Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 575
Filter
1.
Sci Rep ; 14(1): 12738, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830894

ABSTRACT

Aquatic animals residing in saline habitats either allow extracellular sodium concentration to conform to environmental values or regulate sodium to lower levels. The latter strategy requires an energy-driven process to move sodium against a large concentration gradient to eliminate excess sodium that diffuses into the animal. Previous studies of invertebrate and vertebrate species indicate a sodium pump, Na+/K+ ATPase, powers sodium secretion. We provide the first functional evidence of a saline-water animal, Aedes taeniorhynchus mosquito larva, utilizing a proton pump to power this process. Vacuolar-type H+ ATPase (VHA) protein is highly expressed on the apical membrane of the posterior rectal cells, and in situ sodium flux across this epithelium increases significantly in larvae held in higher salinity and is sensitive to Bafilomycin A1, an inhibitor of VHA. We also report the first evidence of splice variants of the sodium/proton exchanger, NHE3, with both high and low molecular weight variants highly expressed on the apical membrane of the posterior rectal cells. Evidence of NHE3 function was indicated with in situ sodium transport significantly inhibited by a NHE3 antagonist, S3226. We propose that the outward proton pumping by VHA establishes a favourable electromotive gradient to drive sodium secretion via NHE3 thus producing a hyperosmotic, sodium-rich urine. This H+- driven Na+ secretion process is the primary mechanism of ion regulation in salt-tolerant culicine mosquito species and was first investigated over 80 years ago.


Subject(s)
Protons , Sodium , Animals , Sodium/metabolism , Larva/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Saline Waters , Sodium-Hydrogen Exchangers/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Macrolides/pharmacology , Proton Pumps/metabolism , Salinity
2.
Environ Monit Assess ; 196(6): 501, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698138

ABSTRACT

Brackish waters and estuaries at the lower reaches of rivers accumulate organic matter and nutrients from various sources in the watershed. Sufficient light and shallow water depth stimulate phytoplankton growth, resulting in a more diversified ecosystem with higher trophic levels. For effective watershed management, it is crucial to characterize the water quality of all rivers, including small and medium-sized ones. Our field survey assessed water quality parameters in 26 inflow rivers surrounding Lakes Shinji and Nakaumi, two consolidated brackish lakes in Japan. The parameters included water temperature, salinity, chlorophyll-a, and nutrients. The study used hierarchical clustering. The Silhouette Index was used to assess clustering outcomes and identify any difficulties in dispersion across clusters. The 26 rivers surrounding Lakes Shinji and Nakaumi were classified into six groups based on their water quality characteristics. This classification distinguishes itself from earlier subjective methods that relied on geographical factors. The new approach identifies a need for improved management of river water quality. The results of the cluster analysis provide valuable insights for future management initiatives. It is important to consider these findings alongside established watershed criteria.


Subject(s)
Environmental Monitoring , Lakes , Rivers , Water Quality , Lakes/chemistry , Environmental Monitoring/methods , Rivers/chemistry , Cluster Analysis , Japan , Water Pollutants, Chemical/analysis , Salinity , Chlorophyll A/analysis , Saline Waters , Chlorophyll/analysis , Phytoplankton/classification , Phytoplankton/growth & development
3.
Water Environ Res ; 96(5): e11028, 2024 May.
Article in English | MEDLINE | ID: mdl-38715392

ABSTRACT

Reverse osmosis (RO) effectively provides clean drinking water. Different RO membrane types are tailored to treat saline water feeds with varying characteristics. In the context of low brackish water feeds, the objective is to remove only a minimal excess of salinity through the membrane. Our study introduces a method of membrane post-treatments capable of achieving controlled salt rejection while concurrently enhancing permeate flux, which is vital for achieving effective and energy-efficient desalination of low brackish water. The post-treatments were conducted on our in-house-developed membranes using aqueous solutions of N,N-Dimethylformamide and glycerol for different drying times at the coupon level. The process was scaled up at the module level, allowing us to assess its potential for commercial application. At the coupon level, the permeate flux increased significantly from 3.7 ± 0.9 to 10.6 ± 0.2 L/m2·h·bar, while the salt rejection decreased from 95.6 ± 1% to 70.5 ± 1% when measured with a feed of 2,000 ppm NaCl concentration. At the module level, we observed a higher flux of 12.8 L/m2·h·bar, alongside a salt rejection of 55.5% with a similar feed. Varying post-treatment parameters at the coupon level allowed us to attain the desired salt rejection and permeate flux values. Physical changes in both pristine and post-treated membranes, including polymer swelling, were observed without chemical alterations, enhancing our understanding of the post-treatment effect and its potential for broader commercial use. PRACTITIONER POINTS: Post-treatment of RO membranes enhances flux. Physical structuring through polymer swelling was observed with the chemical structure unaltered. Post-treatment of RO opens doors for broader energy-efficient desalination application.


Subject(s)
Membranes, Artificial , Osmosis , Saline Waters , Salinity , Water Purification , Water Purification/methods , Saline Waters/chemistry
4.
BMC Vet Res ; 20(1): 219, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778406

ABSTRACT

The study aimed to assess the effects of water salinity on the sperm parameters, levels of cortisol, LH, FSH, testosterone and antioxidants as well as the testes' histopathology in Barki rams. Fifteen healthy Barki rams (1-1.5 years) were divided into three equal depending on the type of drinking water for nine months. The rams in the tap water group (TW, water that contained 350 ppm of total dissolved salts (TDS). Males in the high saline water group (HSW) were permitted to consume high saline water with 8,934 ppm TDS, whereas those in the second group were permitted to have moderately saline water (MSW, 4,557 ppm TDS). High salt concentration in drinking water had adverse effect on sperm viability, morphology and sperm cell concertation. Nitric oxide and malondialdehyde concentrations in blood were significantly higher in the MSW and HSW groups than in TW. There was a significant decrease in glutathione concentration as well as superoxide dismutase activity in TDS and HSW. Cortisol was most highly concentrated in the HSW, next in the MSW, and least in TW. The testosterone, LH, and FSH concentrations in the HSW and MSW groups were significantly lower than in TW. As the salt concentration in drinking water increases, damage to testicular tissue. The MSW group demonstrating vacuolation of lining epithelial cells with pyknotic nuclei in the epididymis and necrosis and desquamation of spermatogenic cells in seminiferous tubules while HSW group displaying desquamated necrotic cells and giant cell formation in the epididymis, as well as damage to some of the seminiferous tubules and showed congestion, vacuolation of spermatogenic epithelium of seminiferous tubules, and desquamated necrotic spermatogenic epithelium. In conclusion, the salinity of the water has detrimental impacts on the sperm morphology, viability and concentration, hormones and antioxidant levels in Barki rams.


Subject(s)
Antioxidants , Spermatozoa , Testis , Testosterone , Male , Animals , Testis/drug effects , Testis/pathology , Antioxidants/metabolism , Spermatozoa/drug effects , Sheep , Testosterone/blood , Follicle Stimulating Hormone/blood , Hydrocortisone/blood , Saline Waters , Luteinizing Hormone/blood
5.
BMC Plant Biol ; 24(1): 317, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654169

ABSTRACT

BACKGROUND: Fennel essential oils are fragrance compounds used in food and pharmaceutical sectors. One of the major impediments to expansion of fennel farming in Egypt's reclamation areas is saline water. Titanium dioxide (TiO2) or TiO2 nano particles (TiO2NP) can be utilized to boost the yield of aromatic plants cultivated under saline irrigation water. Saline water, particularly which contains sodium chloride can harm fennel plant; consequently, it was predicted that fennel production would fail in Egypt's reclaimed area, where the primary source of irrigation is groundwater consisting sodium chloride. This study sought to help fennel respond to sodium chloride by applying Ti forms to their leaves in order to reduce the detrimental effects of sodium chloride on them for expanding their production in the newly reclamation areas as a natural source of essential oil. Ti forms were applied as foliar application at 0, 0.1, 0.2 TiO2, 0.1 TiO2NP, and 0.2 TiO2NP, mM under irrigation with fresh water (0.4 dS m-1), or saline water (51.3 mM or 4.7 dS m-1). RESULTS: Plants exposed to 0.1 mM TiO2NP under fresh water resulted in the maximum values of morphological characters, estragole, oxygenated monoterpenes and photosynthetic pigments; while those subjected to 0.1 mM TiO2NP under saline water gave the greatest values of essential oil, proline, antioxidant enzymes and phenols. The greatest amounts of soluble sugars were recorded with 0.2 mM TiO2NP irrigated with saline water. Plants subjected to 0 mM TiO2 under saline water produced the greatest values of flavonoids, hydrogen peroxide and malondialdehyde. CONCLUSION: To mitigate the negative effects of salty irrigation water on fennel plant production, TiO2NP application is suggested as a potential strategy.


Subject(s)
Agricultural Irrigation , Foeniculum , Plant Leaves , Titanium , Agricultural Irrigation/methods , Plant Leaves/drug effects , Foeniculum/chemistry , Nanoparticles , Saline Waters , Oils, Volatile
6.
Environ Sci Pollut Res Int ; 31(22): 31878-31895, 2024 May.
Article in English | MEDLINE | ID: mdl-38639907

ABSTRACT

Freshwater scarcity, salinity, and poor soil fertility are the major challenges affecting both food and feed productions in arid and semi-arid regions of the world. Utilization of brackish water in the production of saline-tolerant fish and valuable field crops under an integrated system is promising in the maximization of yield per crop. The aim of this study, therefore, was to (1) assess the effect of saline aquaculture wastewater on the growth, yield, forage quality, and nutritive composition of sorghum seeds and (2) assess the effect of different water qualities on the survival, growth performance, and health status of Pangasianodon hypophthalmus. The experiment was conducted in a randomized completely block design of four salinity treatments with three replicates, i.e., control (freshwater mixed with inorganic fertilizers), 5000 ppm, 10,000 ppm, and 15,000 ppm. Our results indicated that although the control exhibited the highest growth (plant height, leaf number, internode number, leaf area, and soil-plant analysis development), grain, and forage yield, no significant differences were noted among the treatments. Likewise, no significant difference in the grain nutrient composition was noted among all the treatments. Assessment of the forage quality revealed improved crude protein content in the control compared to the saline treatments. However, no significant differences in the leaves and stalks fiber fractions were noted among all the treatments. Furthermore, rumen fermentation in terms of in vitro digestibility indicated no significant differences in the in vitro digestible dry matter, digestible organic matter, metabolic energy, net energy, microbial protein, short-chain fatty acids, and total dissolved nutrients among the treatments. However, rearing P. hypophthalmus in water salinities exceeding 10,000 ppm reduced the growth performance and health status of fish. Therefore, the integration of sorghum and P. hypophthalmus production in water salinities not exceeding 5000 ppm is a viable alternative to maximize brackish water productivity in freshwater-scarce regions.


Subject(s)
Aquaculture , Catfishes , Sorghum , Animals , Sorghum/metabolism , Catfishes/metabolism , Agriculture/methods , Saline Waters , Salinity
7.
Harmful Algae ; 133: 102588, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38485443

ABSTRACT

To investigate the detrimental impacts of cyanobacterial bloom, specifically Microcystis aeruginosa, on brackish water ecosystems, the study used Moina mongolica, a cladoceran species, as the test organism. In a chronic toxicology experiment, the survival and reproductive rates of M. mongolica were assessed under M. aeruginosa stress. It was observed that the survival rate of M. mongolica fed with M. aeruginosa significantly decreased with time and their reproduction rate dropped to zero, while the control group remained maintained stable and normal reproduction. To further explore the underlying molecular mechanisms of the effects of M. aeruginosa on M. mongolica, we conducted a transcriptomic analysis on newly hatched M. mongolica cultured under different food conditions for 24 h. The results revealed significant expression differences in 572 genes, with 233 genes significantly up-regulated and 339 genes significantly down-regulated. Functional analysis of these differentially expressed genes identified six categories of physiological functional changes, including nutrition and metabolism, oxidative phosphorylation, neuroimmunology, cuticle and molting, reproduction, and programmed cell death. Based on these findings, we outlined the basic mechanisms of microcystin toxicity. The discovery provides critical insights into the mechanisms of Microcystis toxicity on organisms and explores the response mechanisms of cladocerans under the stress of Microcystis.


Subject(s)
Cladocera , Microcystis , Animals , Microcystis/physiology , Ecosystem , Gene Expression Profiling , Saline Waters
8.
Environ Sci Pollut Res Int ; 31(17): 26320-26329, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38523216

ABSTRACT

Periodate (PI)-based oxidation using the activators, such as metal ions and light irradiation, has emerged as a feasible treatment strategy for the effective remediation of contaminated water and wastewater. Given the pervasive nature of PI residues and solar exposure during application, the role of solar light in remediating the challenging highly saline water matrices needs to be elucidated. In this study, bisphenol A (BPA) was selected as the targeted micropollutant, which can be efficiently eliminated by the simulated sunlight (SSL)/PI system in the presence of high-level Cl- (up to 846.0 mM) at pH 7.0. The presence of different background constituents of water, such as halides, nitrate, and dissolved organic matter, had no effect, or even accelerated BPA abatement. Particularly, the ubiquitous Br- or I- appreciably enhanced the BPA transformation efficiency, which may be ascribed to the generation of high-selective reactive HOBr or HOI. The in silico predictions suggested that the transformation products generated by halide-mediated SSL/PI systems via halogen substitutions showed greater persistence, bioaccumulation, and aquatic toxicity than BPA itself. These findings highlighted a widespread phenomenon during PI-based oxidative treatment of highly saline water, which needs special attention under solar light illumination.


Subject(s)
Periodic Acid , Phenols , Sunlight , Water Pollutants, Chemical , Benzhydryl Compounds/chemistry , Saline Waters , Oxidation-Reduction , Water Pollutants, Chemical/chemistry
9.
Water Res ; 252: 121213, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38306752

ABSTRACT

The occurrence of large Microcystis biomass in brackish waters is primarily caused by its downward transportation from the upstream freshwater lakes and reservoirs through rivers rather than due to in situ bloom formation. Factors that determine the survival of freshwater cyanobacteria in brackish waters have not been well investigated. Here, we studied the spatiotemporal variability of inorganic nitrogen in an upstream lake and conducted laboratory and in-situ experiments to assess the role of nitrogen availability on the salt tolerance of Microcystis and the release of microcystins. A series of field experiments were carried out during bloom seasons to evaluate the salt tolerance of natural Microcystis colonies. The salt tolerance threshold varied from 7 to 17 and showed a positive relationship with intracellular carbohydrate content and a negative relationship with nitrogen availability in water. In August when upstream nitrogen availability was lower, the Microcystis colonies could maintain their biomass even after a sudden increase in salinity from 4 to 10. Laboratory-cultivated Microcystis that accumulated higher carbohydrate content at lower nitrogen availability showed better cell survival at higher salinity. The sharp release of microcystins into the surrounding water occurred when salinity exceeded the salt tolerance threshold of the Microcystis. Thus, Microcystis with higher salt tolerance can accumulate more toxins in cells. The obtained results suggest that the cell survival and toxin concentration in brackish waters depend on the physiological properties of Microcystis formed in the upstream waters. Thus, the life history of Microcystis in upstream waters could have a significant impact on its salt tolerance in downstream brackish waters, where the ecological risk of the salt-tolerant Microcystis requires special and careful management in summer at low nitrogen availability.


Subject(s)
Microcystis , Microcystis/physiology , Microcystins , Salt Tolerance , Nitrogen , Lakes/microbiology , Saline Waters , Water , Carbohydrates
10.
Mar Pollut Bull ; 200: 116135, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359482

ABSTRACT

A twenty-four month long observational study conducted in an Asia's largest brackish water ecosystem, Chilika Lagoon, India, aimed to unravel dissolved organic matter (DOM) dynamics in this tropical brackish water ecosystem. The study assessed the interplay between allochthonous and autochthonous DOM sources during lean and active flow periods based on regional rainfall. Dissolved organic carbon (DOC), nitrogen (DON), and phosphorus (DOP) fluxes were analyzed, considering catchment runoff, phytoplankton production, benthic-pelagic interactions, and sea-lagoon exchanges as contributors. Contrary to conventional thinking, the study found autochthonous processes to be more significant than conservative mixing in shaping DOM dynamics. It introduced a novel conceptual model illustrating the multifaceted origins of DOM, encompassing catchment runoff, phytoplankton, benthic-pelagic interactions, bacterial activity, and sea-lagoon exchanges. These findings underscore the importance of holistic management strategies for Chilika Lagoon to preserve its ecological health, given its vital role in global carbon cycling, fisheries, and aquaculture.


Subject(s)
Dissolved Organic Matter , Ecosystem , Phytoplankton , Saline Waters , Asia
11.
J Environ Manage ; 352: 120087, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38215592

ABSTRACT

Saline water has proven to be one of the alternative sources of freshwater for agricultural irrigation in water-scarce areas. However, the changes in farmland ecology caused by saline water irrigation remain unclear. In this study, six irrigation water salinities (CK: 1.3 dS m-1, S1: 3.4 dS m-1, S2: 7.1 dS m-1, S3: 10.6 dS m-1, S4: 14.1 dS m-1, S5: 17.7 dS m-1) were set in a three-year (2019, 2021-2022) experiment to investigate their effects on soil environment and greenhouse gas emissions in cotton fields under long-term saline water irrigation. Results show that soil salinity in the same layer increased as increasing water salinity. Soil moisture of S3-S5 increased significantly by 4.99-12.94%. There was no significant difference in soil organic matter content between CK and S1. Saline water irrigation increased soil ammonium nitrogen content by 0.57-49.26%, while decreasing nitrate nitrogen content by 1.43-32.03%. Soil CO2 and N2O emissions and CH4 uptake were lower in S1-S5 than in CK at different cotton growth stages. In addition, saline water irrigation reduced the global warming potential by 6.93-53.86%. A structural equation model was developed to show that soil salinity, moisture, and ammonium nitrogen content were negatively correlated with global warming potential, while organic matter and nitrate nitrogen had positive effects on global warming potential. Considering the comprehensive perspectives of gas emissions and cotton yield, irrigation water with salinity less than 10.6 dS m-1 could effectively reduce greenhouse gas emissions from cotton fields while maintaining stable cotton yields in the experimental area and similar region.


Subject(s)
Ammonium Compounds , Greenhouse Gases , Greenhouse Gases/analysis , Nitrates , Nitrous Oxide/analysis , Soil/chemistry , Agricultural Irrigation/methods , China , Saline Waters , Nitrogen , Agriculture , Fertilizers/analysis , Methane/analysis
12.
J Hazard Mater ; 465: 133512, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38232552

ABSTRACT

Parabens, a group of alkyl esters of p-hydroxybenzoic acid, have been found in aquatic systems in particular, leading to concerns about their potential impact on ecosystems. This study investigated the effects of three commonly used parabens, methylparaben (MeP), ethylparaben (EtP), and propylparaben (PrP), on the brackish water flea Diaphanosoma celebensis. The results showed that PrP had the most adverse impact on survival rates, followed by EtP and MeP, while MeP and EtP induced significant adverse effects on reproductive performance. A transcriptome analysis revealed significant differential gene expression patterns in response to paraben exposure, with MeP associated with the most significant effects. MeP and EtP exposure produced greater disruption in the microbiota of D. celebensis than did PrP compared with control groups, and we identified eight key microbiota, including Ruegeria and Roseovarius. Correlation analysis between transcriptome and microbiome data revealed key interactions between specific microbiota and host gene expression. Certain microbial taxa were associated with specific genes (e.g. cuticle related genes) and toxicological pathways, shedding light on the complex molecular response and in vivo toxicity effects of parabens. These findings contribute to a deeper understanding of the molecular mechanisms underlying paraben toxicity and highlight the importance of considering the ecological impact of chemical contaminants in aquatic ecosystems.


Subject(s)
Cladocera , Parabens , Animals , Parabens/analysis , Transcriptome , Ecosystem , Saline Waters
13.
Environ Sci Pollut Res Int ; 31(9): 12995-13002, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38236570

ABSTRACT

Phytoremediation is an effective way to reduce heavy metal content in agricultural soil. The effects of brackish water irrigation on phytoremediation efficiency of plants have not yet been completely understood. In this study, the effects of brackish water irrigation on cadmium (Cd) uptake by maize as the phytoremediator were investigated. In a pot experiment, maize seedlings were grown in soil with exogenously added Cd (0, 5, 10, or 15 mg kg-1) and irrigated with deionized water (T1), natural brackish water (T2), or water with NaCl with salinity equal to that of natural brackish water (T3). Salt stress and cation antagonism caused by brackish water affected maize plant growth and Cd uptake. Under 5, 10, and 15 mg kg-1 Cd, Cd accumulation in maize shoots was 5.55, 7.08, and 5.71 µg plant-1; 4.08, 3.04, and 5.38 µg plant-1; and 2.48, 3.44, and 5.33 µg plant-1 under the T1, T2, and T3 treatments, respectively. Cd accumulation in the shoots was significantly lower under the T2 and T3 treatments than under the T1 treatment at 5 and 10 mg kg-1 Cd; however, no significant differences were observed among all treatments at 15 mg kg-1 Cd. These findings indicated that phytoremediation efficiency decreased in response to both salt stress and cation antagonism caused by brackish water under low soil-Cd concentrations; however, this effect was negligible under high soil-Cd concentration. Therefore, brackish water irrigation can be considered for the phytoremediation of soils contaminated with high Cd levels to save freshwater resources.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Soil , Zea mays , Biodegradation, Environmental , Water , Saline Waters , Cations , Soil Pollutants/analysis
14.
Environ Sci Technol ; 58(2): 1131-1141, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38169368

ABSTRACT

Hydrogen gas evolution using an impure or saline water feed is a promising strategy to reduce overall energy consumption and investment costs for on-site, large-scale production using renewable energy sources. The chlorine evolution reaction is one of the biggest concerns in hydrogen evolution with impure water feeds. The "alkaline design criterion" in impure water electrolysis was examined here because water oxidation catalysts can exhibit a larger kinetic overpotential without interfering chlorine chemistry under alkaline conditions. Here, we demonstrated that relatively inexpensive thin-film composite (TFC) membranes, currently used for high-pressure reverse osmosis (RO) desalination applications, can have much higher rejection of Cl- (total crossover of 2.9 ± 0.9 mmol) than an anion-exchange membrane (AEM) (51.8 ± 2.3 mmol) with electrolytes of 0.5 M KOH for the anolyte and 0.5 M NaCl for the catholyte with a constant current (100 mA/cm2 for 20 h). The membrane resistances, which were similar for the TFC membrane and the AEM based on electrochemical impedance spectroscopy (EIS) and Ohm's law methods, could be further reduced by increasing the electrolyte concentration or removal of the structural polyester supporting layer (TFC-no PET). TFC membranes could enable pressurized gas production, as this membrane was demonstrated to be mechanically stable with no change in permeate flux at 35 bar. These results show that TFC membranes provide a novel pathway for producing green hydrogen with a saline water feed at elevated pressures compared to systems using AEMs or porous diaphragms.


Subject(s)
Chlorine , Hydrogen , Methacrylates , Osmosis , Membranes, Artificial , Saline Waters , Chlorides
15.
Water Environ Res ; 96(1): e10979, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38264925

ABSTRACT

This research focuses on boosting seawater pretreatment and desalination through electrocoagulation (EC)/ultrafiltration (UF) and electrocoagulation (EC)/nanofiltration (NF) processes. We first optimized the key parameters of the EC process using aluminum (Al) and iron (Fe) electrodes. Experimental results show EC process is efficient under optimal conditions. Second, membrane filtration using UF (ES10B), NF(UTC60) and NF(200) as post-processing steps to the EC process were experimented with. EC(Al)/NF(UTC60) combination resulted in the highest removal rate of organic matter (COD 98%, TOC 95%, fluorescence [humic and fulvic acids] 68%), optical density (OD600nm 75%, turbidity 70%, conductivity 64%). In terms of major ions removal, up to 55% was achieved as NF decreases conductivity, salinity, and hardness. EC(Al)/NF(UTC60) seawater permeate demonstrated the best results in terms of lowest flux decline (J/Jo = 0.9) and fouling, which was realized by resistance in series and recovery factor rate (%). Additionally, NF(UTC60) fouling reversibility led to a longer lifetime and higher recovery factor (93%). PRACTITIONER POINTS: Pretreatment by hybrid processes was experimented with to enhance the saline water treatment. Organic matter (COD 98%, TOC 95%, fluorescence [humic and fulvic acids] 68%) and turbidity were successfully removed. Salinity and hardness (conductivity 64%) were highly reduced by NF. Flux decline, retention rate, and membrane fouling were studied.


Subject(s)
Saline Waters , Seawater , Electrocoagulation , Electrodes , Iron
16.
Environ Sci Pollut Res Int ; 31(7): 10273-10295, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36645598

ABSTRACT

An experimental investigation was executed on the solar evacuated tube collector containing a collective condenser unit of heat pipe arrangement attached to a single slope solar desalination system. The brackish water preheating was done by the unique solar collector before entering the still. Performance analysis of the system was carried out with 0.001, 0.002 and 0.003 kg/s brackish water flow rate in the collector and 0.01, 0.02 and 0.03 m of brine water depth in a single-slope solar desalination system. The feasibility of the proposed system was evaluated by thermodynamic analysis, embodied energy, CO2 mitigation and economic analysis. Active desalination system with collective condenser heat pipe evacuated tube collector at 0.001 kg/s brackish water flow rate and 0.01 m water depth produced maximum freshwater yield, average daily thermal and exergy efficiency of 3.085 l/m2day, 30.25% and 3.17% respectively. An increase of maximum freshwater yield of 37.11% and average daily thermal efficiency of 43.5% respectively were achieved at a brackish water flow rate of 0.001 kg/s and 0.01 m of basin water depth in comparison with a traditional single slope solar desalination system. The embodied energy of the system was estimated as 630.77 kWh, and 0.001 kg/s and 0.01 m of water depth resulted in the highest earned carbon credit of 16,954.48 INR. The minimum payback period of 2.19 years was achieved at the lower brackish water flow rate and basin water depth of 0.001 kg/s and 0.01 m respectively.


Subject(s)
Hot Temperature , Solar Energy , Sunlight , Water , Saline Waters , Fresh Water
17.
Environ Res ; 241: 117654, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37980990

ABSTRACT

Water is a fundamental requirement for the survival of human beings. Although water is abundantly available across the globe, access to freshwater still remains a major concern. Most of the water available is saline or brackish, which is not fit for human consumption. Desalination is the optimum solution for production of potable water from saline water. A major shortcoming of conventional desalination technologies is their dependence on fossil fuel that results in environmental degradation, global warming, etc. Therefore, sustainable desalination technology has evolved as a need of hour. Among all renewable energy resources, solar energy is abundantly available and can be potentially harvested. Therefore, solar energy can be used to drive sustainable desalination technologies. A solar still converts saline water into freshwater in a single step using solar energy. But the major drawbacks of solar still are relatively lower efficiency and lower yield. Nanofluids are widely used to overcome these limitations due to their extraordinary and unique properties. This paper critically reviews the recent research performed on the application of nanofluids in solar desalination systems. Methods of nanofluid preparation, their types and properties are also discussed in detail. Application of nanofluids in solar desalination systems is discussed with special attention on performance enhancement of solar stills. Combinations of nanofluids with various other performance enhancement techniques are also considered. The effectiveness of nanofluids in solar stills is found to be dependent majorly on the nature and concentration of the nanofluid used.


Subject(s)
Solar Energy , Humans , Fossil Fuels , Fresh Water , Global Warming , Saline Waters
18.
Environ Sci Pollut Res Int ; 31(3): 4826-4847, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110681

ABSTRACT

Saltwater intrusion is a prevalent global environmental issue that detrimentally impacts coastal groundwater aquifers. This problem is exacerbated by climate change and increased groundwater abstraction. Employing physical barriers proves effective in mitigating saline water intrusion. In this study, a validated numerical simulation model is utilized to assess the impact of aquifer stratification on the effectiveness of mixed physical barriers (MPBs) and their response to structural variations. Additionally, the performance of MPBs was compared with that of single physical barriers in a laboratory-scale aquifer. Three different configurations were replicated, comprising two stratified aquifers (HLH and LHL) and a homogenous reference aquifer (H). The results demonstrate that MPBs are efficient in decreasing the saltwater penetration length in the investigated cases. The reductions in penetration length were up to 65% in all cases. The removal efficacy of residual saline water for MPBs exceeded that of the subsurface dam by 2.1-3.3 times for H, 2.1-3.6 times for HLH, and 8.3 times for LHL conditions, while outperforming the cutoff wall by 38-100% for H, 39-44% for HLH, and 2.7-75% for LHL. These findings are of importance for decision-makers in choosing the most appropriate technique for mitigating saline water intrusion in heterogeneous coastal aquifers.


Subject(s)
Groundwater , Seawater , Groundwater/chemistry , Saline Waters , Climate Change , Environmental Monitoring
19.
Water Res ; 250: 121009, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38118256

ABSTRACT

While electrodialysis (ED) demonstrates lower energy consumption than reverse osmosis (RO) in the desalination of low salinity waters, RO continues to be the predominant technology for brackish water desalination. In this study, we probe this skewed market share and project the potential for future disruption by ED through systematic assessment of the levelized cost of water (LCOW). Using rigorous process- and economic-models, we minimize the LCOW of RO and ED systems, highlighting important tradeoffs between capital and operating expenditure for each technology. With optimized current state-of-the-art systems, we find that ED is more economical than RO for feed salinities ≤ 3 g L-1, albeit to a minor extent. Considering that RO is a highly mature technology, we focus on predicting the future potential of ED by evaluating plausible avenues for capital and operating cost reduction. Specifically, we find that reduction in the price of ion-exchange membranes (i.e., < 60 USD m-2) can ensure competitiveness with RO for feed salinities up to 5 g L-1. For higher feed salinities (≥ 5 g L-1) we reveal that the LCOW of ED may effectively be reduced by decreasing ion-exchange membrane resistance, while preserving high current efficiency. Through extensive assessment of structure-property-performance relationships, we precisely identify target membrane charge densities and diffusion coefficients which optimize the LCOW of ED, thus providing novel guidance for future membrane material development. Overall, we emphasize that with a unified approach - whereby ion-exchange membrane price is reduced and performance is enhanced - ED can become the economically preferable technology compared to RO across the entire brackish water salinity range.


Subject(s)
Water Purification , Cost-Benefit Analysis , Osmosis , Saline Waters , Water , Membranes, Artificial
20.
Water Res ; 250: 121016, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38134857

ABSTRACT

Nitrogen (N) compounds can occur in water resources from natural and anthropogenic activities. It is ideal that these contaminants be removed before water consumption. As water quality has been affected by increased salinity and pH variation, more advanced and robust technologies such as electrodialysis (ED) can be considered for simultaneous desalination and pollutant removal. In this context, the removal of N-species (NO3-, NO2-, NH4+, and CH4N2O) from brackish water by ED was investigated for different feed water quality, considering increased salinity (0 - 10g/L NaCl) and pH variation (3 - 11), under limit current density (LCD) at fixed electric potential condition. The applied electric potential (5 - 25V) under, at, and over the LCD at fixed electric potential and dynamic current density (DCD), as a percentage of LCD (0.4 - 1.2), were analyzed to improve the process. In addition, energy efficiency in the form of specific energy consumption (SEC) and current efficiency (CE) were assessed for ED at fixed electric potential and DCD. The results showed that, at extreme pH of the feed water, the removal of NO2- and NH4+ can be affected, while NO3-was the most stable compound with pH variation. An increase in feed water salinity just slightly impacted the removal of N-compounds, due to the similar characteristics of the ions in the water. The increase in electric potential at fixed electric potential or DCD increased the removal and molar flux of N-compounds. However, operating over the LCD increased the SEC of the ED process while changes in removal were not significant. DCD procedures resulted in higher CE and shorter run time of the experiments. Therefore, ED proved to be a suitable treatment technique to produce fresh water due to the selective removal of the studied ions, especially at 15V (fixed electrical potential) and 0.8 LCD (DCD) related to removal, molar flux, and run time to achieve guidelines.


Subject(s)
Nitrogen Compounds , Nitrogen Dioxide , Ions , Electricity , Nitrogen , Saline Waters
SELECTION OF CITATIONS
SEARCH DETAIL
...