Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 312(2): R231-R244, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28003213

ABSTRACT

Marine teleosts can absorb imbibed seawater (SW) to maintain water balance, with esophageal desalination playing an essential role. NaCl absorption from luminal SW was enhanced 10-fold in the esophagus of SW-acclimated eels, and removal of Na+ or Cl- from luminal SW abolished the facilitated absorption, indicating coupled transport. Mucosal/serosal application of various blockers for Na+/Cl- transporters profoundly decreased the absorption. Among the transporter genes expressed in eel esophagus detected by RNA-seq, dimethyl amiloride-sensitive Na+/H+ exchanger (NHE3) and 4,4'-diisothiocyano-2,2'-disulfonic acid-sensitive Cl-/[Formula: see text] exchanger (AE) coupled by the scaffolding protein on the apical membrane of epithelial cells, and ouabain-sensitive Na+-K+-ATPases (NKA1α1c and NKA3α) and diphenylamine-2-carboxylic acid-sensitive Cl- channel (CLCN2) on the basolateral membrane, may be responsible for enhanced transcellular NaCl transport because of their profound upregulation after SW acclimation. Upregulated carbonic anhydrase 2a (CA2a) supplies H+ and [Formula: see text] for activation of the coupled NHE and AE. Apical hydrochlorothiazide-sensitive Na+-Cl- cotransporters and basolateral Na+-[Formula: see text] cotransporter (NBCe1) and AE1 are other possible candidates. Concerning the low water permeability that is typically seen in marine teleost esophagus, downregulated aquaporin genes (aqp1a and aqp3) and upregulated claudin gene (cldn15a) are candidates for transcellular/paracellular route. In situ hybridization showed that these upregulated transporters and tight-junction protein genes were expressed in the absorptive columnar epithelial cells of eel esophagus. These results allow us to provide a full picture of the molecular mechanism of active desalination and low water permeability that are characteristic to marine teleost esophagus and gain deeper insights into the role of gastrointestinal tracts in SW acclimation.


Subject(s)
Eels/physiology , Esophagus/physiology , Gastrointestinal Absorption/physiology , Saline Waters/pharmacokinetics , Salt Tolerance/physiology , Sodium-Potassium-Chloride Symporters/physiology , Animals , Cell Membrane Permeability/physiology , Ion Channel Gating/physiology , Seawater , Sodium Chloride/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...