Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
Nat Commun ; 15(1): 3784, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710716

ABSTRACT

Probiotic and engineered microbe-based therapeutics are an emerging class of pharmaceutical agents. They represent a promising strategy for treating various chronic and inflammatory conditions by interacting with the host immune system and/or delivering therapeutic molecules. Here, we engineered a targeted probiotic yeast platform wherein Saccharomyces boulardii is designed to bind to abundant extracellular matrix proteins found within inflammatory lesions of the gastrointestinal tract through tunable antibody surface display. This approach enabled an additional 24-48 h of probiotic gut residence time compared to controls and 100-fold increased probiotic concentrations within the colon in preclinical models of ulcerative colitis in female mice. As a result, pharmacodynamic parameters including colon length, colonic cytokine expression profiles, and histological inflammation scores were robustly improved and restored back to healthy levels. Overall, these studies highlight the potential for targeted microbial therapeutics as a potential oral dosage form for the treatment of inflammatory bowel diseases.


Subject(s)
Colitis, Ulcerative , Colon , Disease Models, Animal , Extracellular Matrix , Probiotics , Saccharomyces boulardii , Animals , Probiotics/administration & dosage , Female , Mice , Extracellular Matrix/metabolism , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Colon/microbiology , Colon/metabolism , Colon/pathology , Mice, Inbred C57BL , Colitis/therapy , Colitis/microbiology , Colitis/pathology , Cytokines/metabolism , Humans
2.
World J Gastroenterol ; 30(10): 1280-1286, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38596495

ABSTRACT

Yu et al's study in the World Journal of Gastroenterology (2023) introduced a novel regimen of Vonoprazan-amoxicillin dual therapy combined with Saccharomyces boulardii (S. boulardii) for the rescue therapy against Helicobacter pylori (H. pylori), a pathogen responsible for peptic ulcers and gastric cancer. Vonoprazan is a potassium-competitive acid blocker renowned for its rapid and long-lasting acid suppression, which is minimally affected by mealtime. Compared to proton pump inhibitors, which bind irreversibly to cysteine residues in the H+/K+-ATPase pump, Vonoprazan competes with the K+ ions, prevents the ions from binding to the pump and blocks acid secretion. Concerns with increasing antibiotic resistance, effects on the gut microbiota, patient compliance, and side effects have led to the advent of a dual regimen for H. pylori. Previous studies suggested that S. boulardii plays a role in stabilizing the gut barrier which improves H. pylori eradication rate. With an acceptable safety profile, the dual-adjunct regimen was effective regardless of prior treatment failure and antibiotic resistance profile, thereby strengthening the applicability in clinical settings. Nonetheless, S. boulardii comes in various formulations and dosages, warranting further exploration into the optimal dosage for supplementation in rescue therapy. Additionally, larger, randomized, double-blinded controlled trials are warranted to confirm these promising results.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Pyrroles , Saccharomyces boulardii , Sulfonamides , Humans , Amoxicillin/therapeutic use , Anti-Bacterial Agents/adverse effects , Helicobacter Infections/drug therapy , Clarithromycin/therapeutic use , Drug Therapy, Combination , Proton Pump Inhibitors/adverse effects , H(+)-K(+)-Exchanging ATPase , Ions/pharmacology , Ions/therapeutic use , Treatment Outcome
3.
Travel Med Infect Dis ; 59: 102703, 2024.
Article in English | MEDLINE | ID: mdl-38458507

ABSTRACT

INTRODUCTION: Approximately 10-40 million travelers get Traveler's Diarrhea (TD) yearly. A significant decrease in TD incidence has not been achieved by depending solely on antibiotic prophylaxis and educational initiatives. Using prebiotics to prevent TD has also not been examined in previous evaluations of probiotics for TD, which failed to consider the strain-specificity of probiotic efficacy. This review investigates the overall effects of probiotics on preventing TD, including the impact of dosage, duration, and age. METHODS: Standard literature databases were searched without restriction on publication year or language. The following criteria are included: randomized controlled trials (RCTs) in English or non-English unrestricted to publication year, excluding animal and observational studies. This systematic review applied the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. RESULTS: Of the 166 screened papers, 10 RCTs were included. Lactobacillus acidophilus showed no efficacy in preventing TD except when mixed with other strains. Other genera of lactobacilli showed a protection rate of up to 39% against TD. Similarly, Saccharomyces cerevisiae and Saccharomyces boulardii have been effective in preventing TD. CONCLUSION: Studies investigating probiotics as a preventive measure for TD remain limited. Only a few probiotics that reduce TD risk exist. Based on this systematic review and meta-analysis, specific probiotic strains, including L. acidophilus, L. rhamnosus, L. fermentum, S. cerevisiae, and S. boulardii, may prevent TD. The effect of additional probiotic strains on TD prevention must be further investigated.


Subject(s)
Diarrhea , Probiotics , Travel , Probiotics/therapeutic use , Probiotics/administration & dosage , Humans , Diarrhea/prevention & control , Diarrhea/microbiology , Randomized Controlled Trials as Topic , Saccharomyces boulardii
4.
Immunol Lett ; 267: 106853, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513836

ABSTRACT

BACKGROUND: Allergic asthma is a heterogeneous disease and new strategies are needed to prevent or treat this disease. Studies have shown that probiotic interventions are effective in preventing asthma. Here, we investigated the impact of Saccharomyces boulardii (S. boulardii) on ovalbumin (OVA)-induced allergic asthma in mice, as well as the underlying mechanisms. METHODS: First, we constructed a mouse asthma model using OVA and given S. boulardii intervention. Next, we measured N6-methyladenosine (m6A) levels in lung injury tissues. 16 s rRNA was employed to identify different gut microbiota in fecal samples. The analysis of differential metabolites in feces was performed by non-targeted metabolomics. Pearson correlation coefficient was utilized to analyze correlation between gut microbiota, metabolites and methyltransferase-like 3 (METTL3). Finally, we collected mouse feces treated by OVA and S. boulardii intervention for fecal microbiota transplantation (FMT) and interfered with METTL3. RESULTS: S. boulardii improved inflammation and oxidative stress and alleviated lung damage in asthmatic mice. In addition, S. boulardii regulated m6A modification levels in asthmatic mice. 16 s rRNA sequencing showed that S. boulardii remodeled gut microbiota homeostasis in asthmatic mice. Non-targeted metabolomics analysis showed S. boulardii restored metabolic homeostasis in asthmatic mice. There was a correlation between gut microbiota, differential metabolites, and METTL3 analyzed by Pearson correlation. Additionally, through FMT and interference of METTL3, we found that gut microbiota mediated the up-regulation of METTL3 by S. boulardii improved inflammation and oxidative stress in asthmatic mice, and alleviated lung injury. CONCLUSIONS: S. boulardii alleviated allergic asthma by restoring gut microbiota and metabolic homeostasis via up-regulation of METTL3 in an m6A-dependent manner.


Subject(s)
Adenosine , Asthma , Disease Models, Animal , Gastrointestinal Microbiome , Homeostasis , Methyltransferases , Probiotics , Saccharomyces boulardii , Up-Regulation , Animals , Asthma/therapy , Asthma/metabolism , Asthma/immunology , Asthma/etiology , Asthma/microbiology , Methyltransferases/metabolism , Methyltransferases/genetics , Gastrointestinal Microbiome/immunology , Mice , Adenosine/metabolism , Adenosine/analogs & derivatives , Probiotics/administration & dosage , Probiotics/therapeutic use , Female , Fecal Microbiota Transplantation , Ovalbumin/immunology , Mice, Inbred BALB C
5.
Nutrients ; 16(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474831

ABSTRACT

Ulcerative colitis (UC) is a global intestinal disease, and conventional therapeutic drugs often fail to meet the needs of patients. There is an urgent need to find efficient and affordable novel biological therapies. Saccharomyces boulardii has been widely used in food and pharmaceutical research due to its anti-inflammatory properties and gut health benefits. However, there is still a relatively limited comparison and evaluation of different forms of S. boulardii treatment for UC. This study aimed to compare the therapeutic effects of S. boulardii, heat-killed S. boulardii, and S. boulardii ß-glucan on UC, to explore the potential of heat-killed S. boulardii as a new biological therapy. The results demonstrate that all three treatments were able to restore body weight, reduce the disease activity index (DAI), inhibit splenomegaly, shorten colon length, and alleviate histopathological damage to colonic epithelial tissues in DSS-induced colitis mice. The oral administration of S. boulardii, heat-killed S. boulardii, and S. boulardii ß-glucan also increased the levels of tight junction proteins (Occludin and ZO-1), decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in the serum, and suppressed the expressions of TNF-α, IL-1ß, and IL-6 mRNA in the colon. In particular, in terms of gut microbiota, S. boulardii, heat-killed S. boulardii, and S. boulardii ß-glucan exhibited varying degrees of modulation on DSS-induced dysbiosis. Among them, heat-killed S. boulardii maximally restored the composition, structure, and functionality of the intestinal microbiota to normal levels. In conclusion, heat-killed S. boulardii showed greater advantages over S. boulardii and S. boulardii ß-glucan in the treatment of intestinal diseases, and it holds promise as an effective novel biological therapy for UC. This study is of great importance in improving the quality of life for UC patients and reducing the burden of the disease.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Saccharomyces boulardii , beta-Glucans , Humans , Animals , Mice , Colitis, Ulcerative/drug therapy , Dextran Sulfate/adverse effects , Tumor Necrosis Factor-alpha/adverse effects , Interleukin-6 , Hot Temperature , Quality of Life , Inflammation/chemically induced , Colitis/chemically induced , Colon/metabolism , beta-Glucans/pharmacology , Disease Models, Animal , Mice, Inbred C57BL
6.
Sci Rep ; 14(1): 4844, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38418660

ABSTRACT

About half of the 1.62 billion cases of anemia are because of poor diet and iron deficiency. Currently, the use of iron-enriched yeasts can be used as the most effective and possible way to prevent and treat anemia due to the ability of biotransformation of mineral compounds into the organic form. In this research, for the first time, Saccharomyces (S.) boulardii was used for iron enrichment with the aim that the probiotic properties of yeast provide a potential iron supplement besides improving the bioavailability of iron. Also, due to its higher resistance than other Saccharomyces strains against stresses, it can protect iron against processing temperatures and stomach acidic-enzymatic conditions. So, the effect of three important variables, including concentration of iron, molasses and KH2PO4 on the growth and biotransformation of yeast was investigated by the Box-Behnken design (BBD). The best conditions occurred in 3 g/l KH2PO4, 20 g/l molasses and 12 mg/l FeSO4 with the highest biotransformation 27 mg Fe/g dry cell weight (DCW) and 6 g/l biomass weight. Such yeast can improve fermented products, provide potential supplement, and restore the lost iron of bread, which is a useful iron source, even for vegetarians-vegans and play an important role in manage with anemia. It is recommended that in future researches, attention should be paid to increasing the iron enrichment of yeast through permeabilizing the membrane and overcoming the structural barrier of the cell wall.


Subject(s)
Anemia , Probiotics , Saccharomyces boulardii , Saccharomyces , Saccharomyces cerevisiae/metabolism , Iron/metabolism , Saccharomyces/metabolism , Probiotics/metabolism
7.
J Agric Food Chem ; 72(8): 4257-4266, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38354318

ABSTRACT

Selenium nanoparticles (SeNPs) are important and safe food and feed additives that can be used for dietary supplementation. In this study, a mutagenic strain of Saccharomyces boulardii was employed to obtain biologically synthesized SeNPs (BioSeNPs) with the desired particle size by controlling the dosage and duration of sodium selenite addition, and the average particle size achieved was 55.8 nm with protease A encapsulation. Transcriptomic analysis revealed that increased expression of superoxide dismutase 1 (SOD1) in the mutant strain effectively promoted the synthesis of BioSeNPs and the formation of smaller nanoparticles. Under sodium selenite stress, the mutant strain exhibited significantly increased expression of glutathione peroxidase 2 (GPx2), which was significantly greater in the mutant strain than in the wild type, facilitating the synthesis of glutathione selenol and providing abundant substrates for the production of BioSeNPs. Furthermore, based on the experimental results and transcriptomic analysis of relevant genes such as sod1, gpx2, the thioredoxin reductase 1 gene (trr1) and the thioredoxin reductase 2 gene (trr2), a yeast model for the size-controlled synthesis of BioSeNPs was constructed. This study provides an important theoretical and practical foundation for the green synthesis of controllable-sized BioSeNPs or other metal nanoparticles with potential applications in the fields of food, feed, and biomedicine.


Subject(s)
Metal Nanoparticles , Nanoparticles , Saccharomyces boulardii , Selenium , Catalysis , Saccharomyces boulardii/metabolism , Selenium/metabolism , Sodium Selenite , Superoxide Dismutase/genetics , Superoxide Dismutase-1
8.
J Trace Elem Med Biol ; 83: 127402, 2024 May.
Article in English | MEDLINE | ID: mdl-38310829

ABSTRACT

BACKGROUND AND OBJECTIVE: Yeasts have the remarkable capability to transform and integrate inorganic selenium into their cellular structures, thereby enhancing its bioavailability and reducing its toxicity. In recent years, yeasts have attracted attention as potential alternative sources of protein. METHODS: This study explores the selenium accumulation potential of two less explored yeast strains, namely the probiotic Saccharomyces boulardii CCDM 2020 and Pichia fermentas CCDM 2012, in comparison to the extensively studied Saccharomyces cerevisiae CCDM 272. Our investigation encompassed diverse stress conditions. Subsequently, the selenized yeasts were subjected to an INFOGEST gastrointestinal model. The adherence and hydrophobicity were determined with undigested cells RESULTS: Stress conditions had an important role in influencing the quantity and size of selenium nanoparticles (SeNPs) generated by the tested yeasts. Remarkably, SeMet synthesis was limited to Pichia fermentas CCDM 2012 and S. boulardii CCDM 2020, with S. cerevisiae CCDM 272 not displaying SeMet production at all. Throughout the simulated gastrointestinal digestion, the most substantial release of SeCys2, SeMet, and SeNPs from the selenized yeasts occurred during the intestinal phase. Notably, exception was found in strain CCDM 272, where the majority of particles were released during the oral phase. CONCLUSION: The utilization of both traditional and non-traditional selenized yeast types, harnessed for their noted functional attributes, holds potential for expanding the range of products available while enhancing their nutritional value and health benefits.


Subject(s)
Probiotics , Saccharomyces boulardii , Selenium , Saccharomyces cerevisiae/chemistry , Saccharomyces boulardii/metabolism , Pichia , Selenium/metabolism , Probiotics/metabolism , Digestion
9.
J Sci Food Agric ; 104(7): 4201-4205, 2024 May.
Article in English | MEDLINE | ID: mdl-38294323

ABSTRACT

BACKGROUND: The application of probiotics in food has expanded significantly, yet its viability remains a challenge. In response to this issue, this study explores a unique approach. Almond gum, a natural extract from Prunus dulcis, is utilized as the primary carrier matrix for a novel probiotic product featuring Saccharomyces boulardii, a probiotic yeast. METHODS: This study involves the entrapment of S. boulardii in almond gum through centrifugation (5 min at 1300 × g) and subsequent 24 h drying at 50 °C. Sensory evaluation and other investigations were conducted at different pH levels to assess viability and performance. RESULTS: Post-drying entrapment efficiency was 83.85%, underscoring the benefits of choosing almond gum as a carrier matrix. Promising results were observed from viability testing conducted in gastric juice (pH 1.2) and in simulated intestinal fluid (pH 6.8). Matrix stability was assessed by measuring cfu ml-1 following 7 days' storage at different temperatures, complemented by sensory analysis. CONCLUSION: Almond gum is a promising carrier matrix for probiotic products. Its high entrapment efficiency and its viability under challenging pH conditions demonstrate its efficacy. It is rich in carbohydrates and serves a dual purpose by acting as a prebiotic source, as confirmed through ultraviolet-visible (UV-visible) analysis. The study underscores the potential of this novel approach, providing insights into responses to viability challenges in probiotic food products. © 2024 Society of Chemical Industry.


Subject(s)
Probiotics , Prunus dulcis , Saccharomyces boulardii , Prebiotics , Gastric Juice
10.
Adv Ther ; 41(3): 901-914, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286962

ABSTRACT

Dysbiosis corresponds to the disruption of a formerly stable, functionally complete microbiota. In the gut, this imbalance can lead to adverse health outcomes in both the short and long terms, with a potential increase in the lifetime risks of various noncommunicable diseases and disorders such as atopy (like asthma), inflammatory bowel disease, neurological disorders, and even behavioural and psychological disorders. Although antibiotics are highly effective in reducing morbidity and mortality in infectious diseases, antibiotic-associated diarrhoea is a common, non-negligible clinical sign of gut dysbiosis (and the only visible one). Re-establishment of a normal (functional) gut microbiota is promoted by completion of the clinically indicated course of antibiotics, the removal of any other perturbing external factors, the passage of time (i.e. recovery through the microbiota's natural resilience), appropriate nutritional support, and-in selected cases-the addition of probiotics. Systematic reviews and meta-analyses of clinical trials have confirmed the strain-specific efficacy of some probiotics (notably the yeast Saccharomyces boulardii CNCM I-745 and the bacterium Lactobacillus rhamnosus GG) in the treatment and/or prevention of antibiotic-associated diarrhoea in children and in adults. Unusually for a probiotic, S. boulardii is a eukaryote and is not therefore directly affected by antibiotics-making it suitable for administration in cases of antibiotic-associated diarrhoea. A robust body of evidence from clinical trials and meta-analyses shows that the timely administration of an adequately dosed probiotic (upon initiation of antibiotic treatment or within 48 h) can help to prevent or resolve the consequences of antibiotic-associated dysbiosis (such as diarrhoea) and promote the resilience of the gut microbiota and a return to the pre-antibiotic state. A focus on the prescription of evidence-based, adequately dosed probiotics should help to limit unjustified and potentially ineffective self-medication.


Subject(s)
Lacticaseibacillus rhamnosus , Probiotics , Saccharomyces boulardii , Adult , Child , Humans , Anti-Bacterial Agents/adverse effects , Diarrhea/chemically induced , Diarrhea/prevention & control , Dysbiosis/chemically induced , Dysbiosis/therapy , Probiotics/therapeutic use , Saccharomyces cerevisiae , Meta-Analysis as Topic , Systematic Reviews as Topic
11.
Microb Cell Fact ; 23(1): 16, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38185666

ABSTRACT

BACKGROUND: Interest in the use of engineered microbes to deliver therapeutic activities has increased in recent years. The probiotic yeast Saccharomyces boulardii has been investigated for production of therapeutics in the gastrointestinal tract. Well-characterised promoters are a prerequisite for robust therapeutic expression in the gut; however, S. boulardii promoters have not yet been thoroughly characterised in vitro and in vivo. RESULTS: We present a thorough characterisation of the expression activities of 12 S. boulardii promoters in vitro in glucose, fructose, sucrose, inulin and acetate, under both aerobic and anaerobic conditions, as well as in the murine gastrointestinal tract. Green fluorescent protein was used to report on promoter activity. Promoter expression was found to be carbon-source dependent, with inulin emerging as a favourable carbon source. Furthermore, relative promoter expression in vivo was highly correlated with expression in sucrose (R = 0.99). CONCLUSIONS: These findings provide insights into S. boulardii promoter activity and aid in promoter selection in future studies utilising S. boulardii to produce therapeutics in the gut.


Subject(s)
Saccharomyces boulardii , Animals , Mice , Saccharomyces boulardii/genetics , Inulin , Saccharomyces cerevisiae , Carbon , Sucrose , Gene Expression
12.
Appl Microbiol Biotechnol ; 108(1): 153, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240846

ABSTRACT

Evolutionary engineering experiments, in combination with omics technologies, revealed genetic markers underpinning the molecular mechanisms behind acetic acid stress tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Here, compared to the ancestral Ent strain, evolved yeast strains could quickly adapt to high acetic acid levels (7 g/L) and displayed a shorter lag phase of growth. Bioinformatic-aided whole-genome sequencing identified genetic changes associated with enhanced strain robustness to acetic acid: a duplicated sequence in the essential endocytotic PAN1 gene, mutations in a cell wall mannoprotein (dan4Thr192del), a lipid and fatty acid transcription factor (oaf1Ser57Pro) and a thiamine biosynthetic enzyme (thi13Thr332Ala). Induction of PAN1 and its associated endocytic complex SLA1 and END3 genes was observed following acetic acid treatment in the evolved-resistant strain when compared to the ancestral strain. Genome-wide transcriptomic analysis of the evolved Ent acid-resistant strain (Ent ev16) also revealed a dramatic rewiring of gene expression among genes associated with cellular transport, metabolism, oxidative stress response, biosynthesis/organization of the cell wall, and cell membrane. Some evolved strains also displayed better growth at high acetic acid concentrations and exhibited adaptive metabolic profiles with altered levels of secreted ethanol (4.0-6.4% decrease), glycerol (31.4-78.5% increase), and acetic acid (53.0-60.3% increase) when compared to the ancestral strain. Overall, duplication/mutations and transcriptional alterations are key mechanisms driving improved acetic acid tolerance in probiotic strains. We successfully used adaptive evolutionary engineering to rapidly and effectively elucidate the molecular mechanisms behind important industrial traits to obtain robust probiotic yeast strains for myriad biotechnological applications. KEY POINTS: •Acetic acid adaptation of evolutionary engineered robust probiotic yeast S. boulardii •Enterol ev16 with altered genetic and transcriptomic profiles survives in up to 7 g/L acetic acid •Improved acetic acid tolerance of S. boulardii ev16 with mutated PAN1, DAN4, OAF1, and THI13 genes.


Subject(s)
Probiotics , Saccharomyces boulardii , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Acetic Acid/metabolism , Saccharomyces boulardii/genetics , Saccharomyces boulardii/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Probiotics/metabolism , Biomarkers/metabolism , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism
13.
Eur J Cancer Prev ; 33(3): 217-222, 2024 May 01.
Article in English | MEDLINE | ID: mdl-37942999

ABSTRACT

BACKGROUND: Standard triple therapy is commonly prescribed Helicobacter pylori eradication regimen in Europe. However, the world is witnessing declines in eradication success. It is crucial to find better treatment options. AIMS: To evaluate efficacy, compliance and side effects of H. pylori eradication treatment by adding Saccharomyces boulardii . METHODS: We conducted a randomized clinical trial within the GISTAR cohort, consisting of healthy individuals aged 40-64 years. Participants were administered clarithromycin-containing triple therapy (clarithromycin 500 mg, amoxicillin 1000 mg, esomeprazole 40 mg) twice daily. Randomization was applied based on two factors: 1)addition of Saccharomyces boulardii CNCM I-745 500 mg BID or not; 2)treatment duration of 10 or 14 days. Treatment completion and adverse events were assessed via telephone interview 21-28 days after medication delivery. The efficacy was evaluated using a 13C-urea breath test (UBT) six months after treatment. RESULTS: Altogether 404 participants were enrolled; data on adverse events were available from 391. Overall, 286 participants received follow-up UBT. Intention-to-treat analysis revealed higher eradication rates for 10-day probiotic treatment (70.8% vs. 54.6%, P  = 0.022), but not for 14-day. Probiotic subgroups combined showed non-significantly higher efficacy in per-protocol analysis (90.6% vs. 85.0%, P  = 0.183). S. boulardii reduced the frequency of adverse events ( P  = 0.033) in 14-day regimen, particularly treatment-associated diarrhea ( P  = 0.032). However, after the adjustment to control Type I error, results lost their significance. CONCLUSION: Addition of S. boulardii to 14-day clarithromycin-containing triple regimen non-significantly lowers the likelihood of diarrhea and does not increase the eradication rate.


Subject(s)
Helicobacter Infections , Saccharomyces boulardii , Humans , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Clarithromycin/adverse effects , Clarithromycin/therapeutic use , Diarrhea , Dietary Supplements , Drug Therapy, Combination , Helicobacter Infections/drug therapy , Helicobacter pylori , Treatment Outcome , Adult , Middle Aged
14.
BMC Infect Dis ; 23(1): 878, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102568

ABSTRACT

BACKGROUND: It is unclear whether Saccharomyces boulardii (S. boulardii) supplementation in standard triple therapy (STT) is effective in eradicating Helicobacter pylori (H. pylori) infection in children. We therefore conducted a meta-analysis of randomized controlled trials (RCTs) to assess the effect of S. boulardii supplementation on H. pylori eradication in children. METHODS: We conducted electronic searches in PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure and Wanfang database from the beginning up to September 2023. A random-effects model was employed to calculate the pooled relative risk (RR) with 95% confidence intervals (CI) through a meta-analysis. RESULTS: Fifteen RCTs (involving 2156 patients) were included in our meta-analysis. Results of the meta-analysis indicated that S. boulardii in combination with STT was more effective than STT alone (intention-to-treat analysis : 87.7% vs. 75.9%, RR = 1.14, 95% CI: 1.10-1.19, P < 0.00001; per-protocol analysis : 88.5% vs. 76.3%, RR = 1.15, 95% CI: 1.10-1.19, P < 0.00001). The S. boulardii supplementation group had a significantly lower incidence of total adverse events (n = 6 RCTs, 9.2% vs. 29.2%, RR = 0.32, 95% CI: 0.21-0.48, P < 0.00001), diarrhea (n = 13 RCTs, 14.7% vs. 32.4%, RR = 0.46, 95% CI: 0.37-0.56, P < 0.00001), and nausea (n = 11 RCTs, 12.7% vs. 21.3%, RR = 0.53, 95% CI: 0.40-0.72, P < 0.0001) than STT group alone. Similar results were also observed in the incidence of vomiting, constipation, abdominal pain, abdominal distention, epigastric discomfort, poor appetite and stomatitis. CONCLUSIONS: Current evidence indicated that S. boulardii supplementing with STT could improve the eradication rate of H. pylori, and concurrently decrease the incidence of total adverse events and gastrointestinal adverse events in children.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Probiotics , Saccharomyces boulardii , Child , Humans , Drug Therapy, Combination , Randomized Controlled Trials as Topic , Helicobacter Infections/drug therapy , Helicobacter Infections/prevention & control , Abdominal Pain/drug therapy , Dietary Supplements , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Treatment Outcome , Probiotics/therapeutic use
15.
Arch Microbiol ; 206(1): 37, 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38142245

ABSTRACT

This study was designed to evaluate the effectiveness of recombinant polypeptide-p derived from Momordica charantia on diabetic rats. In this research, the optimized sequence of polypeptide-p gene fused to a secretion signal tag was cloned into the expression vector and transformed into probiotic Saccharomyces boulardii. The production of recombinant secretion protein was verified by western blotting, HPLC, and mass spectrometry. To assay recombinant yeast bioactivity in the gut, diabetic rats were orally fed wild-type and recombinant S. boulardii, in short SB and rSB, respectively, at two low and high doses as well as glibenclamide as a reference drug. In untreated diabetic and treated diabetic + SB rats (low and high doses), the blood glucose increased from 461, 481, and 455 (mg/dl), respectively, to higher than 600 mg/dl on the 21st day. Whereas glibenclamide and rSB treatments showed a significant reduction in the blood glucose level. The result of this study promised a safe plant-source supplement for diabetes through probiotic orchestration.


Subject(s)
Diabetes Mellitus, Experimental , Probiotics , Saccharomyces boulardii , Rats , Animals , Saccharomyces boulardii/genetics , Saccharomyces cerevisiae/genetics , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glyburide/metabolism , Glyburide/therapeutic use , Peptides/metabolism , Recombinant Proteins/metabolism , Cloning, Molecular
16.
Benef Microbes ; 14(3): 239-253, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37646075

ABSTRACT

Nonsteroidal anti-inflammatory drugs (NSAIDs) induce a broad spectrum of gastro-intestinal adverse effects, including ulceration and bleeding. The pathophysiology of NSAID enteropathy is complex and incompletely understood, but some evidence showed that NSAIDs impair the intestinal barrier and cause a gut dysbiosis. Identifying new treatments aiming to reverse or attenuate NSAID-induced adverse effects would have a significant impact on a high number of patients. The aim of this work is to assess the effects of the probiotic yeast Saccharomyces boulardii CNCM I-745 (Sb) on a model of NSAID-induced enteropathy. Four groups of mice were tested: Control, Indomethacin, Sb, and Sb + Indomethacin. A clinical score was evaluated throughout the experiment. Faecal calprotectin, microbiota and haemoglobin analyses were performed. At the end of the treatments, the small intestine, colon, and caecum lengths, and intestinal permeability were measured. Sections of ileum and jejunum were observed to assess a histological score and ileal cytokines were measured by immunoassay. Indomethacin-treated animals showed an increase in their clinical scores, reflecting a worsening of their general state. Mice co-treated with Sb and indomethacin displayed an improvement of their clinical score in comparison with mice treated with indomethacin alone. Sb prevented the indomethacin-induced shortening of the small intestine and caecum, and significantly attenuated the severity of intestinal lesions. Sb also prevented the increase in faecal calprotectin, reduced faecal haemoglobin, and prevented the increase of intestinal permeability in mice treated with indomethacin. Sb also counteracted the increase of faecal bacteria associated with the pathogenesis of NSAID-enteropathy. In conclusion, our results show a protective effect of Sb in a model of indomethacin-induced enteropathy. Sb improved the intestinal barrier function and exerted a positive action on gut microbiota composition.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Intestinal Diseases , Probiotics , Saccharomyces boulardii , Humans , Animals , Mice , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Indomethacin/toxicity , Saccharomyces cerevisiae , Intestinal Diseases/chemically induced , Intestinal Diseases/prevention & control , Models, Theoretical , Hemoglobins , Leukocyte L1 Antigen Complex
17.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569390

ABSTRACT

Metabolic syndrome (MetS) is characterized by complex metabolic changes involving a cluster of co-occurring conditions, such as abdominal obesity, high blood pressure, high fasting plasma glucose, high serum triglycerides, and high LDL cholesterol levels or low HDL cholesterol levels. The incidence and risk factors of MetS occurrence increase every year. It is estimated that MetS affects approximately 30% of the population of some countries. Therefore, novel strategies are being studied to reduce the negative impact of having an unbalanced diet and a lack of physical activity. One of these strategies is the administration of probiotic microorganisms, such as the yeast Saccharomyces boulardii, which has been associated with several beneficial health effects (including modulation of the intestinal microbiota and improvement of the inflammatory, antioxidant, antibacterial, antitumor, and anti-inflammatory profiles). Thus, the objective of this study was to review the risk factors of MetS occurrence and the beneficial effects of S. boulardii ingestion in the treatment of MetS. Here, we critically evaluate the treatment necessary to promote these benefits. Using the pre-established inclusion criteria, eight studies were reviewed, including five animal and three human studies. The results reported the regulation of the lipid profile, modulation of the intestinal microbiota and gene expression, and a decrease in mass gain as positive results when S. boulardii was administered. Although more experiments are needed to validate these results, especially using human models, there is a trend toward improvement in MetS and a reduction in its risk factors with the administration of S. boulardii.


Subject(s)
Gastrointestinal Microbiome , Hypercholesterolemia , Metabolic Syndrome , Probiotics , Saccharomyces boulardii , Animals , Humans , Saccharomyces cerevisiae , Metabolic Syndrome/therapy , Obesity , Probiotics/therapeutic use , Probiotics/pharmacology
18.
Sci Rep ; 13(1): 13026, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563274

ABSTRACT

Nutritional yeast-produced soy yogurt has grown in demand, because of its unique nutritional and health benefits. It has low cholesterol, no lactose, and high levels of protein, probiotic yeast, vitamins, and minerals. In this work, Soymilk (12.5%) was prepared and fermented to produce soy yogurt. Growth curves, probiotic characteristics of Saccharomyces boulardii CNCMI-745 and Lactobacillus plantarum KU985432 were determined. The nutritional value of both yogurts was evaluated, including viable cell count, protein, vitamin B-complex, sugars, phenolic acids, and fatty acids, mineral content, stability, and storage. Analysis of the physicochemical composition of the yogurts included assessment of titratable acidity, antioxidant potential, viscosity, and moisture content. The probiotic viable count of the produced yogurts met the standards for commercial yogurts. S. boulardii CNCMI-745 displayed safety characteristics and high tolerance to heat, acid, and alkaline stress. The produced B vitamins increased in both yogurts. The total saturated fatty acids in Saccharomyces-yogurt decreased, while the unsaturated fatty acids increased. Saccharomyces-yogurt showed high antioxidant activity, phenolic acids, and crude protein content. Both yogurts demonstrated the same tendency for stability during 16 day-storage. In conclusion, using nutritional yeast in the production of soy yogurt increased its nutritional content more than probiotic lactic acid bacteria.


Subject(s)
Lactobacillus plantarum , Probiotics , Saccharomyces boulardii , Saccharomyces , Soy Milk , Lactobacillus plantarum/metabolism , Yogurt/microbiology , Probiotics/metabolism , Soy Milk/chemistry , Saccharomyces cerevisiae , Antioxidants/metabolism , Minerals/metabolism
19.
Can J Vet Res ; 87(3): 237-242, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37397640

ABSTRACT

Saccharomyces boulardii group (SB group) calves were fed 2.0 × 1010 CFU/day of S. boulardii in milk replacer after 2 wk of age. All calves received inactivated vaccine for Histophilus somni, Pasteurella multocida, and Mannheimia haemolytica at 3 wk of age and 3 wk later. After vaccination, the SB group calves showed significantly higher (mean difference: 1.56-fold) antibody titer against H. somni than the control group. The number of calves with the antibody titer above the cut-off value for M. haemolytica of the SB group was significantly higher than that of the control, and the percentage was twice as high. In addition, the mRNA transcription of IL4 and IL10 in peripheral blood mononuclear cells at the booster of the SB group was significantly higher than those of the control. In conclusion, S. boulardii may have positively affected immune responses to the inactivated multi-bacterial vaccine in young calves in the field.


Les veaux du groupe Saccharomyces boulardii (groupe SB) ont reçu 2,0 × 1010 UFC/jour de S. boulardii dans du lait de remplacement après l'âge de 2 semaines. Tous les veaux ont reçu un vaccin inactivé contre Histophilus somni, Pasteurella multocida et Mannheimia haemolytica à l'âge de 3 semaines et 3 semaines plus tard. Après vaccination, les veaux du groupe SB ont montré un titre d'anticorps contre H. somni significativement plus élevé (différence moyenne : 1,56 fois) que le groupe témoin. Le nombre de veaux avec un titre d'anticorps supérieur à la valeur seuil pour M. haemolytica du groupe SB était significativement plus élevé que celui du groupe témoin, et le pourcentage était deux fois plus élevé. De plus, la transcription de l'ARNm de l'IL4 et de l'IL10 dans les cellules mononucléaires du sang périphérique lors du rappel du groupe SB était significativement plus élevée que celles du groupe témoin. En conclusion, S. boulardii peut avoir affecté positivement les réponses immunitaires au vaccin multibactérien inactivé chez les jeunes veaux au champ.(Traduit par Docteur Serge Messier).


Subject(s)
Cattle Diseases , Mannheimia haemolytica , Saccharomyces boulardii , Cattle , Animals , Vaccines, Inactivated , Leukocytes, Mononuclear , Bacteria , Saccharomyces cerevisiae , Dietary Supplements , Bacterial Vaccines
20.
J Microbiol Biotechnol ; 33(11): 1506-1512, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37482802

ABSTRACT

Quantitative analysis of adenosine triphosphate (ATP) has been widely used as a diagnostic tool in the food and medical industries. Particularly, the pathogenesis of a few diseases including inflammatory bowel disease (IBD) is closely related to high ATP concentrations. A bioluminescent D-luciferin/luciferase system, which includes a luciferase (FLuc) from the firefly Photinus pyralis as a key component, is the most commonly used method for the detection and quantification of ATP. Here, instead of isolating FLuc produced in recombinant Escherichia coli, we aimed to develop a whole-cell biocatalyst system that does not require extraction and purification of FLuc. To this end, the gene coding for FLuc was introduced into the genome of probiotic Saccharomyces boulardii using the CRISPR/Cas9-based genome editing system. The linear relationship (r2 = 0.9561) between ATP levels and bioluminescence generated from the engineered S. boulardii expressing FLuc was observed in vitro. To explore the feasibility of using the engineered S. boulardii expressing FLuc as a whole-cell biosensor to detect inflammation biomarker (i.e., ATP) in the gut, a colitis mouse model was established using dextran sodium sulfate as a colitogenic compound. Our findings demonstrated that the whole-cell biosensor can detect elevated ATP levels during gut inflammation in mice. Therefore, the simple and powerful method developed herein could be applied for non-invasive IBD diagnosis.


Subject(s)
Inflammatory Bowel Diseases , Probiotics , Saccharomyces boulardii , Mice , Animals , Luciferases, Firefly/genetics , Saccharomyces boulardii/genetics , Adenosine Triphosphate , Luciferases/genetics , Saccharomyces cerevisiae , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL
...