasms/genetics , Neoplasms/pathology , Peptides/metabolism , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , Sumoylation/genetics , Transcription Factors, TFII/metabolism
8.
J Chromatogr A ; 1713: 464508, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38006661

ABSTRACT

As an excellent fusion tag for expressing heterologous proteins, yeast SUMO (small ubiquitin-related modifier) has unique advantages such as improving solubility, promoting stability, and reducing degradation, but it lacks a simple and rapid purification method. Camelid single-domain antibodies (VHHs or nanobodies) show great promise as an efficient tool in analytical application. In this study, VHHs against SUMO protein were isolated for the first time using biopanning of an immune camelid nanobody library. Among these nanobodies, VS2 demonstrated a high expression level (1.12 g L - 1), and a high affinity for SUMO (2.26 nM). Meanwhile, VHHs were coupled to agarose resins by cysteine at the C-terminal to form affinity chromatography resins. The VS2 resin showed excellent specificity and a dynamic binding capacity for SUMO, SUMO-DsbA (disulfide oxidoreductase) and SUMO-SAM (S-adenosylmethionine synthetase) were 2.41 mg/mL resin, 7.57 mg/mL resin and 16.23 mg/mL resin, respectively. Furthermore, the VS2 resin enabled one-step purification of SUMO-fusions [SUMO-Fc (human IgG1-Fc fragment), SUMO-IGF1 (human insulin-like growth factor 1), SUMO-FGF21 (human fibroblast growth factor 21), SUMO-G-CSF (human Granulocyte colony-stimulating factor), SUMO-PDGF (human platelet-derived growth factor) and SUMO-PAS200 (conformationally disordered polypeptide chains with expanded hydrodynamic volume comprising the small residues Pro, Ala-and Ser)], and maintained binding capacity and selectivity over 25 purification cycles, each including 15 min of cleaning-in-place with 0.1 M NaOH. This study demonstrated that the VS2 resin was a useful tool at the laboratory scale for one-step purification of various SUMO fusions from complex mixtures.


Subject(s)
Single-Domain Antibodies , Small Ubiquitin-Related Modifier Proteins , Humans , Small Ubiquitin-Related Modifier Proteins/chemistry , Small Ubiquitin-Related Modifier Proteins/metabolism , Single-Domain Antibodies/metabolism , SUMO-1 Protein , Peptides , Saccharomyces cerevisiae/metabolism , Chromatography, Affinity/methods , Recombinant Fusion Proteins
9.
Biochem Cell Biol ; 102(1): 73-84, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37703582

ABSTRACT

Human muscle-specific RING fingers (MURFs) are members of the tripartite motif (TRIM) family of proteins characterized by their C-terminal subgroup one signature domain. MURFs play a role in sarcomere formation and microtubule dynamics. It was previously established that some TRIMs undergo post-translational modification by small ubiquitin-like modifier (SUMO). In this study, we explored the putative SUMOylation of MURF proteins as well as their interactions with SUMO. MURF proteins (TRIM54, TRIM55, and TRIM63) were not found to be SUMOylated. However, TRIM55 turnover by proteasomal and lysosomal degradation was higher upon overexpression of SUMO-3 but not of SUMO-1. Furthermore, it is predicted that TRIM55 contains two potential SUMO-interacting motifs (SIMs). We found that SIM1- and SIM2-mutated TRIM55 were more stable than the wild-type (WT) protein partly due to decreased degradation. Consistently, SIM-mutated TRIM55 was less polyubiquitinated than the WT protein, despite similar monoubiquitination levels. Using IF microscopy, we observed that SIM motifs influenced TRIM55 subcellular localization. In conclusion, our results suggest that SUMO-3 or SUMO-3-modified proteins modulate the localization, stability, and RING ubiquitin ligase activity of TRIM55.


Subject(s)
SUMO-1 Protein , Ubiquitin , Humans , Ubiquitin/metabolism , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , Protein Processing, Post-Translational , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
J Phys Chem Lett ; 14(40): 9060-9068, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37782899

ABSTRACT

Liquid-liquid phase separation (LLPS) plays a crucial role in cellular organization, primarily driven by intrinsically disordered proteins (IDPs) leading to the formation of biomolecular condensates. A folded protein SUMO that post-translationally modifies cellular proteins has recently emerged as a regulator of LLPS. Given its compact structure and limited flexibility, the precise role of SUMO in condensate formation remains to be investigated. Here, we show the rapid phase separation of SUMO1 into micrometer-sized liquid-like condensates in inert crowders under physiological conditions. Subsequent time-dependent conformational changes and aggregation are probed by label-free methods (tryptophan fluorescence and Raman spectroscopy). Remarkably, experiments on a SUMO1 variant lacking the N-terminal disordered region further corroborate the role of its structured part in phase transitions. Our findings highlight the potential of folded proteins to engage in LLPS and emphasize further investigation into the influence of the SUMO tag on IDPs associated with membrane-less assemblies in cells.


Subject(s)
Intrinsically Disordered Proteins , SUMO-1 Protein , Intrinsically Disordered Proteins/chemistry , Tryptophan , Ubiquitins , SUMO-1 Protein/chemistry
11.
Aging (Albany NY) ; 15(17): 8812-8832, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37683133

ABSTRACT

Deleted in breast cancer 1 (DBC1) was initially identified from a homozygously deleted region in human chromosome 8p21. It has been well established that DBC1 plays a dual role during cancer development. Depending on the physiological context, it can promote or inhibit tumorigenesis. Whether it plays a role in lens pathogenesis remains elusive. In the present study, we demonstrated that DBC1 is highly expressed in lens epithelial cells from different vertebrates and in retina pigment epithelial cells as well. Moreover, DBC1 is SUMOylated through SUMO1 conjugation at K591 residue in human and mouse lens epithelial cells. The SUMOylated DBC1 is localized in the nucleus and plays an essential role in promoting stress-induced apoptosis. Silence of DBC1 attenuates oxidative stress-induced apoptosis. In contrast, overexpression of DBC1 enhances oxidative stress-induced apoptosis, and this process depends on p53. Mechanistically, DBC1 interacts with p53 to regulate its phosphorylation status at multiple sites and the SUMOylation of DBC1 enhances its interaction with p53. Together, our results identify that DBC1 is an important regulator mediating stress-induced apoptosis in lens, and thus participates in control of lens cataractogenesis.


Subject(s)
Apoptosis , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Apoptosis/genetics , Carcinogenesis , Cell Transformation, Neoplastic , Epithelial Cells , SUMO-1 Protein/genetics , Tumor Suppressor Protein p53/genetics
12.
Nat Commun ; 14(1): 6111, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777511

ABSTRACT

The Boom syndrome helicase (BLM) unwinds a variety of DNA structures such as Guanine (G)-quadruplex. Here we reveal a role of RNF111/Arkadia and its paralog ARKL1, as well as Promyelocytic Leukemia Nuclear Bodies (PML NBs), in the regulation of ubiquitination and control of BLM protein levels. RNF111 exhibits a non-canonical SUMO targeted E3 ligase (STUBL) activity targeting BLM ubiquitination in PML NBs. ARKL1 promotes RNF111 localization to PML NBs through SUMO-interacting motif (SIM) interaction with SUMOylated RNF111, which is regulated by casein kinase 2 (CK2) phosphorylation of ARKL1 at a serine residue near the ARKL1 SIM domain. Upregulated BLM in ARKL1 or RNF111-deficient cells leads to a decrease of G-quadruplex levels in the nucleus. These results demonstrate that a CK2- and RNF111-ARKL1-dependent regulation of BLM in PML NBs plays a critical role in controlling BLM protein levels for the regulation of G-quadruplex.


Subject(s)
Casein Kinase II , Promyelocytic Leukemia Nuclear Bodies , Promyelocytic Leukemia Protein , RecQ Helicases , Humans , Casein Kinase II/genetics , Casein Kinase II/metabolism , Promyelocytic Leukemia Protein/genetics , Promyelocytic Leukemia Protein/metabolism , RecQ Helicases/metabolism , Ubiquitination , Sumoylation , SUMO-1 Protein
13.
Int J Mol Sci ; 24(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628954

ABSTRACT

This study aimed to investigate the correlation between hydrogen peroxide (H2O2), small ubiquitin-like modifier molecules (SUMO), and pregnancy outcomes in couples with unexplained infertility (UI) undergoing intrauterine insemination (IUI) treatment. We prospectively collected semen samples from 56 couples with UI and divided the spermatozoa into motile and immotile fractions by density gradient centrifugation (DSC). Immunofluorescence staining was used to examine the immunostaining and localization of nuclear pore complex (NPC), SUMO1, and SUMO2/3 in spermatozoa. We detected H2O2 levels by chemiluminescence methods. We found that H2O2 levels correlated with NPC (neck) (r = 0.400) and NPC (tail) (r = 0.473) in motile sperm fractions. In immotile fractions, H2O2 positively correlated with NPC (tail) (r = 0.431) and SUMO1 (neck) (r = 0.282). Furthermore, the positive NPC (tail) group had a significantly lower live birth rate than the negative NPC group (17.9% = 5/28 vs. 42.9% = 12/28). In conclusion, H2O2 positively correlated with SUMO1 (neck) and NPC (tail) in human spermatozoa. The DSC may partially eliminate defective spermatozoa (positive NPC staining); however, if defective spermatozoa remain in the motile fraction, this scenario is associated with a low live birth rate following IUI treatment.


Subject(s)
Hydrogen Peroxide , Infertility , Humans , Female , Pregnancy , Male , Live Birth , Semen , Spermatozoa , Infertility/therapy , Insemination , SUMO-1 Protein
14.
Bioorg Med Chem Lett ; 94: 129460, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37640164

ABSTRACT

The transiently-activated SUMO probes are conducive to understand the dynamic control of SENPs activity. Here, we developed a photocaged glycine-assisted strategy for the construction of on demand-activated SUMO-ABPs. The light-sensitive groups installed at G92 and G64 backbone of SUMO-2 can temporarily block probes activity and hamper aspartimide formation, respectively, which enabled the efficient synthesis of inert SUMO-2 propargylamide (PA). The probe could be activated to capture SENPs upon photo-irradiation not only in vitro but also in intact cells, providing opportunities to further perform intracellular time-resolved proteome-wide profiling of SUMO-related enzymes.


Subject(s)
Molecular Probes , SUMO-1 Protein , Glycine/chemistry , Pyruvates , SUMO-1 Protein/chemistry , SUMO-1 Protein/metabolism , Molecular Probes/chemistry , Molecular Probes/metabolism , Photochemistry/methods
15.
Front Immunol ; 14: 1200939, 2023.
Article in English | MEDLINE | ID: mdl-37520526

ABSTRACT

Introduction: The recent discovery of TAK981(Subasumstat), the first-in-class selective inhibitor of SUMOylation, enables new immune treatments. TAK981 is already in clinical trials to potentiate immunotherapy in metastatic tumors and hematologic malignancies. Cancer patients have more than ten times higher risk of infections, but the effects of TAK981 in sepsis are unknown and previous studies on SUMO in infections are conflicting. Methods: We used TAK981 in two sepsis models; polymicrobial peritonitis (CLP) and LPS endotoxemia. Splenectomy was done in both models to study the role of spleen. Western blotting of SUMO-conjugated proteins in spleen lysates was done. Global SUMO1 and SUMO3 knockout mice were used to study the specific SUMO regulation of inflammation in LPS endotoxemia. Splenocytes adoptive transfer was done from SUMO knockouts to wild type mice to study the role of spleen SUMOylation in experimental sepsis. Results and discussion: Here, we report that inhibition of SUMOylation with TAK981 improved survival in mild polymicrobial peritonitis by enhancing innate immune responses and peritoneal bacterial clearance. Thus, we focused on the effects of TAK981 on the immune responses to bacterial endotoxin, showing that TAK981 enhanced early TNFα production but did not affect the resolution of inflammation. Splenectomy decreased serum TNFα levels by nearly 60% and TAK981-induced TNFα responses. In the spleen, endotoxemia induced a distinct temporal and substrate specificity for SUMO1 and SUMO2/3, and both were inhibited by TAK981. Global genetic depletion of SUMO1, but not SUMO3, enhanced TNFα production and metabolic acidosis. The transfer of SUMO1-null, but not wild-type, splenocytes into splenectomized wild-type mice exacerbated TNFα production and metabolic acidosis in endotoxemia. Conclusion: These results suggest that specific regulation of splenic SUMO1 can modulate immune and metabolic responses to bacterial infection.


Subject(s)
Endotoxemia , Peritonitis , SUMO-1 Protein , Animals , Mice , Lipopolysaccharides/toxicity , Mice, Knockout , Peritonitis/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Spleen/metabolism , Tumor Necrosis Factor-alpha , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism
16.
Mol Carcinog ; 62(9): 1249-1262, 2023 09.
Article in English | MEDLINE | ID: mdl-37191369

ABSTRACT

Small molecule degraders of small ubiquitin-related modifier 1 (SUMO1) induce SUMO1 degradation in colon cancer cells and inhibits the cancer cell growth; however, it is unclear how SUMO1 degradation leads to the anticancer activity of the degraders. Genome-wide CRISPR-Cas9 knockout screen has identified StAR-related lipid transfer domain containing 7 (StarD7) as a critical gene for the degrader's anticancer activity. Here, we show that both StarD7 mRNA and protein are overexpressed in human colon cancer and its knockout significantly reduces colon cancer cell growth and xenograft progression. The treatment with the SUMO1 degrader lead compound HB007 reduces StarD7 mRNA and protein levels and increases endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production in colon cancer cells and three-dimensional (3D) organoids. The study further provides a novel mechanism of the compound anticancer activity that SUMO1 degrader-induced decrease of StarD7 occur through degradation of SUMO1, deSUMOylation and degradation of T cell-specific transcription 4 (TCF4) and thereby inhibition of its transcription of StarD7 in colon cancer cells, 3D organoids and patient-derived xenografts (PDX).


Subject(s)
Carrier Proteins , Colonic Neoplasms , Humans , Carrier Proteins/genetics , Reactive Oxygen Species/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , RNA, Messenger , Endoplasmic Reticulum Stress , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , Transcription Factor 4/metabolism
17.
Plant Cell Rep ; 42(8): 1279-1290, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37178216

ABSTRACT

KEY MESSAGE: SMC5/6 complex subunit OsMMS21 is involved in cell cycle and hormone signaling and required for stem cell proliferation during shoot and root development in rice. The structural maintenance of chromosome (SMC)5/6 complex is required for nucleolar integrity and DNA metabolism. Moreover, METHYL METHANESULFONATE SENSITIVITY GENE 21 (MMS21), a SUMO E3 ligase that is part of the SMC5/6 complex, is essential for the root stem cell niche and cell cycle transition in Arabidopsis. However, its specific role in rice remains unclear. Here, OsSMC5 and OsSMC6 single heterozygous mutants were generated using CRISPR/Cas9 technology to elucidate the function of SMC5/6 subunits, including OsSMC5, OsSMC6, and OsMMS21, in cell proliferation in rice. ossmc5/ + and ossmc6/ + heterozygous single mutants did not yield homozygous mutants in their progeny, indicating that OsSMC5 and OsSMC6 both play necessary roles during embryo formation. Loss of OsMMS21 caused severe defects in both the shoot and roots in rice. Transcriptome analysis showed a significant decrease in the expression of genes involved in auxin signaling in the roots of osmms21 mutants. Moreover, the expression levels of the cycB2-1 and MCM genes, which are involved the cell cycle, were significantly lower in the shoots of the mutants, indicating that OsMMS21 was involved in both hormone signaling pathways and the cell cycle. Overall, these findings indicate that the SUMO E3 ligase OsMMS21 is required for both shoot and root stem cell niches, improving the understanding of the function of the SMC5/6 complex in rice.


Subject(s)
Oryza , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/genetics , Oryza/genetics , Oryza/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , SUMO-1 Protein/chemistry , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , Ubiquitin-Protein Ligases/genetics , Cell Division , Hormones
18.
ACS Chem Neurosci ; 14(9): 1610-1621, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37092685

ABSTRACT

Post-translational modifications of proteins, such as acetylation and SUMOylation, play important roles in regulation of protein functions and pathophysiology of different diseases including neurodegenerative diseases. Our previous studies have identified aberrant acetylation profiles and reduced deacetylases Sirt3 and Sirt1 in the brains of prion-infected mouse models. In this study, we have found that the levels of acetylated forms of AceCS2 and LCAD, the key enzymes regulating lipid metabolism, CS and IHD2, the key enzymes regulating complete oxidative metabolism, GDH, the key enzyme regulating the oxidative decomposition of glutamate into the tricarboxylic acid (TCA) cycle, and NDUFA9, the essential component in the complex I of respiratory chain activity, were significantly upregulated in the prion-infected animal and cell models, along with the decrease of Sirt3 activity and mitochondrial cytochrome c oxidase activity. Meanwhile, the increases of SUMO1 modifications and SUMO1-Sirt3 and decrease of SENP1 were identified in the brains and the cultured cells with prion infections. Removal of prion propagation in the cultured cells partially, but significantly, reversed the aberrant situations. Moreover, similar abnormal phenomena were also observed in the cultured 293 T cells transiently expressing cytosolic form PrP (Cyto-PrP), including decreased SENP1, increased SUMO1, decreased Sirt3 activity, increased acetylated forms of the key enzymes, and decreased cytochrome c oxidase activity. Attenuation of the accumulation of Cyto-PrP by co-expression of the p62 protein sufficiently diminished those abnormalities. The data here strongly indicate that deposits of prions in brains or accumulations of Cyto-PrP in cells trigger dysregulation of the SENP1-SUMO1-Sirt pathway and subsequently induce aberrant mitochondrial deacetylation and the mitochondrial respiratory chain.


Subject(s)
Prions , Sirtuin 3 , Animals , Mice , Acetylation , Cysteine Endopeptidases/metabolism , Electron Transport Complex IV/metabolism , Oxidative Phosphorylation , Prions/metabolism , Sirtuin 1/metabolism , Sirtuin 3/metabolism , SUMO-1 Protein/metabolism
19.
Sci Rep ; 13(1): 2309, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759644

ABSTRACT

Substantial increases in the conjugation of the main human SUMO paralogs, SUMO1, SUMO2, and SUMO3, are observed upon exposure to different cellular stressors, and such increases are considered important to facilitate cell survival to stress. Despite their critical cellular role, little is known about how the levels of the SUMO modifiers are regulated in the cell, particularly as it relates to the changes observed upon stress. Here we characterize the contribution of alternative splicing towards regulating the expression of the main human SUMO paralogs under normalcy and three different stress conditions, heat-shock, cold-shock, and Influenza A Virus infection. Our data reveal that the normally spliced transcript variants are the predominant mature mRNAs produced from the SUMO genes and that the transcript coding for SUMO2 is by far the most abundant of all. We also provide evidence that alternatively spliced transcripts coding for protein isoforms of the prototypical SUMO proteins, which we refer to as the SUMO alphas, are also produced, and that their abundance and nuclear export are affected by stress in a stress- and cell-specific manner. Additionally, we provide evidence that the SUMO alphas are actively synthesized in the cell as their coding mRNAs are found associated with translating ribosomes. Finally, we provide evidence that the SUMO alphas are functionally different from their prototypical counterparts, with SUMO1α and SUMO2α being non-conjugatable to protein targets, SUMO3α being conjugatable but targeting a seemingly different subset of protein from those targeted by SUMO3, and all three SUMO alphas displaying different cellular distributions from those of the prototypical SUMOs. Thus, alternative splicing appears to be an important contributor to the regulation of the expression of the SUMO proteins and the cellular functions of the SUMOylation system.


Subject(s)
Alternative Splicing , Sumoylation , Humans , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Genes, Regulator , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism
20.
J Biomol Struct Dyn ; 41(21): 12372-12386, 2023.
Article in English | MEDLINE | ID: mdl-36656084

ABSTRACT

SUMOylation regulates various cellular process and SENP1 (SUMO-specific protease 1) serves as a SUMO (small ubiquitin-related modifier) specific protease that participates in the SUMO cycle. Given its extensive influences on metabolic activities, SENP1 has gained more and more attentions in clinical treatments. However, there remains a question on why does the SENP1 prefer to process SUMO1 rather than SUMO2. Here, we performed molecular dynamics simulations of SENP1-SUMO1, SENP1-SUMO2, and apo SENP1 systems and observed distinct conformational dynamics in the upper half of the clamp and the three loops in the catalytic center of the SENP1. Principal component analysis revealed that the most prominent canonical variable represented the spatial distribution of the upper half of the clamp, while the openness of the cleft was closely related to the catalytic ability of SENP1. Further analysis of the SENP1-SUMO interactions revealed that the extensive and strong interactions between the SENP1 and SUMO1 were both in the interface of the upper half region and the catalytic center. Dynamic cross-correlation matrix analysis demonstrated that the inter-residue correlations in the SUMO1 system was much stronger, especially in the two essential regions belonging to the upper and lower half of cleft. Based on these observations, we proposed an allosteric propagation model and further testified it using the community analysis. These results revealed the propagation pathway of allosteric communication that contributed to the substrate discrimination of SENP1 upon SUMO1 and SUMO2.Communicated by Ramaswamy H. Sarma.


Subject(s)
Cysteine Endopeptidases , SUMO-1 Protein , Small Ubiquitin-Related Modifier Proteins , Molecular Dynamics Simulation , Ubiquitin , Cysteine Endopeptidases/chemistry , SUMO-1 Protein/chemistry , Small Ubiquitin-Related Modifier Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...