Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 124: 81-5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26453234

ABSTRACT

Sagittaria trifolia L. is one of the most serious weeds in paddy fields in northeast of China and cannot be controlled effectively by bensulfuron-methyl in recent years. In this study, two suspected resistant S. trifolia populations (R1 and R2) were collected in Liaoning province of China. Whole-plant dose-response studies showed that R1 and R2 were highly resistant to bensulfuron-methyl, with the GR50 R/S ratios of 76.99 and 49.94 respectively. In vitro acetolactate synthase (ALS) assays revealed that resistance was due to reduced sensitivity of the ALS to bensulfuron-methyl inhibition, with I50 R/S ratios of 81.86 and 67.48 for R1 and R2, respectively. Total ALS activity was similar for the S and R2 populations, whereas the R1 population displayed significantly higher ALS activity than did the S population. The mutations Pro-197-Leu and Pro-197-Ser were identified in the ALS gene of the R1 and R2 populations, respectively. This is the first report examining bensulfuron-resistant S. trifolia in Liaoning province, China. The Pro197 mutation is likely responsible for resistance to bensulfuron-methyl in S. trifolia populations.


Subject(s)
Herbicides/toxicity , Sagittaria/drug effects , Sulfonylurea Compounds/toxicity , Acetolactate Synthase/genetics , Herbicide Resistance/genetics , Sagittaria/enzymology , Sagittaria/genetics
2.
Int J Phytoremediation ; 17(12): 1220-6, 2015.
Article in English | MEDLINE | ID: mdl-26067251

ABSTRACT

The phytoremediation potential and responses of Sagittaria trifolia to diesel were investigated. In order to elucidate the biochemical and physiological responses of S. trifolia to diesel, the chlorophyll content, root vitality, soluble protein content and antioxidant enzymes activity (peroxidase (POD), catalase (CAT) and antioxidant enzymes superoxide dismutase (SOD)) were determined in the plant tissues after 50 d of diesel treatment. The results showed the presence of S. trifolia significantly improved the removal ratios of diesel, from 21∼36% in the control soils to 54∼85% in the planted soils. The chlorophyll content, root vitality and soluble protein content all increased at low diesel concentration, then decreased at high diesel concentration. The activities of CAT and POD exhibited peak values at 5 g·kg(-1) diesel treatment and declined at higher diesel concentrations. However, the activity of SOD kept stable at lower diesel concentration (1 and 5 g·kg(-1)), and also declined at higher diesel concentration. Collectively, S. trifolia had the ability to tolerate certain amount of diesel, but when the concentration was up to 10 g·kg(-1), the growth of S. trifolia would be restrained. The results also showed that variation of antioxidant enzyme activity was an important response in plants to diesel pollution.


Subject(s)
Environmental Restoration and Remediation/methods , Gasoline , Sagittaria/metabolism , Antioxidants/metabolism , Biodegradation, Environmental , Dose-Response Relationship, Drug , Plant Roots/metabolism , Sagittaria/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...