Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46.607
Filter
1.
Proc Natl Acad Sci U S A ; 121(21): e2400679121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753514

ABSTRACT

Experimental observations tracing back to the 1960s imply that ribosome quantities play a prominent role in determining a cell's growth. Nevertheless, in biologically relevant scenarios, growth can also be influenced by the levels of mRNA and RNA polymerase. Here, we construct a quantitative model of biosynthesis providing testable scenarios for these situations. The model explores a theoretically motivated regime where RNA polymerases compete for genes and ribosomes for transcripts and gives general expressions relating growth rate, mRNA concentrations, ribosome, and RNA polymerase levels. On general grounds, the model predicts how the fraction of ribosomes in the proteome depends on total mRNA concentration and inspects an underexplored regime in which the trade-off between transcript levels and ribosome abundances sets the cellular growth rate. In particular, we show that the model predicts and clarifies three important experimental observations, in budding yeast and Escherichia coli bacteria: i) that the growth-rate cost of unneeded protein expression can be affected by mRNA levels, ii) that resource optimization leads to decreasing trends in mRNA levels at slow growth, and iii) that ribosome allocation may increase, stay constant, or decrease, in response to transcription-inhibiting antibiotics. Since the data indicate that a regime of joint limitation may apply in physiological conditions and not only to perturbations, we speculate that this regime is likely self-imposed.


Subject(s)
Escherichia coli , RNA, Messenger , Ribosomes , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/growth & development , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Protein Biosynthesis , Models, Biological
2.
Proc Natl Acad Sci U S A ; 121(21): e2401748121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739789

ABSTRACT

Potyviridae, the largest family of plant RNA viruses, includes many important pathogens that significantly reduce the yields of many crops worldwide. In this study, we report that the 6-kilodalton peptide 1 (6K1), one of the least characterized potyviral proteins, is an endoplasmic reticulum-localized protein. AI-assisted structure modeling and biochemical assays suggest that 6K1 forms pentamers with a central hydrophobic tunnel, can increase the cell membrane permeability of Escherichia coli and Nicotiana benthamiana, and can conduct potassium in Saccharomyces cerevisiae. An infectivity assay showed that viral proliferation is inhibited by mutations that affect 6K1 multimerization. Moreover, the 6K1 or its homologous 7K proteins from other viruses of the Potyviridae family also have the ability to increase cell membrane permeability and transmembrane potassium conductance. Taken together, these data reveal that 6K1 and its homologous 7K proteins function as viroporins in viral infected cells.


Subject(s)
Nicotiana , Nicotiana/virology , Nicotiana/metabolism , Potyviridae/genetics , Potyviridae/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Cell Membrane Permeability , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Viroporin Proteins/metabolism , Viroporin Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Plant Viruses/genetics , Plant Viruses/physiology , Plant Diseases/virology , Potassium/metabolism
3.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38722822

ABSTRACT

Cell growth is required for cell cycle progression. The amount of growth required for cell cycle progression is reduced in poor nutrients, which leads to a reduction in cell size. In budding yeast, nutrients can influence cell size by modulating the extent of bud growth, which occurs predominantly in mitosis. However, the mechanisms are unknown. Here, we used mass spectrometry to identify proteins that modulate bud growth in response to nutrient availability. This led to the discovery that nutrients regulate numerous components of the mitotic exit network (MEN), which controls exit from mitosis. A key component of the MEN undergoes gradual multisite phosphorylation during bud growth that is dependent upon bud growth and correlated with the extent of growth. Furthermore, activation of the MEN is sufficient to override a growth requirement for mitotic exit. The data suggest a model in which the MEN ensures that mitotic exit occurs only when an appropriate amount of bud growth has occurred.


Subject(s)
Mitosis , Saccharomyces cerevisiae , Signal Transduction , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Nutrients/metabolism , Phosphorylation , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomycetales/metabolism , Saccharomycetales/growth & development
4.
Curr Genet ; 70(1): 7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743270

ABSTRACT

Fermented eggplant is a traditional fermented food, however lactic acid bacteria capable of producing exopolysaccharide (EPS) have not yet been exploited. The present study focused on the production and protective effects against oxidative stress of an EPS produced by Lacticaseibacillus paracasei NC4 (NC4-EPS), in addition to deciphering its genomic features and EPS biosynthesis pathway. Among 54 isolates tested, strain NC4 showed the highest EPS yield and antioxidant activity. The maximum EPS production (2.04 ± 0.11 g/L) was achieved by culturing in MRS medium containing 60 g/L sucrose at 37 °C for 48 h. Under 2 mM H2O2 stress, the survival of a yeast model Saccharomyces cerevisiae treated with 0.4 mg/mL NC4-EPS was 2.4-fold better than non-treated cells, which was in agreement with the catalase and superoxide dismutase activities measured from cell lysates. The complete genome of NC4 composed of a circular chromosome of 2,888,896 bp and 3 circular plasmids. The NC4 genome comprises more genes with annotated function in nitrogen metabolism, phosphorus metabolism, cell division and cell cycle, and iron acquisition and metabolism as compared to other reported L. paracasei. Of note, the eps gene cluster is not conserved across L. paracasei. Pathways of sugar metabolism for EPS biosynthesis were proposed for the first time, in which gdp pathway only present in few plant-derived bacteria was identified. These findings shed new light on the cell-protective activity and biosynthesis of EPS produced by L. paracasei, paving the way for future efforts to enhance yield and tailor-made EPS production for food and pharmaceutical industries.


Subject(s)
Fermentation , Lacticaseibacillus paracasei , Oxidative Stress , Polysaccharides, Bacterial , Solanum melongena , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism , Solanum melongena/microbiology , Solanum melongena/genetics , Solanum melongena/metabolism , Lacticaseibacillus paracasei/metabolism , Lacticaseibacillus paracasei/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Genome, Bacterial , Fermented Foods/microbiology , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics
5.
Article in English | MEDLINE | ID: mdl-38693670

ABSTRACT

Polyethylene terephthalate (PET) is a common plastic widely used in food and beverage packaging that poses a serious risk to human health and the environment due to the continual rise in its production and usage. After being produced and used, PET accumulates in the environment and breaks down into nanoplastics (NPs), which are then consumed by humans through water and food sources. The threats to human health and the environment posed by PET-NPs are of great concern worldwide, yet little is known about their biological impacts. Herein, the smallest sized PET-NPs so far (56 nm) with an unperturbed PET structure were produced by a modified dilution-precipitation method and their potential cytotoxicity was evaluated in Saccharomyces cerevisiae. Exposure to PET-NPs decreased cell viability due to oxidative stress induction revealed by the increased expression levels of stress response related-genes as well as increased lipid peroxidation. Cell death induced by PET-NP exposure was mainly through apoptosis, while autophagy had a protective role.


Subject(s)
Oxidative Stress , Polyethylene Terephthalates , Saccharomyces cerevisiae , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Oxidative Stress/drug effects , Polyethylene Terephthalates/toxicity , Nanoparticles/toxicity , Apoptosis/drug effects , Microplastics/toxicity , Lipid Peroxidation/drug effects
6.
Protein Eng Des Sel ; 372024 Jan 29.
Article in English | MEDLINE | ID: mdl-38696722

ABSTRACT

The yeast endoplasmic reticulum sequestration and screening (YESS) system is a broadly applicable platform to perform high-throughput biochemical studies of post-translational modification enzymes (PTM-enzymes). This system enables researchers to profile and engineer the activity and substrate specificity of PTM-enzymes and to discover inhibitor-resistant enzyme mutants. In this study, we expand the capabilities of YESS by transferring its functional components to integrative plasmids. The YESS integrative system yields uniform protein expression and protease activities in various configurations, allows one to integrate activity reporters at two independent loci and to split the system between integrative and centromeric plasmids. We characterize these integrative reporters with two viral proteases, Tobacco etch virus (TEVp) and 3-chymotrypsin like protease (3CLpro), in terms of coefficient of variance, signal-to-noise ratio and fold-activation. Overall, we provide a framework for chromosomal-based studies that is modular, enabling rigorous high-throughput assays of PTM-enzymes in yeast.


Subject(s)
Endoplasmic Reticulum , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/genetics , Protein Processing, Post-Translational , Genes, Reporter , Endopeptidases/genetics , Endopeptidases/metabolism , Plasmids/genetics , Plasmids/metabolism
7.
Cell Mol Life Sci ; 81(1): 216, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740643

ABSTRACT

p50RhoGAP is a key protein that interacts with and downregulates the small GTPase RhoA. p50RhoGAP is a multifunctional protein containing the BNIP-2 and Cdc42GAP Homology (BCH) domain that facilitates protein-protein interactions and lipid binding and the GAP domain that regulates active RhoA population. We recently solved the structure of the BCH domain from yeast p50RhoGAP (YBCH) and showed that it maintains the adjacent GAP domain in an auto-inhibited state through the ß5 strand. Our previous WT YBCH structure shows that a unique kink at position 116 thought to be made by a proline residue between alpha helices α6 and α7 is essential for the formation of intertwined dimer from asymmetric monomers. Here we sought to establish the role and impact of this Pro116. However, the kink persists in the structure of P116A mutant YBCH domain, suggesting that the scaffold is not dictated by the proline residue at this position. We further identified Tyr124 (or Tyr188 in HBCH) as a conserved residue in the crucial ß5 strand. Extending to the human ortholog, when substituted to acidic residues, Tyr188D or Tyr188E, we observed an increase in RhoA binding and self-dimerization, indicative of a loss of inhibition of the GAP domain by the BCH domain. These results point to distinct roles and impact of the non-conserved and conserved amino acid positions in regulating the structural and functional complexity of the BCH domain.


Subject(s)
Proline , Proline/metabolism , Proline/chemistry , Proline/genetics , Tyrosine/metabolism , Tyrosine/chemistry , Tyrosine/genetics , Protein Domains , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/chemistry , Models, Molecular , Conserved Sequence , Humans , Protein Binding
8.
Proc Natl Acad Sci U S A ; 121(21): e2401738121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743623

ABSTRACT

Studies have determined that nonredox enzymes that are cofactored with Fe(II) are the most oxidant-sensitive targets inside Escherichia coli. These enzymes use Fe(II) cofactors to bind and activate substrates. Because of their solvent exposure, the metal can be accessed and oxidized by reactive oxygen species, thereby inactivating the enzyme. Because these enzymes participate in key physiological processes, the consequences of stress can be severe. Accordingly, when E. coli senses elevated levels of H2O2, it induces both a miniferritin and a manganese importer, enabling the replacement of the iron atom in these enzymes with manganese. Manganese does not react with H2O2 and thereby preserves enzyme activity. In this study, we examined several diverse microbes to identify the metal that they customarily integrate into ribulose-5-phosphate 3-epimerase, a representative of this enzyme family. The anaerobe Bacteroides thetaiotaomicron, like E. coli, uses iron. In contrast, Bacillus subtilis and Lactococcus lactis use manganese, and Saccharomyces cerevisiae uses zinc. The latter organisms are therefore well suited to the oxidizing environments in which they dwell. Similar results were obtained with peptide deformylase, another essential enzyme of the mononuclear class. Strikingly, heterologous expression experiments show that it is the metal pool within the organism, rather than features of the protein itself, that determine which metal is incorporated. Further, regardless of the source organism, each enzyme exhibits highest turnover with iron and lowest turnover with zinc. We infer that the intrinsic catalytic properties of the metal cannot easily be retuned by evolution of the polypeptide.


Subject(s)
Escherichia coli , Iron , Manganese , Manganese/metabolism , Iron/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Hydrogen Peroxide/metabolism , Saccharomyces cerevisiae/metabolism , Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Zinc/metabolism , Lactococcus lactis/enzymology , Lactococcus lactis/metabolism , Oxidation-Reduction , Metals/metabolism
9.
Curr Genet ; 70(1): 5, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709348

ABSTRACT

The nonsense-mediated mRNA decay (NMD) pathway was initially identified as a surveillance pathway that degrades mRNAs containing premature termination codons (PTCs). NMD is now also recognized as a post-transcriptional regulatory pathway that regulates the expression of natural mRNAs. Earlier studies demonstrated that regulation of functionally related natural mRNAs by NMD can be differential and condition-specific in Saccharomyces cerevisiae. Here, we investigated the regulation of MAC1 mRNAs by NMD in response to copper as well as the role the MAC1 3'-UTR plays in this regulation. MAC1 is a copper-sensing transcription factor that regulates the high-affinity copper uptake system. MAC1 expression is activated upon copper deprivation. We found that MAC1 mRNAs are regulated by NMD under complete minimal (CM) but escaped NMD under low and high copper conditions. Mac1 protein regulated gene, CTR1 is not regulated by NMD in conditions where MAC1 mRNAs are NMD sensitive. We also found that the MAC1 3'-UTR is the NMD targeting feature on the mRNAs, and that MAC1 mRNAs lacking 3'-UTRs were stabilized during copper deprivation. Our results demonstrate a mechanism of regulation for a metal-sensing transcription factor, at both the post-transcriptional and post-translational levels, where MAC1 mRNA levels are regulated by NMD and copper, while the activity of Mac1p is controlled by copper levels.


Subject(s)
3' Untranslated Regions , Copper Transporter 1 , Copper , Gene Expression Regulation, Fungal , Nonsense Mediated mRNA Decay , Nuclear Proteins , RNA, Messenger , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Factors , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Copper/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Codon, Nonsense/genetics
10.
Microb Cell Fact ; 23(1): 129, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711040

ABSTRACT

BACKGROUND: Sesterterpenoids are rare species among the terpenoids family. Ophiobolins are sesterterpenes with a 5-8-5 tricyclic skeleton. The oxidized ophiobolins exhibit significant cytotoxic activity and potential medicinal value. There is an urgent need for large amounts of ophiobolins supplication for drug development. The synthetic biology approach has been successfully employed in lots of terpene compound production and inspired us to develop a cell factory for ophiobolin biosynthesis. RESULTS: We developed a systematic metabolic engineering strategy to construct an ophiobolin biosynthesis chassis based on Saccharomyces cerevisiae. The whole-cell biotransformation methods were further combined with metabolic engineering to enhance the expression of key ophiobolin biosynthetic genes and improve the supply of precursors and cofactors. A high yield of 5.1 g/L of ophiobolin F was reached using ethanol and fatty acids as substrates. To accumulate oxidized ophiobolins, we optimized the sources and expression conditions for P450-CPR and alleviated the toxicity of bioactive compounds to cells through PDR engineering. We unexpectedly obtained a novel ophiobolin intermediate with potent cytotoxicity, 5-hydroxy-21-formyl-ophiobolin F, and the known bioactive compound ophiobolin U. Finally, we achieved the ophiobolin U titer of 128.9 mg/L. CONCLUSIONS: We established efficient cell factories based on S. cerevisiae, enabling de novo biosynthesis of the ophiobolin skeleton ophiobolin F and oxidized ophiobolins derivatives. This work has filled the gap in the heterologous biosynthesis of sesterterpenoids in S. cerevisiae and provided valuable solutions for new drug development based on sesterterpenoids.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Sesterterpenes , Sesterterpenes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics
11.
J Extracell Vesicles ; 13(5): e12431, 2024 May.
Article in English | MEDLINE | ID: mdl-38711329

ABSTRACT

The budding yeast Saccharomyces cerevisiae is a proven model organism for elucidating conserved eukaryotic biology, but to date its extracellular vesicle (EV) biology is understudied. Here, we show yeast transmit information through the extracellular medium that increases survival when confronted with heat stress and demonstrate the EV-enriched samples mediate this thermotolerance transfer. These samples contain vesicle-like particles that are exosome-sized and disrupting exosome biogenesis by targeting endosomal sorting complexes required for transport (ESCRT) machinery inhibits thermotolerance transfer. We find that Bro1, the yeast ortholog of the human exosome biomarker ALIX, is present in EV samples, and use Bro1 tagged with green fluorescent protein (GFP) to track EV release and uptake by endocytosis. Proteomics analysis reveals that heat shock protein 70 (HSP70) family proteins are enriched in EV samples that provide thermotolerance. We confirm the presence of the HSP70 ortholog stress-seventy subunit A2 (Ssa2) in EV samples and find that mutant yeast cells lacking SSA2 produce EVs but they fail to transfer thermotolerance. We conclude that Ssa2 within exosomes shared between yeast cells contributes to thermotolerance. Through this work, we advance Saccharomyces cerevisiae as an emerging model organism for elucidating molecular details of eukaryotic EV biology and establish a role for exosomes in heat stress and proteostasis that seems to be evolutionarily conserved.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Exosomes , Extracellular Vesicles , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Thermotolerance , Saccharomyces cerevisiae/metabolism , Extracellular Vesicles/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Exosomes/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response , Proteomics/methods
12.
Elife ; 122024 May 07.
Article in English | MEDLINE | ID: mdl-38713053

ABSTRACT

Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1-MItochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.


Subject(s)
Cellular Senescence , Mitochondria , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Signal Transduction , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Cellular Senescence/genetics , Sirolimus/pharmacology , Gene Expression Regulation, Fungal , Gene Deletion , Transcription Factors/metabolism , Transcription Factors/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics
13.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38713543

ABSTRACT

The black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), is commonly used for organic waste recycling and animal feed production. However, the often inadequate nutrients in organic waste necessitate nutritional enhancement of black soldier fly larvae, e.g., by fungal supplementation of its diet. We investigated the amino acid composition of two fungi, Candida tropicalis (Castell.) Berkhout (Saccharomycetales: Saccharomycetaceae) and Pichia kudriavzevii Boidin, Pignal & Besson (Saccharomycetales: Pichiaceae), from the black soldier fly gut, and commercial baker's yeast, Saccharomyces cerevisiae Meyen ex E.C. Hansen (Saccharomycetales: Saccharomycetaceae), and their effects on larval growth and hemolymph metabolites in fifth-instar black soldier fly larvae. Liquid chromatography-mass spectrometry was used to study the effect of fungal metabolites on black soldier fly larval metabolism. Amino acid analysis revealed significant variation among the fungi. Fungal supplementation led to increased larval body mass and differential metabolite accumulation. The three fungal species caused distinct metabolic changes, with each over-accumulating and down-accumulating various metabolites. We identified significant alteration of histidine metabolism, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism in BSF larvae treated with C. tropicalis. Treatment with P. kudriavzevii affected histidine metabolism and citrate cycle metabolites, while both P. kudriavzevii and S. cerevisiae treatments impacted tyrosine metabolism. Treatment with S. cerevisiae resulted in down-accumulation of metabolites related to glycine, serine, and threonine metabolism. This study suggests that adding fungi to the larval diet significantly affects black soldier fly larval metabolomics. Further research is needed to understand how individual amino acids and their metabolites contributed by fungi affect black soldier fly larval physiology, growth, and development, to elucidate the interaction between fungal nutrients and black soldier fly physiology.


Subject(s)
Diptera , Hemolymph , Larva , Animals , Larva/growth & development , Larva/metabolism , Diptera/metabolism , Diptera/growth & development , Hemolymph/metabolism , Pichia/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acids/metabolism , Diet , Saccharomycetales/metabolism , Animal Feed/analysis , Candida/metabolism , Candida/growth & development
14.
Microb Cell Fact ; 23(1): 123, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724968

ABSTRACT

BACKGROUND: Saccharomyces cerevisiae is an important microorganism in ethanol synthesis, and with sugarcane molasses as the feedstock, ethanol is being synthesized sustainably to meet growing demands. However, high-concentration ethanol fermentation based on high-concentration sugarcane molasses-which is needed for reduced energy consumption of ethanol distillation at industrial scale-is yet to be achieved. RESULTS: In the present study, to identify the main limiting factors of this process, adaptive laboratory evolution and high-throughput screening (Py-Fe3+) based on ARTP (atmospheric and room-temperature plasma) mutagenesis were applied. We identified high osmotic pressure, high temperature, high alcohol levels, and high concentrations of K+, Ca2+, K+ and Ca2+ (K+&Ca2+), and sugarcane molasses as the main limiting factors. The robust S. cerevisiae strains of NGT-F1, NGW-F1, NGC-F1, NGK+, NGCa2+ NGK+&Ca2+-F1, and NGTM-F1 exhibited high tolerance to the respective limiting factor and exhibited increased yield. Subsequently, ethanol synthesis, cell morphology, comparative genomics, and gene ontology (GO) enrichment analysis were performed in a molasses broth containing 250 g/L total fermentable sugars (TFS). Additionally, S. cerevisiae NGTM-F1 was used with 250 g/L (TFS) sugarcane molasses to synthesize ethanol in a 5-L fermenter, giving a yield of 111.65 g/L, the conversion of sugar to alcohol reached 95.53%. It is the highest level of physical mutagenesis yield at present. CONCLUSION: Our results showed that K+ and Ca2+ ions primarily limited the efficient production of ethanol. Then, subsequent comparative transcriptomic GO and pathway analyses showed that the co-presence of K+ and Ca2+ exerted the most prominent limitation on efficient ethanol production. The results of this study might prove useful by promoting the development and utilization of green fuel bio-manufactured from molasses.


Subject(s)
Calcium , Ethanol , Fermentation , Molasses , Potassium , Saccharomyces cerevisiae , Saccharum , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharum/metabolism , Calcium/metabolism , Potassium/metabolism
15.
Microb Cell Fact ; 23(1): 121, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725068

ABSTRACT

BACKGROUND: Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS: To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION: Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.


Subject(s)
Amino Acids , Glycolysis , Pentose Phosphate Pathway , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Amino Acids/metabolism , Metabolic Engineering/methods , Nostoc/metabolism , Nostoc/genetics , Sugar Phosphates/metabolism , Glycine/metabolism , Glycine/analogs & derivatives , Cyclohexylamines
16.
Cell Death Dis ; 15(5): 311, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697987

ABSTRACT

Cancer cells are highly dependent on bioenergetic processes to support their growth and survival. Disruption of metabolic pathways, particularly by targeting the mitochondrial electron transport chain complexes (ETC-I to V) has become an attractive therapeutic strategy. As a result, the search for clinically effective new respiratory chain inhibitors with minimized adverse effects is a major goal. Here, we characterize a new OXPHOS inhibitor compound called MS-L6, which behaves as an inhibitor of ETC-I, combining inhibition of NADH oxidation and uncoupling effect. MS-L6 is effective on both intact and sub-mitochondrial particles, indicating that its efficacy does not depend on its accumulation within the mitochondria. MS-L6 reduces ATP synthesis and induces a metabolic shift with increased glucose consumption and lactate production in cancer cell lines. MS-L6 either dose-dependently inhibits cell proliferation or induces cell death in a variety of cancer cell lines, including B-cell and T-cell lymphomas as well as pediatric sarcoma. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI-1) partially restores the viability of B-lymphoma cells treated with MS-L6, demonstrating that the inhibition of NADH oxidation is functionally linked to its cytotoxic effect. Furthermore, MS-L6 administration induces robust inhibition of lymphoma tumor growth in two murine xenograft models without toxicity. Thus, our data present MS-L6 as an inhibitor of OXPHOS, with a dual mechanism of action on the respiratory chain and with potent antitumor properties in preclinical models, positioning it as the pioneering member of a promising drug class to be evaluated for cancer therapy. MS-L6 exerts dual mitochondrial effects: ETC-I inhibition and uncoupling of OXPHOS. In cancer cells, MS-L6 inhibited ETC-I at least 5 times more than in isolated rat hepatocytes. These mitochondrial effects lead to energy collapse in cancer cells, resulting in proliferation arrest and cell death. In contrast, hepatocytes which completely and rapidly inactivated this molecule, restored their energy status and survived exposure to MS-L6 without apparent toxicity.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Electron Transport Complex I , Mitochondria , Saccharomyces cerevisiae Proteins , Animals , Humans , Electron Transport Complex I/metabolism , Electron Transport Complex I/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Mice , Cell Line, Tumor , Mitochondria/metabolism , Mitochondria/drug effects , Cell Proliferation/drug effects , Uncoupling Agents/pharmacology , Oxidative Phosphorylation/drug effects , Xenograft Model Antitumor Assays , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/drug effects , Rats , NADH Dehydrogenase/metabolism , NADH Dehydrogenase/antagonists & inhibitors
17.
Methods Mol Biol ; 2800: 217-229, 2024.
Article in English | MEDLINE | ID: mdl-38709487

ABSTRACT

High-throughput microscopy has enabled screening of cell phenotypes at unprecedented scale. Systematic identification of cell phenotype changes (such as cell morphology and protein localization changes) is a major analysis goal. Because cell phenotypes are high-dimensional, unbiased approaches to detect and visualize the changes in phenotypes are still needed. Here, we suggest that changes in cellular phenotype can be visualized in reduced dimensionality representations of the image feature space. We describe a freely available analysis pipeline to visualize changes in protein localization in feature spaces obtained from deep learning. As an example, we use the pipeline to identify changes in subcellular localization after the yeast GFP collection was treated with hydroxyurea.


Subject(s)
Image Processing, Computer-Assisted , Phenotype , Image Processing, Computer-Assisted/methods , High-Throughput Screening Assays/methods , Microscopy/methods , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Deep Learning , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Hydroxyurea/pharmacology
18.
Nat Commun ; 15(1): 3894, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719837

ABSTRACT

The F-box domain is a highly conserved structural motif that defines the largest class of ubiquitin ligases, Skp1/Cullin1/F-box protein (SCF) complexes. The only known function of the F-box motif is to form the protein interaction surface with Skp1. Here we show that the F-box domain can function as an environmental sensor. We demonstrate that the F-box domain of Met30 is a cadmium sensor that blocks the activity of the SCFMet30 ubiquitin ligase during cadmium stress. Several highly conserved cysteine residues within the Met30 F-box contribute to binding of cadmium with a KD of 8 µM. Binding induces a conformational change that allows for Met30 autoubiquitylation, which in turn leads to recruitment of the segregase Cdc48/p97/VCP followed by active SCFMet30 disassembly. The resulting inactivation of SCFMet30 protects cells from cadmium stress. Our results show that F-box domains participate in regulation of SCF ligases beyond formation of the Skp1 binding interface.


Subject(s)
Cadmium , Protein Binding , SKP Cullin F-Box Protein Ligases , Cadmium/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Saccharomyces cerevisiae/metabolism , Stress, Physiological , F-Box Proteins/metabolism , F-Box Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Ubiquitination , Protein Domains , Humans , S-Phase Kinase-Associated Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics
19.
BMC Microbiol ; 24(1): 158, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720268

ABSTRACT

BACKGROUND: The production of succinic acid (SA) from biomass has attracted worldwide interest. Saccharomyces cerevisiae is preferred for SA production due to its strong tolerance to low pH conditions, ease of genetic manipulation, and extensive application in industrial processes. However, when compared with bacterial producers, the SA titers and productivities achieved by engineered S. cerevisiae strains were relatively low. To develop efficient SA-producing strains, it's necessary to clearly understand how S. cerevisiae cells respond to SA. RESULTS: In this study, we cultivated five S. cerevisiae strains with different genetic backgrounds under different concentrations of SA. Among them, KF7 and NBRC1958 demonstrated high tolerance to SA, whereas NBRC2018 displayed the least tolerance. Therefore, these three strains were chosen to study how S. cerevisiae responds to SA. Under a concentration of 20 g/L SA, only a few differentially expressed genes were observed in three strains. At the higher concentration of 60 g/L SA, the response mechanisms of the three strains diverged notably. For KF7, genes involved in the glyoxylate cycle were significantly downregulated, whereas genes involved in gluconeogenesis, the pentose phosphate pathway, protein folding, and meiosis were significantly upregulated. For NBRC1958, genes related to the biosynthesis of vitamin B6, thiamin, and purine were significantly downregulated, whereas genes related to protein folding, toxin efflux, and cell wall remodeling were significantly upregulated. For NBRC2018, there was a significant upregulation of genes connected to the pentose phosphate pathway, gluconeogenesis, fatty acid utilization, and protein folding, except for the small heat shock protein gene HSP26. Overexpression of HSP26 and HSP42 notably enhanced the cell growth of NBRC1958 both in the presence and absence of SA. CONCLUSIONS: The inherent activities of small heat shock proteins, the levels of acetyl-CoA and the strains' potential capacity to consume SA all seem to affect the responses and tolerances of S. cerevisiae strains to SA. These factors should be taken into consideration when choosing host strains for SA production. This study provides a theoretical basis and identifies potential host strains for the development of robust and efficient SA-producing strains.


Subject(s)
Gene Expression Regulation, Fungal , Saccharomyces cerevisiae , Succinic Acid , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Succinic Acid/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Fermentation
20.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38781029

ABSTRACT

The mitochondria-ER-cortex anchor (MECA) forms a tripartite membrane contact site between mitochondria, the endoplasmic reticulum (ER), and the plasma membrane (PM). The core component of MECA, Num1, interacts with the PM and mitochondria via two distinct lipid-binding domains; however, the molecular mechanism by which Num1 interacts with the ER is unclear. Here, we demonstrate that Num1 contains a FFAT motif in its C-terminus that interacts with the integral ER membrane protein Scs2. While dispensable for Num1's functions in mitochondrial tethering and dynein anchoring, the FFAT motif is required for Num1's role in promoting mitochondrial division. Unexpectedly, we also reveal a novel function of MECA in regulating the distribution of phosphatidylinositol-4-phosphate (PI(4)P). Breaking Num1 association with any of the three membranes it tethers results in an accumulation of PI(4)P on the PM, likely via disrupting Sac1-mediated PI(4)P turnover. This work establishes MECA as an important regulatory hub that spatially organizes mitochondria, ER, and PM to coordinate crucial cellular functions.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Phosphatidylinositol Phosphates , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cell Membrane/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Dynamics , Phosphatidylinositol Phosphates/metabolism , Protein Binding , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...