Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.347
Filter
1.
J Med Chem ; 67(10): 8247-8260, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38716576

ABSTRACT

Prostate-specific membrane antigen (PSMA)-targeted radio ligand therapeutics (RLTs), such as [177Lu]Lu-PSMA-617 (Pluvicto), have been shown to accumulate in salivary glands and kidneys, potentially leading to undesired side effects. As unwanted accumulation in normal organs may derive from the cross-reactivity of PSMA ligands to glutamate carboxypeptidase III (GCPIII), it may be convenient to block this interaction with GCPIII-selective ligands. Parallel screening of a DNA-encoded chemical library (DEL) against GCPIII and PSMA allowed the identification of GCPIII binders. Structure-activity relationship (SAR) studies resulted in the identification of nanomolar GCPIII ligands with up to 1000-fold selectivity over PSMA. We studied the ability of GCPIII ligands to counteract the binding of [177Lu]Lu-PSMA-617 to human salivary glands by autoradiography and could demonstrate a partial radioprotection.


Subject(s)
Dipeptides , Heterocyclic Compounds, 1-Ring , Lutetium , Humans , Antigens, Surface , Autoradiography , Dipeptides/chemistry , Dipeptides/metabolism , Glutamate Carboxypeptidase II , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/metabolism , Ligands , Lutetium/chemistry , Lutetium/metabolism , Prostate-Specific Antigen , Radioisotopes/chemistry , Radioisotopes/metabolism , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/pharmacokinetics , Salivary Glands/metabolism , Structure-Activity Relationship , Tissue Distribution
2.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732189

ABSTRACT

Sjögren's Disease (SjD) is an autoimmune disease of the exocrine tissues. Etiological events result in the loss of epithelial homeostasis alongside extracellular matrix (ECM) destruction within the salivary and lacrimal glands, followed by immune cell infiltration. In this review, we have assessed the current understanding of epithelial-mesenchymal transition (EMT)-associated changes within the salivary epithelium potentially involved in salivary dysfunction and SjD pathogenesis. We performed a PubMed literature review pertaining to the determination of pathogenic events that lead to EMT-related epithelial dysfunction and signaling in SjD. Molecular patterns of epithelial dysfunction in SjD salivary glands share commonalities with EMT mediating wound healing. Pathological changes altering salivary gland integrity and function may precede direct immune involvement while perpetuating MMP9-mediated ECM destruction, inflammatory mediator expression, and eventual immune cell infiltration. Dysregulation of EMT-associated factors is present in the salivary epithelium of SjD and may be significant in initiating and perpetuating the disease. In this review, we further highlight the gap regarding mechanisms that drive epithelial dysfunction in salivary glands in the early or subclinical pre-lymphocytic infiltration stages of SjD.


Subject(s)
Epithelial-Mesenchymal Transition , Salivary Glands , Sjogren's Syndrome , Humans , Sjogren's Syndrome/pathology , Sjogren's Syndrome/metabolism , Salivary Glands/pathology , Salivary Glands/metabolism , Animals , Epithelium/pathology , Epithelium/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Signal Transduction , Extracellular Matrix/metabolism
3.
PLoS One ; 19(5): e0301082, 2024.
Article in English | MEDLINE | ID: mdl-38722977

ABSTRACT

Branching morphogenesis is a complex process shared by many organs including the lungs, kidney, prostate, as well as several exocrine organs including the salivary, mammary and lacrimal glands. This critical developmental program ensures the expansion of an organ's surface area thereby maximizing processes of cellular secretion or absorption. It is guided by reciprocal signaling from the epithelial and mesenchymal cells. While signaling pathways driving salivary gland branching morphogenesis have been relatively well-studied, our understanding of the underlying transcriptional regulatory mechanisms directing this program, is limited. Here, we performed in vivo and ex vivo studies of the embryonic mouse submandibular gland to determine the function of the transcription factor ΔNp63, in directing branching morphogenesis. Our studies show that loss of ΔNp63 results in alterations in the differentiation program of the ductal cells which is accompanied by a dramatic reduction in branching morphogenesis that is mediated by dysregulation of WNT signaling. We show that ΔNp63 modulates WNT signaling to promote branching morphogenesis by directly regulating Sfrp1 expression. Collectively, our findings have revealed a novel role for ΔNp63 in the regulation of this critical process and offers a better understanding of the transcriptional networks involved in branching morphogenesis.


Subject(s)
Gene Expression Regulation, Developmental , Membrane Proteins , Morphogenesis , Animals , Mice , Morphogenesis/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Salivary Glands/metabolism , Salivary Glands/embryology , Wnt Signaling Pathway , Submandibular Gland/metabolism , Submandibular Gland/embryology , Trans-Activators/metabolism , Trans-Activators/genetics , Cell Differentiation
4.
PLoS One ; 19(5): e0301855, 2024.
Article in English | MEDLINE | ID: mdl-38753592

ABSTRACT

Calcium binding protein, spermatid associated 1 (CABS1) is a protein most widely studied in spermatogenesis. However, mRNA for CABS1 has been found in numerous tissues, albeit with little information about the protein. Previously, we identified CABS1 mRNA and protein in human salivary glands and provided evidence that in humans CABS1 contains a heptapeptide near its carboxyl terminus that has anti-inflammatory activities. Moreover, levels of an immunoreactive form of CABS1 were elevated in psychological stress. To more fully characterize human CABS1 we developed additional polyclonal and monoclonal antibodies to different sections of the protein and used these antibodies to characterize CABS1 in an overexpression cell lysate, human salivary glands, saliva, serum and testes using western blot, immunohistochemistry and bioinformatics approaches exploiting the Gene Expression Omnibus (GEO) database. CABS1 appears to have multiple molecular weight forms, consistent with its recognition as a structurally disordered protein, a protein with structural plasticity. Interestingly, in human testes, its cellular distribution differs from that in rodents and pigs, and includes Leydig cells, primary spermatogonia, Sertoli cells and developing spermatocytes and spermatids, Geodata suggests that CABS1 is much more widely distributed than previously recognized, including in the urogenital, gastrointestinal and respiratory tracts, as well as in the nervous system, immune system and other tissues. Much remains to be learned about this intriguing protein.


Subject(s)
Calcium-Binding Proteins , Testis , Humans , Male , Testis/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Animals , Saliva/metabolism , Salivary Glands/metabolism , Spermatids/metabolism , Spermatogenesis
5.
ACS Appl Bio Mater ; 7(5): 2620-2636, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38591955

ABSTRACT

Salivary glands (SGs) play a vital role in maintaining oral health through the production and release of saliva. Injury to SGs can lead to gland hypofunction and a decrease in saliva secretion manifesting as xerostomia. While symptomatic treatments for xerostomia exist, effective permanent solutions are still lacking, emphasizing the need for innovative approaches. Significant progress has been made in the field of three-dimensional (3D) SG bioengineering for applications in gland regeneration. This has been achieved through a major focus on cell culture techniques, including soluble cues and biomaterial components of the 3D niche. Cells derived from both adult and embryonic SGs have highlighted key in vitro characteristics of SG 3D models. While still in its first decade of exploration, SG spheroids and organoids have so far served as crucial tools to study SG pathophysiology. This review, based on a literature search over the past decade, covers the importance of SG cell types in the realm of their isolation, sourcing, and culture conditions that modulate the 3D microenvironment. We discuss different biomaterials employed for SG culture and the current advances made in bioengineering SG models using them. The success of these 3D cellular models are further evaluated in the context of their applications in organ transplantation and in vitro disease modeling.


Subject(s)
Biocompatible Materials , Salivary Glands , Tissue Engineering , Humans , Salivary Glands/cytology , Salivary Glands/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Animals , Materials Testing , Bioengineering
6.
Sci Rep ; 14(1): 9779, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684688

ABSTRACT

One of the major functions of the larval salivary glands (SGs) of many Drosophila species is to produce a massive secretion during puparium formation. This so-called proteinaceous glue is exocytosed into the centrally located lumen, and subsequently expectorated, serving as an adhesive to attach the puparial case to a solid substrate during metamorphosis. Although this was first described almost 70 years ago, a detailed description of the morphology and mechanical properties of the glue is largely missing. Its main known physical property is that it is released as a watery liquid that quickly hardens into a solid cement. Here, we provide a detailed morphological and topological analysis of the solidified glue. We demonstrated that it forms a distinctive enamel-like plaque that is composed of a central fingerprint surrounded by a cascade of laterally layered terraces. The solidifying glue rapidly produces crystals of KCl on these alluvial-like terraces. Since the properties of the glue affect the adhesion of the puparium to its substrate, and so can influence the success of metamorphosis, we evaluated over 80 different materials for their ability to adhere to the glue to determine which properties favor strong adhesion. We found that the alkaline Sgs-glue adheres strongly to wettable and positively charged surfaces but not to neutral or negatively charged and hydrophobic surfaces. Puparia formed on unfavored materials can be removed easily without leaving fingerprints or cascading terraces. For successful adhesion of the Sgs-glue, the material surface must display a specific type of triboelectric charge. Interestingly, the expectorated glue can move upwards against gravity on the surface of freshly formed puparia via specific, unique and novel anatomical structures present in the puparial's lateral abdominal segments that we have named bidentia.


Subject(s)
Larva , Salivary Glands , Animals , Larva/growth & development , Salivary Glands/metabolism , Adhesives/metabolism , Drosophila/metabolism , Metamorphosis, Biological , Pupa/growth & development
7.
Free Radic Biol Med ; 218: 1-15, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574973

ABSTRACT

Sjogren's syndrome (SS) is an autoimmune disease characterized by dysfunction of exocrine glands, such as salivary glands. However, the molecular mechanism of salivary secretion dysfunction in SS is still unclear. Given the significance of glutathione peroxidase 4 (GPX4) in cellular redox homeostasis, we hypothesized that dysregulation of GPX4 may play a pivotal role in the pathogenesis of salivary secretion dysfunction observed in SS. The salivary gland of SS patients and the SS mouse model exhibited reduced expression of the ferroptosis inhibitor GPX4 and the important protein aquaporin 5 (AQP5), which is involved in salivary secretion. GPX4 overexpression upregulated and GPX4 knockdown downregulated AQP5 expression in salivary gland epithelial cells (SGECs) and salivary secretion. Bioinformatics analysis of GSE databases from SS patients' salivary glands revealed STAT4 as a key intermediary regulator between GPX4 and AQP5. A higher level of nuclear pSTAT4 was observed in the salivary gland of the SS mouse model. GPX4 overexpression inhibited and GPX4 knockdown promoted STAT4 phosphorylation and nuclear translocation in SGECs. CHIP assay confirmed the binding of pSTAT4 within the promoter of AQP5 inhibiting AQP5 transcription. GPX4 downregulation accumulates intracellular lipid ROS in SGECs. Lipid ROS inhibitor ferrostatin-1 treatment during in vitro and in vivo studies confirmed that lipid ROS activates STAT4 phosphorylation and nuclear translocation in SGECs. In summary, the downregulated GPX4 in SGECs contributes to salivary secretion dysfunction in SS via the lipid ROS/pSTAT4/AQP5 axis. This study unraveled novel targets to revitalize the salivary secretion function in SS patients.


Subject(s)
Aquaporin 5 , Epithelial Cells , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species , STAT4 Transcription Factor , Salivary Glands , Sjogren's Syndrome , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/genetics , Sjogren's Syndrome/pathology , Animals , Humans , Mice , Salivary Glands/metabolism , Salivary Glands/pathology , Aquaporin 5/metabolism , Aquaporin 5/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Reactive Oxygen Species/metabolism , STAT4 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , Disease Models, Animal , Female , Down-Regulation , Male , Signal Transduction , Gene Expression Regulation , Ferroptosis/genetics , Saliva/metabolism , Middle Aged
8.
Bull Entomol Res ; 114(2): 210-229, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38444234

ABSTRACT

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the key vector insect transmitting the Candidatus Liberibacter asiaticus (CLas) bacterium that causes the devastating citrus greening disease (Huanglongbing, HLB) worldwide. The D. citri salivary glands (SG) exhibit an important barrier against the transmission of HLB pathogen. However, knowledge on the molecular mechanism of SG defence against CLas infection is still limited. In the present study, we compared the SG transcriptomic response of CLas-free and CLas-infected D. citri using an illumine paired-end RNA sequencing. In total of 861 differentially expressed genes (DEGs) in the SG upon CLas infection, including 202 upregulated DEGs and 659 downregulated DEGs were identified. Functional annotation analysis showed that most of the DEGs were associated with cellular processes, metabolic processes, and the immune response. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses revealed that these DEGs were enriched in pathways involving carbohydrate metabolism, amino acid metabolism, the immune system, the digestive system, the lysosome, and endocytosis. A total of 16 DEGs were randomly selected to further validate the accuracy of RNA-Seq dataset by reverse-transcription quantitative polymerase chain reaction. This study provides substantial transcriptomic information regarding the SG of D. citri in response to CLas infection, which may shed light on the molecular interaction between D. citri and CLas, and provides new ideas for the prevention and control of citrus psyllid.


Subject(s)
Hemiptera , Salivary Glands , Transcriptome , Animals , Hemiptera/microbiology , Hemiptera/genetics , Salivary Glands/microbiology , Salivary Glands/metabolism , Plant Diseases/microbiology , Citrus/microbiology , Liberibacter
9.
Chem Biodivers ; 21(5): e202301959, 2024 May.
Article in English | MEDLINE | ID: mdl-38469951

ABSTRACT

This study aimed to explore the potential protective impacts of Moringa oleifera extract on major alteration in salivary glands of rats exposed to sodium valproate (VA). Groups were defined as control, control+moringa extract, sodium valproate, and sodium valproate+moringa extract. Antioxidant and oxidant status, activities of digestive and metabolic enzymes were examined. VA treatment led to various biochemical changes in the salivary glands, including decreased levels of antioxidants like glutathione, glutathione-S-transferase, and superoxide dismutase (except for sublingual superoxide dismutase). Conversely, a decrease in alpha-amylase, alkaline and acid phosphatase, lactate dehydrogenase, protease, and maltase activities were observed. The study also demonstrated that VA induces oxidative stress, increases lipid peroxidation, sialic acid, and nitric oxide levels in the salivary glands. Total oxidant capacity was raised in all glands except in the sublingual gland. The electrophoretic patterns of proteins were similar. Moringa oleifera extract exhibited protective properties, reversing these VA-induced biochemical changes due to its antioxidant and therapeutic attributes. This research suggests that moringa extract might serve as an alternative treatment approach for individuals using VA and experiencing salivary gland issues, although further research is necessary to confirm these findings in human subjects.


Subject(s)
Antioxidants , Moringa oleifera , Plant Extracts , Salivary Glands , Valproic Acid , Moringa oleifera/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rats , Salivary Glands/drug effects , Salivary Glands/metabolism , Valproic Acid/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Male , Oxidative Stress/drug effects , Rats, Wistar , Lipid Peroxidation/drug effects
10.
Sci Rep ; 14(1): 6225, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486094

ABSTRACT

Saliva, an oral secretion primarily originating from salivary glands (SGs), exert critical roles in the ongoing evolutionary interaction between insects and plants. However, identifying insect salivary components poses challenges due to the tiny size of insects, low secretion amounts, and the propensity for degradation after secretion. In this study, we developed a transcriptome-based approach to comprehensively analyze the salivary proteins of the short-headed planthopper, Epeurysa nawaii, a species with unique feeding habits on bamboo. A total of 165 salivary proteins were identified, with 114 secretory genes highly and specifically expressed in SGs. Consistent with most phloem-feeding insects, digestive enzymes, calcium-binding proteins, oxidoreductases, and a few previously reported salivary effectors were ubiquitously distributed in E. nawaii saliva. However, we also identified a substantial portion of salivary proteins exhibiting taxonomy specificity, including 60 E. nawaii-specific and 62 Delphacidae-specific proteins. These taxonomy-restricted proteins potentially play a role in insect adaptation to specific host plants. Our study provides an efficient pipeline for salivary protein identification and serves as a valuable resource for the functional characterization of effectors.


Subject(s)
Hemiptera , Salivary Glands , Animals , Salivary Glands/metabolism , Saliva/metabolism , Hemiptera/metabolism , Transcriptome , Salivary Proteins and Peptides/metabolism , Insect Proteins/metabolism
11.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542233

ABSTRACT

Primary Sjögren's disease is primarily driven by B-cell activation and is associated with a high risk of developing non-Hodgkin's lymphoma (NHL). Over the last few decades, microRNA-155 (miR-155) has arisen as a key regulator of B-cells. Nevertheless, its role in primary Sjögren's disease remains elusive. Thus, the purpose of this study was (i) to explore miR-155, B-cell activating factor (BAFF)-receptor (BAFF-R), and Interleukin 6 receptor (IL-6R) expression in the labial salivary glands (LSG) of patients with primary Sjögren's disease, aiming to identify potential B-cell activation biomarkers related to NHL development. Twenty-four patients with primary Sjögren's disease, and with available tissue blocks from a LSG biopsy performed at diagnosis, were enrolled. Among them, five patients developed B-cell NHL during follow-up (7.3 ± 3.1 years). A comparison group of 20 individuals with sicca disease was included. Clinical and laboratory parameters were recorded and the LSG biopsies were evaluated to assess local inflammation in terms of miR-155/BAFF-R and IL-6R expression. Stratifying the primary Sjögren's disease cohort according to lymphomagenesis, miR-155 was upregulated in primary Sjögren's disease patients who experienced NHL, more so than those who did not experience NHL. Moreover, miR-155 expression correlated with the focus score (FS), as well as BAFF-R and IL-6R expression, which were increased in primary Sjögren's disease patients and in turn related to neoplastic evolution. In conclusion, epigenetic modulation may play a crucial role in the aberrant activation of B-cells in primary Sjögren's disease, profoundly impacting the risk of NHL development.


Subject(s)
Lymphoma, Non-Hodgkin , MicroRNAs , Sjogren's Syndrome , Humans , Salivary Glands/metabolism , Sjogren's Syndrome/diagnosis , Salivary Glands, Minor/pathology , Lymphoma, Non-Hodgkin/genetics , Lymphoma, Non-Hodgkin/complications , Biomarkers/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
12.
Cancer Treat Rev ; 124: 102697, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401478

ABSTRACT

Salivary Gland carcinomas (SGCs) are rare tumors accounting for less than 1% of all cancers with 21 histologically diverse subtypes. The rarity of the disease presents a challenge for clinicians to conduct large size randomized controlled trials. Surgery and radiotherapy remain the only curative treatment for localized disease, whereas treatments for recurrent and metastatic disease remain more challenging with very disappointing results for chemotherapy. The different histological subtypes harbor various genetic alterations, some pathognomonic with a diagnostic impact for pathologists in confirming a difficult diagnosis and others with therapeutic implications regardless of the histologic subtype. Current international guidelines urge pathologists to identify androgen receptor status, HER-2 expression that could be determined by immunohistochemistry, and TRK status in patients with non-adenoid cystic salivary gland carcinoma that are eligible to initiate a systemic treatment, in order to offer them available targeted therapies or refer them to clinical trials based on their mutational profile. A more advanced molecular profiling by next generation sequencing would offer a larger panel of molecular alterations with possible therapeutic implications such as NOTCH, PI3K, BRAF, MYB, and EGFR. In the following review, we present the most common genetic alterations in SGCs as well as actionable mutations with the latest available data on therapeutic options and upcoming clinical trials.


Subject(s)
Carcinoma , Salivary Gland Neoplasms , Humans , Oncogenes , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/therapy , Salivary Gland Neoplasms/metabolism , Mutation , Salivary Glands/metabolism , Salivary Glands/pathology
13.
Head Neck Pathol ; 18(1): 12, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393615

ABSTRACT

BACKGROUND: Salivary gland carcinomas (SGCs) are a rare group of malignant neoplasms of the head and neck region. MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been associated with the control biological process and oncogenic mechanism by the regulation of gene expression at the post-transcriptional level. Recent evidence has suggested that miRNA expression may play a role in the tumorigenesis and carcinogenesis process in SGCs. METHODS: This review provides a comprehensive literature review of the role of miRNAs expression in SGCs focusing on the diagnostic, prognostic, and therapeutic applications. RESULTS: In this review, numerous dysregulated miRNAs have demonstrated an oncogenic and suppressor role in SGCs. CONCLUSION: In the future, these miRNAs may eventually constitute useful diagnostic and prognostic biomarkers that may lead to a better understanding of SGCs oncogenesis. Additionally, the development of therapeutic agents based on miRNAs may be a promising target in SGC treatment.


Subject(s)
Carcinoma , MicroRNAs , Salivary Gland Neoplasms , Humans , MicroRNAs/genetics , Biomarkers , Salivary Gland Neoplasms/pathology , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Prognosis , Salivary Glands/metabolism , Biomarkers, Tumor/genetics
14.
Eur J Oral Sci ; 132(2): e12969, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38192116

ABSTRACT

The exocrine salivary gland secretes saliva, a fundamental body component to maintain oral homeostasis. Saliva is composed of water, ions, and proteins such as amylase, mucins, and immunoglobulins that play essential roles in the digestion of food, lubrication, and prevention of dental caries and periodontitis. An increasing number of people experience saliva hyposecretion due to aging, medications, Sjögren's syndrome, and radiation therapy for head and neck cancer. However, current treatments are mostly limited to temporary symptomatic relief. This review explores the molecular mechanisms underlying saliva secretion and hyposecretion to provide insight into putative therapeutic targets for treatment. Proteins implicated in saliva secretion pathways, including Ca2+ -signaling proteins, aquaporins, soluble N-ethylmaleimide-sensitive factor attachment protein receptors, and tight junctions, are aberrantly expressed and localized in patients with saliva hyposecretion, such as Sjögren's syndrome. Analysis of studies on the mechanisms of saliva secretion and hyposecretion suggests that crosstalk between fluid and protein secretory pathways via Ca2+ /protein kinase C and cAMP/protein kinase A regulates saliva secretion. Impaired crosstalk between the two secretory pathways may contribute to saliva hyposecretion. Future research into the detailed regulatory mechanisms of saliva secretion and hyposecretion may provide information to define novel targets and generate therapeutic strategies for saliva hyposecretion.


Subject(s)
Dental Caries , Sjogren's Syndrome , Xerostomia , Humans , Saliva/metabolism , Salivary Glands/metabolism
15.
Hum Pathol ; 145: 42-47, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262580

ABSTRACT

GATA3 is the most used marker to determine tumors' breast origin, but its diagnostic value in triple-negative breast cancer (TNBC) is limited. The newly identified TRPS1 is highly sensitive and specific for breast carcinoma, especially TNBC. Here, we compared the utility of TRPS1 and GATA3 expression in a subset of salivary gland-type breast tumors (including adenoid cystic, acinic cell, and secretory carcinomas [AdCC, ACC, and SC, respectively]), and we compared TRPS1 and GATA3 expression of such tumors with head and neck (H&N) and AdCC of upper respiratory tumors. TRPS1 was strongly expressed in basaloid TNBC and AdCCs with solid components, including 100 % of mixed and solid breast AdCCs. However, TRPS1 was positive in only 50 % cribriform AdCCs. Expression patterns of TRPS1 in H&N and upper respiratory AdCC were similar. TRPS1 was positive in 30 % of H&N cribriform AdCCs but was strongly expressed in mixed AdCC (67 %) and solid AdCC (100 %). In the upper respiratory AdCCs, TRPS1 was positive in 58.4 % of cribriform AdCCs and positive in 100 % of AdCCs with solid components. On the contrary, GATA3 was negative in predominant AdCCs of the breast, H&N, and upper respiratory tract. These data show that GATA3 and TRPS1 expression varies AdCCs. In addition, TRPS1 and GATA3 expression patterns were similar SC and ACC of breast and H&N. Both markers were positive in SC and negative in ACC. Therefore, TRPS1 and GATA3 cannot be used to differentiate salivary gland-type carcinomas of breast origin from those of upper respiratory or H&N origin.


Subject(s)
Adenoids , Breast Neoplasms , Carcinoma, Acinar Cell , Carcinoma, Adenoid Cystic , Carcinoma , Fingers , Hair Diseases , Langer-Giedion Syndrome , Nose , Salivary Gland Neoplasms , Triple Negative Breast Neoplasms , Female , Humans , Adenoids/metabolism , Adenoids/pathology , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Carcinoma, Adenoid Cystic/pathology , Fingers/abnormalities , GATA3 Transcription Factor , Nose/abnormalities , Repressor Proteins , Salivary Gland Neoplasms/pathology , Salivary Glands/metabolism , Salivary Glands/pathology , Triple Negative Breast Neoplasms/pathology
16.
Jpn J Clin Oncol ; 54(4): 434-443, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38231777

ABSTRACT

BACKGROUND: HER2-expressing salivary gland carcinoma (SGC) is associated with poor prognosis. Trastuzumab deruxtecan (T-DXd, DS-8201) has shown evidence of antitumor activity for several HER2-expressing solid tumors in multiple studies. This study aimed to present the efficacy and safety of T-DXd in patients with HER2-expressing SGC from a pooled analysis. METHODS: Patients with HER2-expressing SGC were pooled from two phase I, open-label studies of T-DXd: a two-phase, multiple-dose, first-in-human study (NCT02564900) and a single-sequence crossover drug-drug interaction study (NCT03383692). Endpoints included efficacy (objective response rate [ORR], duration of response [DoR] and progression-free survival [PFS]) and safety. RESULTS: This pooled analysis included 17 patients with SGC (median age: 57 years; male: 88.2%); median (range) follow-up duration was 12.0 (2.3-|34.8) months. Among these patients, 14 had received prior HER2-targeted agents and 13 had undergone prior radiotherapy. The investigator-assessed confirmed ORR was 58.8% (95% confidence interval [CI], 32.9-|81.6). The median (95% CI) DoR and PFS were 17.6 months (4.0 to not evaluable [NE]) and 20.5 months (11.1-NE), respectively. All 17 patients reported treatment-emergent adverse events (TEAEs); 76.5% reported TEAEs of grade ≥3. The most common TEAEs were decreased appetite (94.1%), nausea (88.2%) and neutrophil count decreased (76.5%). Of the 17 patients, five (29.4%) reported adjudicated drug-related interstitial lung disease (grade 1, n = 3; grade 2, n =1; grade 3, n = 1). CONCLUSION: The results of this pooled analysis provide evidence that clinical benefit is achievable with T-DXd in patients with HER2-expressing SGC. CLINICAL TRIAL INFORMATION: FIH study, NCT02564900; DDI study, NCT03383692.


Subject(s)
Camptothecin , Carcinoma , Immunoconjugates , Trastuzumab , Humans , Male , Middle Aged , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Camptothecin/therapeutic use , Camptothecin/analogs & derivatives , Carcinoma/drug therapy , Immunoconjugates/adverse effects , Immunoconjugates/therapeutic use , Receptor, ErbB-2/metabolism , Salivary Glands/metabolism , Trastuzumab/adverse effects , Trastuzumab/therapeutic use , Female
17.
Biol Pharm Bull ; 47(1): 138-144, 2024.
Article in English | MEDLINE | ID: mdl-38171773

ABSTRACT

Sjögren's syndrome (SS) is an autoimmune disorder characterized by oral dryness that is primarily attributed to tumor necrosis factor alpha (TNF-α)-mediated reduction in saliva production. In traditional Chinese medicine, goji berries are recognized for their hydrating effect and are considered suitable to address oral dryness associated with Yin deficiency. In the present study, we used goji berry juice (GBJ) to investigate the potential preventive effect of goji berries on oral dryness caused by SS. Pretreatment of human salivary gland cells with GBJ effectively prevented the decrease in aquaporin-5 (AQP-5) mRNA and protein levels induced by TNF-α. GBJ also inhibited histone H4 deacetylation and suppressed the generation of intracellular reactive oxygen species (ROS). Furthermore, GBJ pretreatment reserved mitochondrial membrane potential and suppressed the upregulation of Bax and caspase-3, indicating that GBJ exerted an antiapoptotic effect. These findings suggest that GBJ provides protection against TNF-α in human salivary gland cells and prevents the reduction of AQP-5 expression on the cell membrane. Altogether, these results highlight the potential role of GBJ in preventing oral dryness caused by SS.


Subject(s)
Lycium , Sjogren's Syndrome , Xerostomia , Humans , Tumor Necrosis Factor-alpha/metabolism , Lycium/metabolism , Salivary Glands/metabolism , Salivary Glands/pathology , Xerostomia/chemically induced , Xerostomia/prevention & control , Xerostomia/complications , Sjogren's Syndrome/complications , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/pathology , Aquaporin 5/genetics
18.
Am J Physiol Cell Physiol ; 326(3): C742-C748, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38284125

ABSTRACT

The key role of CFTR in secretory epithelia has been extensively documented. Additionally, CFTR plays a significant role in ion absorption in exocrine glands, including salivary and sweat glands. Most of the knowledge about CFTR expression comes from animal models such as the mouse or the rat, but there is limited information about CFTR expression in human tissues. In the present study, we assessed the expression of CFTR in human submandibular and parotid glands. Consistent with findings in rodent salivary glands, our immunolocalization studies show that CFTR is expressed in duct cells. However, CFTR expression in human salivary glands differs from that in rodents, as immunolocalization and single-cell RNA sequencing analysis from a previous study performed in the human parotid gland revealed the presence of CFTR protein and transcripts within a distinct cell cluster. Based on cell marker expression, this cluster corresponds to acinar cells. To obtain functional evidence supporting CFTR expression, we isolated human parotid acinar cells through collagenase digestion. Acinar cells displayed an anion conductance that was activated in response to cAMP-increasing agents and was effectively blocked by CFTRInh172, a known CFTR blocker. This study provides novel evidence of CFTR expression within acinar cells of human salivary glands. This finding challenges the established model positioning CFTR exclusively in duct cells from exocrine glands.NEW & NOTEWORTHY This study addresses the uncertainty about the impact of CFTR on human salivary gland function. We found CFTR transcripts in a subset of duct cells known as ionocytes, as well as in acinar cells. Isolated human parotid acinar cells exhibited Cl- conductance consistent with CFTR activity. This marks the first documented evidence of functional CFTR expression in human salivary gland acinar cells.


Subject(s)
Acinar Cells , Cystic Fibrosis Transmembrane Conductance Regulator , Humans , Rats , Mice , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Salivary Glands/metabolism , Submandibular Gland/metabolism , Parotid Gland/metabolism
19.
J Oral Pathol Med ; 53(2): 150-158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38291254

ABSTRACT

BACKGROUND: Psychological stress is associated with changes in salivary flow and composition. However, studies to show the effect of psychological stress on the transcriptome of the salivary gland are limited. This study aims to perform a transcriptomic analysis of the submandibular gland under psychological stress using a chronic restraint stress model of rats. METHODS: Sprague-Dawley rats were divided into stress groups and control groups. Psychological stress was induced in the stress group rats by enclosing them in a plastic tube for 4 h daily over 6 weeks. RNA sequencing was performed on RNA extracted from the submandibular gland. The differentially expressed genes were identified, and the genes of interest were further validated using qRT-PCR, immunofluorescence, and western blot. RESULTS: A comparison between control and stress groups showed 45 differentially expressed genes. The top five altered genes in RNA sequencing data showed similar gene expression in qRT-PCR validation. The most downregulated gene in the stress group, FosB, was a gene of interest and was further validated for its protein-level expression using immunofluorescence and western blot. The genesets for gene ontology cellular component, molecular function, and KEGG showed that pathways related to ribosome biosynthesis and function were downregulated in the stress group compared to the control. CONCLUSION: Psychological stress showed transcriptomic alteration in the submandibular gland. The findings may be important in understanding stress-related oral diseases.


Subject(s)
Salivary Glands , Submandibular Gland , Rats , Animals , Rats, Sprague-Dawley , Salivary Glands/metabolism , Gene Expression Profiling , RNA/metabolism
20.
Article in English | MEDLINE | ID: mdl-38091970

ABSTRACT

INTRODUCTION: Due to the rarity and various histological types, a standard chemotherapy regimen for recurrent or metastatic salivary gland carcinoma (SGC) has not been established. Molecular-targeted therapy is a novel cancer therapy based on the expression of target molecules. However, few molecular-targeted therapy types have shown satisfactory efficacy for patients with SGC. Our study described promising results of epidermal growth factor receptor (EGFR)-targeting therapy with paclitaxel in patients with SGC. METHODS: The medical records of patients with recurrent SGC treated with weekly cetuximab combined with paclitaxel (Cmab-PTX) between December 2017 and December 2022 at our institutions were retrospectively analyzed. RESULTS: Seven patients with SGC received Cmab-PTX therapy. The median age was 76 years. All patients were high-grade histological types, and EGFR expression was positive in all examined patients. Cmab-PTX was administered for a median period of 20 months (range of 2-36 months). The overall responses were three with complete response, two with partial response, one with stable disease (>24 weeks), and one with progressive disease. The objective response and disease control rates were 71.4% and 85.7%, respectively. Progression-free survival ranged between 2 and 36 months (median 12 months), whereas overall survival ranged between 4 and 111 months (median 36 months). One patient experienced a grade 4 adverse event (neutropenia), which was conservatively manageable. CONCLUSION: Although the treatment sensitivity of SGC with high-grade histological types is usually poor, Cmab-PTX could be a promising treatment regimen for recurrent SGC. Due to the rarity and various histological types, a standard chemotherapy regimen for recurrent or metastatic salivary gland carcinoma (SGC) has not been established. Molecular-targeted therapy is a novel cancer therapy based on the expression of target molecules. However, few molecular-targeted therapy types have shown satisfactory efficacy in patients with SGC. Our study described promising results of cetuximab (Cmab), epidermal growth factor receptor (EGFR)-targeting therapy with paclitaxel (PTX) in patients with SGC. Seven patients with SGC received Cmab-PTX therapy. The median age was 76 years. All patients were high-grade histological types, and EGFR expression was positive in all examined patients. Cmab-PTX was administered for a median period of 20 months. The overall responses were three with complete response, two with partial response, one with stable disease (>24 weeks), and one with progressive disease. The objective response rate was 71.4%. Progression-free survival ranged between 2 and 36 months (median 12 months), whereas overall survival ranged between 4 and 111 months (median 36 months). One patient experienced a grade 4 adverse event (neutropenia), which was conservatively manageable. Our study revealed a preferable objective response rate of Cmab-PTX for patients with high-grade SGC. Although the treatment sensitivity of SGC with high-grade histological types is usually poor, Cmab-PTX could be a promising treatment regimen for recurrent SGC.


Subject(s)
Carcinoma , Neutropenia , Salivary Gland Neoplasms , Humans , Aged , Cetuximab/therapeutic use , Paclitaxel/therapeutic use , Retrospective Studies , Neoplasm Recurrence, Local/drug therapy , Salivary Gland Neoplasms/drug therapy , ErbB Receptors/metabolism , Salivary Glands/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...