Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.758
Filter
1.
Food Microbiol ; 122: 104565, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839213

ABSTRACT

To evaluate the effects of bioaugmentation fermentation inoculated with one ester-producing strain (Wickerhamomyces anomalus ZX-1) and two strains of lactic acid bacteria (Lactobacillus plantarum CGMCC 24035 and Lactobacillus acidophilus R2) for improving the flavor of persimmon vinegar, microbial community, flavor compounds and metabolites were analyzed. The results of microbial diversity analysis showed that bioaugmentation fermentation significantly increased the abundance of Lactobacillus, Saccharomyces, Pichia and Wickerhamomyces, while the abundance of Acetobacter, Apiotrichum, Delftia, Komagataeibacter, Kregervanrija and Aspergillus significantly decreased. After bioaugmentation fermentation, the taste was softer, and the sensory irritancy of acetic acid was significantly reduced. The analysis of HS-SPME-GC-MS and untargeted metabolomics based on LC-MS/MS showed that the contents of citric acid, lactic acid, malic acid, ethyl lactate, methyl acetate, isocitrate, acetoin and 2,3-butanediol were significantly increased. By multivariate analysis, 33 differential metabolites were screened out to construct the correlation between the differential metabolites and microorganisms. Pearson correlation analysis showed that methyl acetate, ethyl lactate, betaine, aconitic acid, acetoin, 2,3-butanediol and isocitrate positively associated with Wickerhamomyces and Lactobacillus. The results confirmed that the quality of persimmon vinegar was improved by bioaugmentation fermentation.


Subject(s)
Acetic Acid , Diospyros , Fermentation , Microbiota , Acetic Acid/metabolism , Diospyros/microbiology , Diospyros/metabolism , Saccharomycetales/metabolism , Taste , Flavoring Agents/metabolism , Lactobacillus plantarum/metabolism , Food Microbiology , Lactobacillus acidophilus/metabolism , Lactobacillus acidophilus/growth & development , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics
2.
Food Microbiol ; 122: 104556, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839235

ABSTRACT

Wickerhamomyces anomalus is one of the most important ester-producing strains in Chinese baijiu brewing. Ethanol and lactic acid are the main metabolites produced during baijiu brewing, but their synergistic influence on the growth and ester production of W. anomalus is unclear. Therefore, in this paper, based on the contents of ethanol and lactic acid during Te-flavor baijiu brewing, the effects of different ethanol concentrations (3, 6, and 9% (v/v)) combined with 1% lactic acid on the growth and ester production of W. anomalus NCUF307.1 were studied and their influence mechanisms were analyzed by transcriptomics. The results showed that the growth of W. anomalus NCUF307.1 under the induction of lactic acid was inhibited by ethanol. Although self-repair mechanism of W. anomalus NCUF307.1 induced by lactic acid was initiated at all concentrations of ethanol, resulting in significant up-regulation of genes related to the Genetic Information Processing pathway, such as cell cycle-yeast, meiosis-yeast, DNA replication and other pathways. However, the accumulation of reactive oxygen species and the inhibition of pathways associated with carbohydrate and amino acid metabolism may be the main reason for the inhibition of growth in W. anomalus NCUF307.1. In addition, 3% and 6% ethanol combined with 1% lactic acid could promote the ester production of W. anomalus NCUF307.1, which may be related to the up-regulation of EAT1, ADH5 and TGL5 genes, while the inhibition in 9% ethanol may be related to down-regulation of ATF2, EAT1, ADH2, ADH5, and TGL3 genes.


Subject(s)
Esters , Ethanol , Fermentation , Lactic Acid , Saccharomycetales , Ethanol/metabolism , Lactic Acid/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomycetales/drug effects , Saccharomycetales/growth & development , Esters/metabolism , Transcriptome , Gene Expression Regulation, Fungal/drug effects , Gene Expression Profiling
3.
Carbohydr Polym ; 337: 122158, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710555

ABSTRACT

Chondroitin sulfate (CS) stands as a pivotal compound in dietary supplements for osteoarthritis treatment, propelling significant interest in the biotechnological pursuit of environmentally friendly and safe CS production. Enzymatic synthesis of CS for instance CSA has been considered as one of the most promising methods. However, the bottleneck consistently encountered is the active expression of chondroitin 4-O-sulfotransferase (C4ST) during CSA biosynthesis. This study meticulously delved into optimizing C4ST expression through systematic enhancements in transcription, translation, and secretion mechanisms via modifications in the 5' untranslated region, the N-terminal encoding sequence, and the Komagataella phaffii chassis. Ultimately, the active C4ST expression escalated to 2713.1 U/L, representing a striking 43.7-fold increase. By applying the culture broth supernatant of C4ST and integrating the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) biosynthesis module, we constructed a one-pot enzymatic system for CSA biosynthesis, achieving a remarkable sulfonation degree of up to 97.0 %. The substantial enhancement in C4ST expression and the development of an engineered one-pot enzymatic synthesis system promises to expedite large-scale CSA biosynthesis with customizable sulfonation degrees.


Subject(s)
Chondroitin Sulfates , Sulfotransferases , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/biosynthesis , Chondroitin Sulfates/metabolism , Sulfotransferases/metabolism , Sulfotransferases/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Saccharomycetales/genetics
4.
Appl Microbiol Biotechnol ; 108(1): 320, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709366

ABSTRACT

The unspecific peroxygenase (UPO) from Cyclocybe aegerita (AaeUPO) can selectively oxidize C-H bonds using hydrogen peroxide as an oxygen donor without cofactors, which has drawn significant industrial attention. Many studies have made efforts to enhance the overall activity of AaeUPO expressed in Komagataella phaffii by employing strategies such as enzyme-directed evolution, utilizing appropriate promoters, and screening secretion peptides. Building upon these previous studies, the objective of this study was to further enhance the expression of a mutant of AaeUPO with improved activity (PaDa-I) by increasing the gene copy number, co-expressing chaperones, and optimizing culture conditions. Our results demonstrated that a strain carrying approximately three copies of expression cassettes and co-expressing the protein disulfide isomerase showed an approximately 10.7-fold increase in volumetric enzyme activity, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. After optimizing the culture conditions, the volumetric enzyme activity of this strain further increased by approximately 48.7%, reaching 117.3 U/mL. Additionally, the purified catalytic domain of PaDa-I displayed regioselective hydroxylation of R-2-phenoxypropionic acid. The results of this study may facilitate the industrial application of UPOs. KEY POINTS: • The secretion of the catalytic domain of PaDa-I can be significantly enhanced through increasing gene copy numbers and co-expressing of protein disulfide isomerase. • After optimizing the culture conditions, the volumetric enzyme activity can reach 117.3 U/mL, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. • The R-2-phenoxypropionic acid can undergo the specific hydroxylation reaction catalyzed by catalytic domain of PaDa-I, resulting in the formation of R-2-(4-hydroxyphenoxy)propionic acid.


Subject(s)
Mixed Function Oxygenases , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Saccharomycetales/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Gene Dosage , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Gene Expression , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry
5.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38722822

ABSTRACT

Cell growth is required for cell cycle progression. The amount of growth required for cell cycle progression is reduced in poor nutrients, which leads to a reduction in cell size. In budding yeast, nutrients can influence cell size by modulating the extent of bud growth, which occurs predominantly in mitosis. However, the mechanisms are unknown. Here, we used mass spectrometry to identify proteins that modulate bud growth in response to nutrient availability. This led to the discovery that nutrients regulate numerous components of the mitotic exit network (MEN), which controls exit from mitosis. A key component of the MEN undergoes gradual multisite phosphorylation during bud growth that is dependent upon bud growth and correlated with the extent of growth. Furthermore, activation of the MEN is sufficient to override a growth requirement for mitotic exit. The data suggest a model in which the MEN ensures that mitotic exit occurs only when an appropriate amount of bud growth has occurred.


Subject(s)
Mitosis , Saccharomyces cerevisiae , Signal Transduction , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Nutrients/metabolism , Phosphorylation , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomycetales/metabolism , Saccharomycetales/growth & development
6.
World J Microbiol Biotechnol ; 40(7): 200, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730212

ABSTRACT

Recombinant protein production technology is widely applied to the manufacture of biologics used as drug substances and industrial proteins such as recombinant enzymes and bioactive proteins. Various heterologous protein production systems have been developed using prokaryotic and eukaryotic hosts. Especially methylotrophic yeast in eukaryotic hosts is suggested to be particularly valuable because such systems have the following advantages: protein secretion into culture broth, eukaryotic quality control systems, a post-translational modification system, rapid growth, and established recombinant DNA tools and technologies such as strong promoters, effective selection markers, and gene knock-in and -out systems. Many methylotrophic yeasts such as the genera Candida, Ogataea, and Komagataella have been studied since methylotrophic yeast was first isolated in 1969. The methanol-consumption-related genes in methylotrophic yeast are strongly and strictly regulated under methanol-containing conditions. The well-regulated gene expression systems under the methanol-inducible gene promoter lead to the potential application of heterologous protein production in methylotrophic yeast. In this review, we describe the recent progress of heterologous protein production technology in methylotrophic yeast and introduce Ogataea minuta as an alternative production host as a substitute for K. phaffii and O. polymorpha.


Subject(s)
Methanol , Promoter Regions, Genetic , Recombinant Proteins , Saccharomycetales , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Methanol/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Gene Expression Regulation, Fungal
7.
Int J Biol Macromol ; 269(Pt 2): 131954, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697424

ABSTRACT

Silk fibroin (SF) from the cocoon of silkworm has exceptional mechanical properties and biocompatibility and is used as a biomaterial in a variety of fields. Sustainable, affordable, and scalable manufacturing of SF would enable its large-scale use. We report for the first time the high-level secretory production of recombinant SF peptides in engineered Pichia pastoris cell factories and the processing thereof to nanomaterials. Two SF peptides (BmSPR3 and BmSPR4) were synthesized and secreted by P. pastoris using signal peptides and appropriate spacing between hydrophilic sequences. By strain engineering to reduce protein degradation, increase glycyl-tRNA supply, and improve protein secretion, we created the optimized P. pastoris chassis PPGSP-8 to produce BmSPR3 and BmSPR4. The SF fed-batch fermentation titers of the resulting two P. pastoris cell factories were 11.39 and 9.48 g/L, respectively. Protein self-assembly was inhibited by adding Tween 80 to the medium. Recombinant SF peptides were processed to nanoparticles (NPs) and nanofibrils. The physicochemical properties of nanoparticles R3NPs and R4NPs from the recombinant SFs synthesized in P. pastoris cell factories were similar or superior to those of RSFNPs (Regenerated Silk Fibroin NanoParticles) originating from commercially available SF. Our work will facilitate the production by microbial fermentation of functional SF for use as a biomaterial.


Subject(s)
Fibroins , Recombinant Proteins , Fibroins/chemistry , Fibroins/biosynthesis , Fibroins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Nanostructures/chemistry , Fermentation , Saccharomycetales/metabolism , Saccharomycetales/genetics , Silk/chemistry , Silk/biosynthesis , Animals , Bombyx/metabolism , Bombyx/genetics
8.
Sci Rep ; 14(1): 11537, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773211

ABSTRACT

The Martian surface and shallow subsurface lacks stable liquid water, yet hygroscopic salts in the regolith may enable the transient formation of liquid brines. This study investigated the combined impact of water scarcity, UV exposure, and regolith depth on microbial survival under Mars-like environmental conditions. Both vegetative cells of Debaryomyces hansenii and Planococcus halocryophilus, alongside with spores of Aspergillus niger, were exposed to an experimental chamber simulating Martian environmental conditions (constant temperatures of about - 11 °C, low pressure of approximately 6 mbar, a CO2 atmosphere, and 2 h of daily UV irradiation). We evaluated colony-forming units (CFU) and water content at three different regolith depths before and after exposure periods of 3 and 7 days, respectively. Each organism was tested under three conditions: one without the addition of salts to the regolith, one containing sodium chlorate, and one with sodium perchlorate. Our results reveal that the residual water content after the exposure experiments increased with regolith depth, along with the organism survival rates in chlorate-containing and salt-free samples. The survival rates of the three organisms in perchlorate-containing regolith were consistently lower for all organisms and depths compared to chlorate, with the most significant difference being observed at a depth of 10-12 cm, which corresponds to the depth with the highest residual water content. The postulated reason for this is an increase in the salt concentration at this depth due to the freezing of water, showing that for these organisms, perchlorate brines are more toxic than chlorate brines under the experimental conditions. This underscores the significance of chlorate salts when considering the habitability of Martian environments.


Subject(s)
Chlorates , Extraterrestrial Environment , Mars , Perchlorates , Perchlorates/metabolism , Chlorates/metabolism , Aspergillus niger/metabolism , Saccharomycetales/metabolism , Water/chemistry , Microbial Viability
9.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791231

ABSTRACT

Ribosomal RNAs (rRNAs) are extensively modified during the transcription and subsequent maturation. Three types of modifications, 2'-O-methylation of ribose moiety, pseudouridylation, and base modifications, are introduced either by a snoRNA-driven mechanism or by stand-alone enzymes. Modified nucleotides are clustered at the functionally important sites, including peptidyl transferase center (PTC). Therefore, it has been hypothesised that the modified nucleotides play an important role in ensuring the functionality of the ribosome. In this study, we demonstrate that seven 25S rRNA modifications, including four evolutionarily conserved modifications, in the proximity of PTC can be simultaneously depleted without loss of cell viability. Yeast mutants lacking three snoRNA genes (snR34, snR52, and snR65) and/or expressing enzymatically inactive variants of spb1(D52A/E679K) and nop2(C424A/C478A) were constructed. The results show that rRNA modifications in PTC contribute collectively to efficient translation in eukaryotic cells. The deficiency of seven modified nucleotides in 25S rRNA resulted in reduced cell growth, cold sensitivity, decreased translation levels, and hyperaccurate translation, as indicated by the reduced missense and nonsense suppression. The modification m5C2870 is crucial in the absence of the other six modified nucleotides. Thus, the pattern of rRNA-modified nucleotides around the PTC is essential for optimal ribosomal translational activity and translational fidelity.


Subject(s)
Peptidyl Transferases , Protein Biosynthesis , RNA, Ribosomal , Saccharomyces cerevisiae , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Peptidyl Transferases/metabolism , Peptidyl Transferases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Ribosomes/metabolism , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , RNA Processing, Post-Transcriptional , RNA, Fungal/genetics , RNA, Fungal/metabolism , Mutation
10.
PLoS One ; 19(5): e0303795, 2024.
Article in English | MEDLINE | ID: mdl-38771745

ABSTRACT

Recombinant proteins are essential in various industries, and scientists employ genetic engineering and synthetic biology to enhance the host cell's protein production capacity. Stress response pathways have been found effective in augmenting protein secretion. Cold atmospheric pressure plasma (CAP) can induce oxidative stress and enhance protein production. Previous studies have confirmed the applicability of CAP jets on Phytase and green fluorescent protein (GFP) production in Pichia pastoris hosts. This study investigates the effect of CAP treatment on another valuable recombinant protein, Endoglucanase II (EgII), integrated into the Pichia pastoris genome. The results demonstrated that plasma induction via two different ignition modes: sinusoidal alternating current (AC) and pulsed direct current (DC) for 120, 180, and 240 s has boosted protein secretion without affecting cell growth and viability. The AC-driven jet exhibited a higher percentage increase in secretion, up to 45%. Simulation of plasma function using COMSOL software provided a pattern of electron temperature (Te) and density distribution, which determine the plasma cocktail's chemistry and reactive species production. Furthermore, electron density (ne) and temperature were estimated from the recorded optical spectrum. The difference in electron properties may explain the moderately different impressions on expression capability. However, cell engineering to improve secretion often remains a trial-and-error approach, and improvements are, at least partially, specific to the protein produced.


Subject(s)
Cellulase , Plasma Gases , Recombinant Proteins , Plasma Gases/pharmacology , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Cellulase/metabolism , Cellulase/genetics , Atmospheric Pressure , Computer Simulation , Saccharomycetales/genetics , Saccharomycetales/metabolism
11.
Bioresour Technol ; 403: 130891, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788808

ABSTRACT

To reduce the cost of docosahexaenoic acid (DHA) production from Schizochytrium sp., the waste Pichia pastoris was successfully used as an alternative nitrogen source to achieve high-density cultivation during the cell growth phase. However, due to the high oxygen consumption feature when implementing high-density cultivation, the control of both the nitrogen source and dissolved oxygen concentration (DO) at each sufficient level was impossible; thus, two realistic control strategies, including "DO sufficiency-nitrogen limitation" and "DO limitation-nitrogen sufficiency", were proposed. When using the strategy of "DO sufficiency-nitrogen limitation", the lowest maintenance coefficient of glucose (12.3 mg/g/h vs. 17.0 mg/g/h) and the highest activities of related enzymes in DHA biosynthetic routes were simultaneously obtained; thus, a maximum DHA concentration of 12.8 ± 1.2 g/L was achieved, which was 1.58-fold greater than that of the control group. Overall, two-stage feeding control for alternative nitrogen sources is an efficient strategy to industrial DHA fermentation.


Subject(s)
Docosahexaenoic Acids , Nitrogen , Stramenopiles , Docosahexaenoic Acids/metabolism , Docosahexaenoic Acids/biosynthesis , Nitrogen/metabolism , Stramenopiles/metabolism , Fermentation , Oxygen/metabolism , Glucose/metabolism , Saccharomycetales/metabolism
12.
J Biotechnol ; 390: 50-61, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38789049

ABSTRACT

To reduce food spoilage and deterioration caused by microbial contamination, antimicrobial peptides (AMPs) have gradually gained attention as a biological preservative. Odorranain-C1 is an α-helical cationic antimicrobial peptide extracted from the skin of frogs with broad-spectrum antimicrobial activity. In this study, we achieved the expression of Odorranain-C1 in Pichia pastoris (P. pastoris) (also known as Komagataella phaffii) by employing DNA recombination technology. The recombinant Odorranain-C1 showed broad-spectrum antibacterial activity and displayed a minimum inhibitory concentration within the range of 8-12 µg.mL-1. Meanwhile, Odorranain-C1 exhibited superior stability and lower hemolytic activity. Mechanistically, Odorranain-C1 disrupted the bacterial membrane's integrity, ultimately causing membrane rupture and subsequent cell death. In tilapia fillets preservation, Odorranain-C1 inhibited the total colony growth and pH variations, while also reducing the production of total volatile basic nitrogen (TVB-N) and thiobarbituric acid (TBA). In conclusion, these studies demonstrated the efficient recombinant expression of Odorranain-C1 in P. pastoris, highlighting its promising utilization in food preservation.


Subject(s)
Food Preservation , Saccharomycetales , Animals , Saccharomycetales/genetics , Saccharomycetales/metabolism , Food Preservation/methods , Microbial Sensitivity Tests , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Antimicrobial Peptides/genetics , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/metabolism , Anti-Bacterial Agents/pharmacology , Hemolysis/drug effects , Pichia/genetics , Pichia/metabolism , Amphibian Proteins/genetics , Amphibian Proteins/pharmacology , Amphibian Proteins/metabolism , Anura/metabolism
13.
Microb Cell Fact ; 23(1): 131, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711081

ABSTRACT

BACKGROUND: Komagataella phaffii (Pichia pastoris) has emerged as a common and robust biotechnological platform organism, to produce recombinant proteins and other bioproducts of commercial interest. Key advantage of K. phaffii is the secretion of recombinant proteins, coupled with a low host protein secretion. This facilitates downstream processing, resulting in high purity of the target protein. However, a significant but often overlooked aspect is the presence of an unknown polysaccharide impurity in the supernatant. Surprisingly, this impurity has received limited attention in the literature, and its presence and quantification are rarely addressed. RESULTS: This study aims to quantify this exopolysaccharide in high cell density recombinant protein production processes and identify its origin. In stirred tank fed-batch fermentations with a maximal cell dry weight of 155 g/L, the polysaccharide concentration in the supernatant can reach up to 8.7 g/L. This level is similar to the achievable target protein concentration. Importantly, the results demonstrate that exopolysaccharide production is independent of the substrate and the protein production process itself. Instead, it is directly correlated with biomass formation and proportional to cell dry weight. Cell lysis can confidently be ruled out as the source of this exopolysaccharide in the culture medium. Furthermore, the polysaccharide secretion can be linked to a mutation in the HOC1 gene, featured by all derivatives of strain NRRL Y-11430, leading to a characteristic thinner cell wall. CONCLUSIONS: This research sheds light on a previously disregarded aspect of K. phaffii fermentations, emphasizing the importance of monitoring and addressing the exopolysaccharide impurity in biotechnological applications, independent of the recombinant protein produced.


Subject(s)
Fermentation , Recombinant Proteins , Saccharomycetales , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Saccharomycetales/metabolism , Saccharomycetales/genetics , Biomass , Batch Cell Culture Techniques , Polysaccharides/metabolism , Polysaccharides/biosynthesis
14.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38713543

ABSTRACT

The black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), is commonly used for organic waste recycling and animal feed production. However, the often inadequate nutrients in organic waste necessitate nutritional enhancement of black soldier fly larvae, e.g., by fungal supplementation of its diet. We investigated the amino acid composition of two fungi, Candida tropicalis (Castell.) Berkhout (Saccharomycetales: Saccharomycetaceae) and Pichia kudriavzevii Boidin, Pignal & Besson (Saccharomycetales: Pichiaceae), from the black soldier fly gut, and commercial baker's yeast, Saccharomyces cerevisiae Meyen ex E.C. Hansen (Saccharomycetales: Saccharomycetaceae), and their effects on larval growth and hemolymph metabolites in fifth-instar black soldier fly larvae. Liquid chromatography-mass spectrometry was used to study the effect of fungal metabolites on black soldier fly larval metabolism. Amino acid analysis revealed significant variation among the fungi. Fungal supplementation led to increased larval body mass and differential metabolite accumulation. The three fungal species caused distinct metabolic changes, with each over-accumulating and down-accumulating various metabolites. We identified significant alteration of histidine metabolism, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism in BSF larvae treated with C. tropicalis. Treatment with P. kudriavzevii affected histidine metabolism and citrate cycle metabolites, while both P. kudriavzevii and S. cerevisiae treatments impacted tyrosine metabolism. Treatment with S. cerevisiae resulted in down-accumulation of metabolites related to glycine, serine, and threonine metabolism. This study suggests that adding fungi to the larval diet significantly affects black soldier fly larval metabolomics. Further research is needed to understand how individual amino acids and their metabolites contributed by fungi affect black soldier fly larval physiology, growth, and development, to elucidate the interaction between fungal nutrients and black soldier fly physiology.


Subject(s)
Diptera , Hemolymph , Larva , Animals , Larva/growth & development , Larva/metabolism , Diptera/metabolism , Diptera/growth & development , Hemolymph/metabolism , Pichia/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acids/metabolism , Diet , Saccharomycetales/metabolism , Animal Feed/analysis , Candida/metabolism , Candida/growth & development
15.
Microb Cell Fact ; 23(1): 99, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566096

ABSTRACT

BACKGROUND: The yeast Komagataella phaffii has become a very popular host for heterologous protein expression, very often based on the use of the AOX1 promoter, which becomes activated when cells are grown with methanol as a carbon source. However, the use of methanol in industrial settings is not devoid of problems, and therefore, the search for alternative expression methods has become a priority in the last few years. RESULTS: We recently reported that moderate alkalinization of the medium triggers a fast and wide transcriptional response in K. phaffii. Here, we present the utilization of three alkaline pH-responsive promoters (pTSA1, pHSP12 and pPHO89) to drive the expression of a secreted phytase enzyme by simply shifting the pH of the medium to 8.0. These promoters offer a wide range of strengths, and the production of phytase could be modulated by adjusting the pH to specific values. The TSA1 and PHO89 promoters offered exquisite regulation, with virtually no enzyme production at acidic pH, while limitation of Pi in the medium further potentiated alkaline pH-driven phytase expression from the PHO89 promoter. An evolved strain based on this promoter was able to produce twice as much phytase as the reference pAOX1-based strain. Functional mapping of the TSA1 and HSP12 promoters suggests that both contain at least two alkaline pH-sensitive regulatory regions. CONCLUSIONS: Our work shows that the use of alkaline pH-regulatable promoters could be a useful alternative to methanol-based expression systems, offering advantages in terms of simplicity, safety and economy.


Subject(s)
6-Phytase , Saccharomycetales , Pichia/metabolism , Methanol/metabolism , 6-Phytase/genetics , 6-Phytase/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Hydrogen-Ion Concentration , Recombinant Proteins/metabolism
16.
Microb Cell Fact ; 23(1): 116, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643119

ABSTRACT

BACKGROUND: Most recombinant Komagataella phaffii (Pichia pastoris) strains for protein production are generated by genomic integration of expression cassettes. The clonal variability in gene copy numbers, integration loci and consequently product titers limit the aptitude for high throughput applications in drug discovery, enzyme engineering or most comparative analyses of genetic elements such as promoters or secretion signals. Circular episomal plasmids with an autonomously replicating sequence (ARS), an alternative which would alleviate some of these limitations, are inherently unstable in K. phaffii. Permanent selection pressure, mostly enabled by antibiotic resistance or auxotrophy markers, is crucial for plasmid maintenance and hardly scalable for production. The establishment and use of extrachromosomal ARS plasmids with key genes of the glycerol metabolism (glycerol kinase 1, GUT1, and triosephosphate isomerase 1, TPI1) as selection markers was investigated to obtain a system with high transformation rates that can be directly used for scalable production processes in lab scale bioreactors. RESULTS: In micro-scale deep-well plate experiments, ARS plasmids employing the Ashbya gossypii TEF1 (transcription elongation factor 1) promoter to regulate transcription of the marker gene were found to deliver high transformation efficiencies and the best performances with the reporter protein (CalB, lipase B of Candida antarctica) for both, the GUT1- and TPI1-based, marker systems. The GUT1 marker-bearing strain surpassed the reference strain with integrated expression cassette by 46% upon re-evaluation in shake flask cultures regarding CalB production, while the TPI1 system was slightly less productive compared to the control. In 5 L bioreactor methanol-free fed-batch cultivations, the episomal production system employing the GUT1 marker led to 100% increased CalB activity in the culture supernatant compared to integration construct. CONCLUSIONS: For the first time, a scalable and methanol-independent expression system for recombinant protein production for K. phaffii using episomal expression vectors was demonstrated. Expression of the GUT1 selection marker gene of the new ARS plasmids was refined by employing the TEF1 promoter of A. gossypii. Additionally, the antibiotic-free marker toolbox for K. phaffii was expanded by the TPI1 marker system, which proved to be similarly suited for the use in episomal plasmids as well as integrative expression constructs for the purpose of recombinant protein production.


Subject(s)
Pichia , Saccharomycetales , Pichia/metabolism , Carbon/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Recombinant Proteins , Plasmids/genetics
17.
Biochem Biophys Res Commun ; 715: 149980, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38678780

ABSTRACT

The transport of ceramide from the endoplasmic reticulum (ER) to the Golgi is a key step in the synthesis of complex sphingolipids, the main building blocks of the plasma membrane. In yeast, ceramide is transported to the Golgi either through ATP-dependent COPII vesicles of the secretory pathway or by ATP-independent non-vesicular transport that involves tethering proteins at ER-Golgi membrane contact sites. Studies in both mammalian and yeast cells reported that vesicular transport mainly carries ceramide containing very long chain fatty acids, while the main mammalian non-vesicular ceramide transport protein CERT only transports ceramides containing short chain fatty acids. However, if non-vesicular ceramide transport in yeast similarly favors short chain ceramides remained unanswered. Here we employed a yeast GhLag1 strain in which the endogenous ceramide synthase is replaced by the cotton-derived GhLag1 gene, resulting in the production of short chain C18 rather than C26 ceramides. We show that block of vesicular transport through ATP-depletion or the use of temperature-sensitive sec mutants caused a reduction in inositolphosphorylceramide (IPC) synthesis to similar extent in WT and GhLag1 backgrounds. Since the remaining IPC synthesis is a readout for non-vesicular ceramide transport, our results indicate that non-vesicular ceramide transport is neither blocked nor facilitated when only short chain ceramides are present. Therefore, we propose that the sorting of ceramide into non-vesicular transport is independent of acyl chain length in budding yeast.


Subject(s)
Ceramides , Golgi Apparatus , Saccharomyces cerevisiae , Ceramides/metabolism , Golgi Apparatus/metabolism , Biological Transport , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomycetales/metabolism , Saccharomycetales/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Endoplasmic Reticulum/metabolism , Adenosine Triphosphate/metabolism , Glycosphingolipids
18.
DNA Res ; 31(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38686638

ABSTRACT

Lodderomyces beijingensis is an ascosporic ascomycetous yeast. In contrast to related species Lodderomyces elongisporus, which is a recently emerging human pathogen, L. beijingensis is associated with insects. To provide an insight into its genetic makeup, we investigated the genome of its type strain, CBS 14171. We demonstrate that this yeast is diploid and describe the high contiguity nuclear genome assembly consisting of eight chromosome-sized contigs with a total size of about 15.1 Mbp. We find that the genome sequence contains multiple copies of the mating type loci and codes for essential components of the mating pheromone response pathway, however, the missing orthologs of several genes involved in the meiotic program raise questions about the mode of sexual reproduction. We also show that L. beijingensis genome codes for the 3-oxoadipate pathway enzymes, which allow the assimilation of protocatechuate. In contrast, the GAL gene cluster underwent a decay resulting in an inability of L. beijingensis to utilize galactose. Moreover, we find that the 56.5 kbp long mitochondrial DNA is structurally similar to known linear mitochondrial genomes terminating on both sides with covalently closed single-stranded hairpins. Finally, we discovered a new double-stranded RNA mycovirus from the Totiviridae family and characterized its genome sequence.


Subject(s)
Chromosomes, Fungal , Genes, Mating Type, Fungal , Genome, Fungal , Chromosomes, Fungal/genetics , Saccharomycetales/genetics , Saccharomycetales/metabolism
19.
Nat Commun ; 15(1): 3383, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649354

ABSTRACT

A double septin ring accompanies cytokinesis in yeasts and mammalian cells. In budding yeast, reorganisation of the septin collar at the bud neck into a dynamic double ring is essential for actomyosin ring constriction and cytokinesis. Septin reorganisation requires the Mitotic Exit Network (MEN), a kinase cascade essential for cytokinesis. However, the effectors of MEN in this process are unknown. Here we identify the F-BAR protein Hof1 as a critical target of MEN in septin remodelling. Phospho-mimicking HOF1 mutant alleles overcome the inability of MEN mutants to undergo septin reorganisation by decreasing Hof1 binding to septins and facilitating its translocation to the actomyosin ring. Hof1-mediated septin rearrangement requires its F-BAR domain, suggesting that it may involve a local membrane remodelling that leads to septin reorganisation. In vitro Hof1 can induce the formation of intertwined septin bundles, while a phosphomimetic Hof1 protein has impaired septin-bundling activity. Altogether, our data indicate that Hof1 modulates septin architecture in distinct ways depending on its phosphorylation status.


Subject(s)
Cytokinesis , Microtubule-Associated Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Septins , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Phosphorylation , Septins/metabolism , Septins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Actomyosin/metabolism , Saccharomycetales/metabolism , Saccharomycetales/genetics , Mutation , Protein Binding
20.
Bioresour Technol ; 400: 130685, 2024 May.
Article in English | MEDLINE | ID: mdl-38599349

ABSTRACT

D-arabitol, a versatile compound with applications in food, pharmaceutical, and biochemical industries, faces challenges in biomanufacturing due to poor chassis performance and unclear synthesis mechanisms. This study aimed to enhance the performance of Zygosaccharomyces rouxii to improve D-arabitol production. Firstly, a mutant strain Z. rouxii M075 obtained via atmospheric and room temperature plasma-mediated mutagenesis yielded 42.0 g/L of D-arabitol at 96 h, with about 50 % increase. Transcriptome-guided metabolic engineering of pathway key enzymes co-expression produced strain ZR-M3, reaching 48.9 g/L D-arabitol after 96 h fermentation. Finally, under optimized conditions, fed-batch fermentation of ZR-M3 in a 5 L bioreactor yielded an impressive D-arabitol titer of 152.8 g/L at 192 h, with a productivity of 0.8 g/L/h. This study highlights promising advancements in enhancing D-arabitol production, offering potential for more efficient biomanufacturing processes and wider industrial applications.


Subject(s)
Fermentation , Metabolic Engineering , Mutagenesis , Sugar Alcohols , Transcriptome , Metabolic Engineering/methods , Sugar Alcohols/metabolism , Transcriptome/genetics , Bioreactors , Gene Expression Profiling , Saccharomycetales/genetics , Saccharomycetales/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...