Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 9845, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684750

ABSTRACT

Fixed dose combinations (FDCs) incorporating two or three medicines in a single inhaler have been created to enhance patient compliance and hence clinical outcomes. However, the development of dry powder inhalers (DPIs), particularly for FDCs, faces challenges pertinent to formulation uniformity and reproducibility. Therefore, this project aimed to employ nanotechnology to develop a FDC of DPIs for market-leading medicines-fluticasone propionate (FP) and salmeterol xinafoate (SAL)-for asthma management. Nanoaggregates were prepared using a novel biocompatible and biodegradable poly(ester amide) based on the amino acid tyrosine, utilising a one-step interfacial polymerisation process. The produced tyrosine poly (ester amide) drug-loaded nanoparticles were evaluated for content uniformity, PSA, FTIR, TEM, DSC, XRD and aerodynamic performance (in vitro and in vivo). The optimised formulation demonstrated high entrapment efficiency- > 90%. The aerodynamic performance in terms of the emitted dose, fine particle fraction and respirable dose was superior to the carrier-based marketed product. In-vivo studies showed that FP (above the marketed formulation) and SAL reached the lungs of mice in a reproducible manner. These results highlight the superiority of novel FDC FP/SAL nanoparticles prepared via a one-step process, which can be used as a cost-effective and efficient method to alleviate the burden of asthma.


Subject(s)
Nanoparticles , Tyrosine , Animals , Nanoparticles/chemistry , Tyrosine/chemistry , Tyrosine/analogs & derivatives , Administration, Inhalation , Lung/metabolism , Lung/drug effects , Mice , Asthma/drug therapy , Polyesters/chemistry , Polyesters/chemical synthesis , Dry Powder Inhalers , Fluticasone/chemistry , Fluticasone/administration & dosage , Drug Delivery Systems , Salmeterol Xinafoate/chemistry , Salmeterol Xinafoate/administration & dosage , Particle Size , Drug Carriers/chemistry
2.
Int J Pharm ; 656: 124116, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38615803

ABSTRACT

Inhalation of pharmaceutical aerosol formulations is widely used to treat respiratory diseases. Spatially resolved thermal characterization offers promise for better understanding drug release rates from particles; however, this has been an analytical challenge due to the small particle size (from a few micrometers down to nanometers) and the complex composition of the formulations. Here, we employ nano-thermal analysis (nanoTA) to probe the nanothermal domain of a pharmaceutical aerosol formulation containing a mixture of fluticasone propionate (FP), salmeterol xinafoate (SX), and excipient lactose, which is widely used to treat asthma and chronic obstructive pulmonary disease (COPD). Furthermore, atomic force microscopy-infrared spectroscopy (AFM-IR) and AFM force measurements are performed to provide nanochemical and nanomechanical information to complement the nanothermal data. The colocalized thermal and chemical mapping clearly reveals the surface heterogeneity of the drugs in the aerosol particles and demonstrates the contribution of the surface chemical composition to the variation in the thermal properties of the particles. We present a powerful analytical approach for in-depth characterization of thermal/chemical/morphological properties of dry powder inhaler particles at micro- and nanometer scales. This approach can be used to facilitate the comparison between generics and reference inhalation products and further the development of high-performance pharmaceutical formulations.


Subject(s)
Aerosols , Dry Powder Inhalers , Fluticasone , Lactose , Microscopy, Atomic Force , Particle Size , Powders , Salmeterol Xinafoate , Fluticasone/chemistry , Fluticasone/administration & dosage , Salmeterol Xinafoate/chemistry , Salmeterol Xinafoate/administration & dosage , Lactose/chemistry , Microscopy, Atomic Force/methods , Excipients/chemistry , Administration, Inhalation , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/chemistry , Spectrophotometry, Infrared/methods , Chemistry, Pharmaceutical/methods , Surface Properties
3.
Int J Pharm ; 632: 122563, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36586629

ABSTRACT

The aim of this research was to chemically analyse the distribution of drugs and excipients in pharmaceutical dry powder inhalation (DPI) aerosol particles of various sizes in solid state. The conventional wet assay of the chemical composition of particles after collection in a cascade impactor lacks the capability to differentiate spatially resolved morphology and chemical composition of particles in complex DPI formulations. In this proof-of-concept study, we aim to demonstrate the feasibility of using optical photothermal infrared spectroscopy (O-PTIR) to characterize micro- to nano-scale chemical composition of size-segregated particles of pharmaceutical DPI formulations. These formulations were prepared by spray drying a solution or a suspension comprising an inhaled corticosteroid fluticasone propionate, a long-acting ß2-agonist salmeterol xinafoate, and excipient lactose. The active ingredients fluticasone propionate and salmeterol xinafoate are widely used for the treatment of asthma and chronic obstructive pulmonary disease. Spatially resolved O-PTIR spectra acquired from the particles collected from stages 1-7 of a Next Generation Impactor (NGI) for both formulations confirmed the presence of peaks related to fluticasone propionate (1746 cm-1, 1702 cm-1, 1661 cm-1 and 1612 cm-1), salmeterol xinafoate (1582 cm-1), and lactose (1080 cm-1). There was no significant difference in the drug to lactose peak ratio among various size fractions of particles spray dried from solution indicating a homogeneity in drug and lactose content in the aerosol formulation. In contrast, the suspension-spray dried formulation showed the drug content increased while the lactose content decreased in the particles collected down the NGI from stage 1 to stage 7, indicating heterogeneity in the ratio of drug-excipient distribution. The qualitative chemical compositions from O-PTIR were comparable to conventional wet chemical assays of various size fractions, indicating the suitability of O-PTIR to serve as a valuable analytical platform for screening the physicochemical properties of DPIs in solid state.


Subject(s)
Excipients , Lactose , Powders/chemistry , Excipients/chemistry , Lactose/chemistry , Chemistry, Pharmaceutical/methods , Respiratory Aerosols and Droplets , Fluticasone/chemistry , Salmeterol Xinafoate/chemistry , Administration, Inhalation , Spectrum Analysis , Aerosols/chemistry , Particle Size , Dry Powder Inhalers/methods
4.
Molecules ; 27(11)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35684555

ABSTRACT

The rational preparation of molecularly imprinted polymers (MIPs) in order to have selective extraction of salmeterol xinafoate (SLX) from serum was studied. SLX is an acting ß-adrenergic receptor agonist used in the treatment of asthma and has an athletic performance-enhancing effect. Molecular dynamics were used for the simulation of the SLX-imprinted pre-polymerization system, to determine the stability of the system. The computational simulation showed that SLX as a template, 4-hydroxyethyl methacrylate (HEMA) as a monomer, and trimethylolpropane trimethacrylate (TRIM) as a crosslinker in mol ratio of 1:6:20 had the strongest interaction in terms of the radial distribution functional. To validate the computational result, four polymers were synthesized using the precipitation polymerization method, and MIP with composition and ratio corresponding with the system with the strongest interaction as an MD simulation result showed the best performance, with a recovery of 96.59 ± 2.24% of SLX in spiked serum and 92.25 ± 1.12% when SLX was spiked with another analogue structure. Compared with the standard solid phase extraction sorbent C-18, which had a recovery of 79.11 ± 2.96%, the MIP showed better performance. The harmony between the simulation and experimental results illustrates that the molecular dynamic simulations had a significant role in the study and development of the MIPs for analysis of SLX in biological fluid.


Subject(s)
Molecular Imprinting , Salmeterol Xinafoate/analysis , Molecular Dynamics Simulation , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Salmeterol Xinafoate/chemistry , Solid Phase Extraction/methods
5.
Mol Pharmacol ; 100(4): 406-427, 2021 10.
Article in English | MEDLINE | ID: mdl-34334369

ABSTRACT

The drugs salmeterol, formoterol, and salbutamol constitute the frontline treatment of asthma and other chronic pulmonary diseases. These drugs activate the ß2-adrenergic receptors (ß2-AR), a class A G protein-coupled receptor (GPCR), and differ significantly in their clinical onset and duration of actions. According to the microkinetic model, the long duration of action of salmeterol and formoterol compared with salbutamol were attributed, at least in part, to their high lipophilicity and increased local concentrations in the membrane near the receptor. However, the structural and molecular bases of how the lipophilic drugs reach the binding site of the receptor from the surrounding membrane remain unknown. Using a variety of classic and enhanced molecular dynamics simulation techniques, we investigated the membrane partitioning characteristics, binding, and unbinding mechanisms of the ligands. The obtained results offer remarkable insight into the functional role of membrane lipids in the ligand association process. Strikingly, salmeterol entered the binding site from the bilayer through transmembrane helices 1 and 7. The entry was preceded by membrane-facilitated rearrangement and presentation of its phenyl-alkoxy-alkyl tail as a passkey to an access route gated by F193, a residue known to be critical for salmeterol's affinity. Formoterol's access is through the aqueous path shared by other ß2-AR agents. We observed a novel secondary path for salbutamol that is distinct from its primary route. Our study offers a mechanistic description for the membrane-facilitated access and binding of ligands to a membrane protein and establishes a groundwork for recognizing membrane lipids as an integral component in the molecular recognition process. SIGNIFICANCE STATEMENT: The cell membrane's functional role behind the duration of action of long-acting ß2-adrenergic receptor (ß2-AR) agonists such as salmeterol has been a subject of debate for a long time. This study investigated the binding and unbinding mechanisms of the three commonly used ß2-AR agonists, salmeterol, formoterol, and salbutamol, using advanced simulation techniques. The obtained results offer unprecedented insights into the active role of membrane lipids in facilitating access and binding of the ligands, affecting the molecular recognition process and thus their pharmacology.


Subject(s)
Adrenergic beta-2 Receptor Agonists/chemistry , Adrenergic beta-2 Receptor Agonists/metabolism , Cell Membrane/metabolism , Molecular Docking Simulation/methods , Albuterol/chemistry , Albuterol/metabolism , Binding Sites/physiology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/metabolism , Formoterol Fumarate/chemistry , Formoterol Fumarate/metabolism , Humans , Protein Binding/physiology , Protein Structure, Secondary , Protein Structure, Tertiary , Salmeterol Xinafoate/chemistry , Salmeterol Xinafoate/metabolism
6.
Molecules ; 25(17)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32859128

ABSTRACT

Chitosan (CS) is a natural polysaccharide, widely studied in the past due to its unique properties such as biocompatibility, biodegradability and non-toxicity. Chemical modification of CS is an effective pathway to prepare new matrices with additional functional groups and improved properties, such as increment of hydrophilicity and swelling rate, for drug delivery purposes. In the present study, four derivatives of CS with trans-aconitic acid (t-Acon), succinic anhydride (Succ), 2-hydroxyethyl acrylate (2-HEA) and acrylic acid (AA) were prepared, and their successful grafting was confirmed by FTIR and 1H-NMR spectroscopies. Neat chitosan and its grafted derivatives were fabricated for the encapsulation of fluticasone propionate (FLU) and salmeterol xinafoate (SX) drugs, used for chronic obstructive pulmonary disease (COPD), via the ionotropic gelation technique. Scanning electron microscopy (SEM) micrographs demonstrated that round-shaped microparticles (MPs) were effectively prepared with average sizes ranging between 0.4 and 2.2 µm, as were measured by dynamic light scattering (DLS), while zeta potential verified in all cases their positive charged surface. FTIR spectroscopy showed that some interactions take place between the drugs and the polymeric matrices, while X-ray diffraction (XRD) patterns exhibited that both drugs were encapsulated in MPs' interior with a lower degree of crystallinity than the neat drugs. In vitro release studies of FLU and SX exposed a great amelioration in the drugs' dissolution profile from all modified CS's MPs, in comparison to those of neat drugs. The latter fact is attributed to the reduction in crystallinity of the active substances in the MPs' interior.


Subject(s)
Fluticasone , Salmeterol Xinafoate , Administration, Inhalation , Capsules , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Fluticasone/chemistry , Fluticasone/pharmacokinetics , Fluticasone/pharmacology , Humans , Particle Size , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Salmeterol Xinafoate/chemistry , Salmeterol Xinafoate/pharmacokinetics , Salmeterol Xinafoate/pharmacology
7.
Nat Chem Biol ; 16(7): 749-755, 2020 07.
Article in English | MEDLINE | ID: mdl-32483378

ABSTRACT

Most drugs acting on G-protein-coupled receptors target the orthosteric binding pocket where the native hormone or neurotransmitter binds. There is much interest in finding allosteric ligands for these targets because they modulate physiologic signaling and promise to be more selective than orthosteric ligands. Here we describe a newly developed allosteric modulator of the ß2-adrenergic receptor (ß2AR), AS408, that binds to the membrane-facing surface of transmembrane segments 3 and 5, as revealed by X-ray crystallography. AS408 disrupts a water-mediated polar network involving E1223.41 and the backbone carbonyls of V2065.45 and S2075.46. The AS408 binding site is adjacent to a previously identified molecular switch for ß2AR activation formed by I3.40, P5.50 and F6.44. The structure reveals how AS408 stabilizes the inactive conformation of this switch, thereby acting as a negative allosteric modulator for agonists and positive allosteric modulator for inverse agonists.


Subject(s)
Adrenergic beta-2 Receptor Agonists/chemistry , Adrenergic beta-Antagonists/chemistry , Alprenolol/chemistry , Norepinephrine/chemistry , Receptors, Adrenergic, beta-2/chemistry , Salmeterol Xinafoate/chemistry , Adrenergic beta-2 Receptor Agonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Allosteric Regulation , Allosteric Site , Alprenolol/pharmacology , HEK293 Cells , Humans , Kinetics , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Norepinephrine/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptors, Adrenergic, beta-2/metabolism , Salmeterol Xinafoate/pharmacology , Thermodynamics , Water/chemistry
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 217: 182-189, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30933783

ABSTRACT

A simple selective luminescent dependent approach was established for quantitation of two selective ß2 agonists namely; Fenoterol hydrobromide (FEN) and Salmeterol xinafoate (SAL). This approach utilizes the capability of the cited drugs to undergo a complexation reaction with Europium ion (Eu3+) in the presence of 1,10-phenanthroline as a co-ligand. The resultant complex leads to a hypersensitive transition and enhancement of the Eu3+ emission peak at 615nm (279nm excitation). Under the optimized conditions, the rectilinear concentration plots of both drugs were (70-1500ngmL-1) and (100-2000ngmL-1) with limit of quantitation 51.3 and 84.4ngmL-1 for FEN and SAL, respectively. The luminescence properties of the complex and its optimum formation conditions were carefully investigated according to the regulations of ICH and the method was successfully applied in plasma. The good accuracy and selectivity of the suggested method allowed extending the proposed protocol into stability study of the cited drugs.


Subject(s)
Europium/chemistry , Fenoterol/blood , Fenoterol/chemistry , Salmeterol Xinafoate/blood , Salmeterol Xinafoate/chemistry , Drug Stability , Humans
9.
J Pharm Sci ; 108(9): 2949-2963, 2019 09.
Article in English | MEDLINE | ID: mdl-31004652

ABSTRACT

The accumulation of electrostatic charge on drug particles and excipient powders arising from interparticulate collisions or contacts with other surfaces can lead to agglomeration and adhesion problems during the manufacturing process, filling, and delivery of dry powder inhaler (DPI) formulations. The objective of the study was to investigate the role of triboelectrification to better understand the influence of electrostatic charge on the performance of DPIs with 2 capsule-based dimensionally similar devices constructed with different materials. In addition, strategies to reduce electrostatic charge build up during the manufacturing process, and the processes involved in this phenomenon were investigated. Electrostatic charge measurements showed that there was a significant difference in electrostatic charge generated between tested formulations and devices. This affects particle detachment from carrier and thus significantly impacts aerosol performance. Conditioning fluticasone DPI capsules at defined temperature and humidity conditions reduced electrostatic charges acquired during manufacturing. Conditioning salmeterol DPI capsules at same conditions seemed disadvantageous for their aerosol performance because of increasing capillary forces and solid bridge formation caused by water absorption. Knowledge and understanding of the role of electrostatic forces in influencing DPI formulation performance was increased by these studies.


Subject(s)
Drug Packaging/instrumentation , Dry Powder Inhalers/instrumentation , Fluticasone/chemistry , Salmeterol Xinafoate/chemistry , Static Electricity , Acrylic Resins/chemistry , Administration, Inhalation , Aerosols , Butadienes/chemistry , Chemistry, Pharmaceutical , Drug Stability , Fluticasone/administration & dosage , Humidity , Particle Size , Polystyrenes/chemistry , Powders , Salmeterol Xinafoate/administration & dosage , Surface Properties , Temperature , Titanium/chemistry
10.
Pharm Res ; 36(1): 15, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30478630

ABSTRACT

PURPOSE: To measure the charge to mass (Q/M) ratios of the impactor stage masses (ISM) from commercial Flixotide™ 250 µg Evohaler, containing fluticasone propionate (FP), Serevent™ 25 µg Evohaler, containing salmeterol xinafoate (SX), and a combination Seretide™ 250/25 µg (FP/SX) Evohaler metered dose inhalers (MDIs). Measurements were performed with a purpose built bipolar charge measurement apparatus (bp-NGI) based on an electrostatic precipitator, which was directly connected below Stage 2 of a Next Generation Impactor (NGI). METHODS: Five successive shots of the respective MDIs were actuated through the bp-NGI. The whole ISM doses were electrostatically precipitated to determine their negative, positive and net Q/m ratios. RESULTS: The ISM doses collected in the bp-NGI were shown to be equivalent to those collected in a standard NGI. FP particles, actuated from Flixotide™ and Seretide™ MDIs, exhibited greater quantities of negatively charged particles than positive. However, the Q/m ratios of the positively charged particles were greater in magnitude. SX particles from Serevent™ exhibited a greater quantity of positively charged particles whereas SX aerosol particles from Seretide™ exhibited a greater quantity of negatively charged particles. The Q/m ratio of the negatively charged SX particles in Serevent™ was greater in magnitude than the positively charged particles. CONCLUSIONS: The bp-NGI was used to quantify the bipolar Q/m ratios of aerosol particles collected from the ISMs of commercial MDI products. The positive charge recorded for each of the three MDIs may have been enhanced by the presence of charged ice crystals formed from the propellant during the aerosolisation process.


Subject(s)
Aerosols/chemistry , Powders/chemistry , Suspensions/chemistry , Administration, Inhalation , Chemistry, Pharmaceutical/instrumentation , Equipment Design , Fluticasone/chemistry , Fluticasone-Salmeterol Drug Combination/chemistry , Metered Dose Inhalers , Particle Size , Salmeterol Xinafoate/chemistry , Static Electricity , Surface Properties , Technology, Pharmaceutical/instrumentation
11.
Nat Chem Biol ; 14(11): 1059-1066, 2018 11.
Article in English | MEDLINE | ID: mdl-30327561

ABSTRACT

Salmeterol is a partial agonist for the ß2 adrenergic receptor (ß2AR) and the first long-acting ß2AR agonist to be widely used clinically for the treatment of asthma and chronic obstructive pulmonary disease. Salmeterol's safety and mechanism of action have both been controversial. To understand its unusual pharmacological action and partial agonism, we obtained the crystal structure of salmeterol-bound ß2AR in complex with an active-state-stabilizing nanobody. The structure reveals the location of the salmeterol exosite, where sequence differences between ß1AR and ß2AR explain the high receptor-subtype selectivity. A structural comparison with the ß2AR bound to the full agonist epinephrine reveals differences in the hydrogen-bond network involving residues Ser2045.43 and Asn2936.55. Mutagenesis and biophysical studies suggested that these interactions lead to a distinct active-state conformation that is responsible for the partial efficacy of G-protein activation and the limited ß-arrestin recruitment for salmeterol.


Subject(s)
Adrenergic beta-2 Receptor Agonists/chemistry , Receptors, Adrenergic, beta-2/chemistry , Salmeterol Xinafoate/chemistry , Animals , Antibodies/chemistry , Asthma/drug therapy , Binding Sites , Computer Simulation , Crystallography, X-Ray , GTP-Binding Proteins/chemistry , Humans , Hydrogen Bonding , Ligands , Lipids/chemistry , Mutagenesis , Protein Binding , Protein Conformation , Pulmonary Disease, Chronic Obstructive/drug therapy , Signal Transduction , beta-Arrestins/chemistry
12.
Anal Chem ; 90(15): 8838-8844, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29956916

ABSTRACT

Raman spectroscopy is a powerful tool for investigating chemical composition. Coupling Raman spectroscopy with optical microscopy (Raman microspectroscopy) and optical trapping (Raman tweezers) allows microscopic length scales and, hence, femtolitre volumes to be probed. Raman microspectroscopy typically uses UV/visible excitation lasers, but many samples, including organic molecules and complex tissue samples, fluoresce strongly at these wavelengths. Here we report the development and application of dispersive Raman microspectroscopy designed around a near-infrared continuous wave 1064 nm excitation light source. We analyze microparticles (1-5 µm diameter) composed of polystyrene latex and from three real-world pressurized metered dose inhalers (pMDIs) used in the treatment of asthma: salmeterol xinafoate (Serevent), salbutamol sulfate (Salamol), and ciclesonide (Alvesco). For the first time, single particles are captured, optically levitated, and analyzed using the same 1064 nm laser, which permits a convenient nondestructive chemical analysis of the true aerosol phase. We show that particles exhibiting overwhelming fluorescence using a visible laser (514.5 nm) can be successfully analyzed with 1064 nm excitation, irrespective of sample composition and irradiation time. Spectra are acquired rapidly (1-5 min) with a wavelength resolution of 2 nm over a wide wavenumber range (500-3100 cm-1). This is despite the microscopic sample size and low Raman scattering efficiency at 1064 nm. Spectra of individual pMDI particles compare well to bulk samples, and the Serevent pMDI delivers the thermodynamically preferred crystal form of salmeterol xinafoate. 1064 nm dispersive Raman microspectroscopy is a promising technique that could see diverse applications for samples where fluorescence-free characterization is required with high spatial resolution.


Subject(s)
Albuterol/chemistry , Anti-Allergic Agents/chemistry , Bronchodilator Agents/chemistry , Optical Tweezers , Pregnenediones/chemistry , Salmeterol Xinafoate/chemistry , Spectrum Analysis, Raman/instrumentation , Aerosols/administration & dosage , Aerosols/chemistry , Albuterol/administration & dosage , Anti-Allergic Agents/administration & dosage , Asthma/drug therapy , Bronchodilator Agents/administration & dosage , Equipment Design , Fluorescence , Humans , Metered Dose Inhalers , Particle Size , Pregnenediones/administration & dosage , Salmeterol Xinafoate/administration & dosage
13.
Luminescence ; 33(5): 913-918, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29708303

ABSTRACT

Simple, precise and selective spectrofluorimetric technique was evolved for quantitation of selective ß2 agonist drug namely salmeterol xinafoate (SAL). Utilizing its phenolic nature, a method was described based on the reaction of the studied drug with ethyl acetoacetate (EAA) to yield extremely fluorescent coumarin product which can be detected at 480 nm (λex  = 420 nm). The procedure obeys Beer's law with a correlation coefficient of r = 0.9999 in the concentration range between 500 and 5000 ng ml-1 with and 177 ng ml-1 for limit of detection (LOD) and limit of quantification (LOQ), respectively. Diverse reaction variables influencing the firmness and formation of the coumarin product were accurately examined and modified to ensure greatest sensitivity of the procedure. The proposed technique was performed and examined according to the US Food and Drug Administration (FDA) guidelines for bio-analytical methods and was efficiently applied for quantitation of SAL in both pharmaceutical preparations (% recovery = 100.06 ± 1.07) and spiked human plasma (% recovery = 96.64-97.14 ± 1.01-1.52).


Subject(s)
Coumarins/chemistry , Fluorescent Dyes/chemistry , Salmeterol Xinafoate/analysis , Spectrometry, Fluorescence/methods , Acetoacetates/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Limit of Detection , Pharmaceutical Preparations , Reproducibility of Results , Salmeterol Xinafoate/blood , Salmeterol Xinafoate/chemistry , Solvents/chemistry , Sulfuric Acids/chemistry , Temperature , Time Factors
14.
J Pharm Biomed Anal ; 154: 102-107, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29544104

ABSTRACT

BACKGROUND: Salmeterol (a long acting beta2-agonist) is a chiral molecule. (RR)-salmeterol is responsible for pharmacological effect, but basic knowledge of enantioselective pulmonary pharmacodynamics and pharmacokinetics of salmeterol remains unknown. There are safety concerns with (S)-enantiomers of beta2-agonists, with suggestions that these enantiomers may increase bronchial hyperresponsivneness in asthma patients. METHODOLOGY: Horses (n = 12) received racemic (rac-) salmeterol 250 µg via inhalation. Enantioselective UPLC-MS/MS was used to determine (R)- and (S)-salmeterol concentrations in pulmonary epithelial lining fluid (PELF) sampled 2, 5, 10 and 15 min after administration, in central lung (endoscopic bronchial biopsy) and peripheral lung (percutaneous pulmonary biopsy) tissues (at 20 and 25 min respectively), and in plasma samples. RESULTS: Physiologically relevant tissue concentrations were found for both enantiomers, with median levels greater in central than peripheral lung (equivalent to 32 and 5 mM (R)-salmeterol for central and peripheral lung respectively). Levels in PELF decreased around 50% over 15 min and enantioselective distribution was observed in the central lung with levels of (R)-salmeterol around 30% higher than (S)-salmeterol. CONCLUSION: Salmeterol distribution is enantioselective in the central lung. This suggests duration of action is more likely associated with specific B2ADR localisation effects rather than non-specific physiochemical factors which would not be enantioselective.


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacokinetics , Receptors, Adrenergic, beta-2/metabolism , Salmeterol Xinafoate/pharmacokinetics , Tissue Distribution , Administration, Inhalation , Adrenergic beta-2 Receptor Agonists/administration & dosage , Adrenergic beta-2 Receptor Agonists/analysis , Adrenergic beta-2 Receptor Agonists/chemistry , Animals , Bronchoalveolar Lavage Fluid/chemistry , Chromatography, High Pressure Liquid/methods , Horses , Lung/metabolism , Models, Animal , Salmeterol Xinafoate/administration & dosage , Salmeterol Xinafoate/analysis , Salmeterol Xinafoate/chemistry , Stereoisomerism , Tandem Mass Spectrometry/methods , Time Factors
16.
Pharm Dev Technol ; 23(2): 158-166, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28612675

ABSTRACT

The aim of this study was to develop a novel fluticasone propionate (FP) and salmeterol xinafoate (SX)-loaded dry powder inhaler (DPI) system, which was composed of powder formulation and performance. The air flow resistances were determined with various types of DPI device, showing that the modified RS01 device gave the specific resistance similar to the commercial DPI device. The particle properties of FP, SX, and inhalation grade lactose particles, such as particle size, size distribution, and fine content, were assessed. Subsequently, the aerodynamic behaviors of the DPI powder formulations were evaluated by the in vitro deposition of drugs in the DPI products using Andersen cascade impactor. Amongst the DPI powder formulations tested, the formulation composed of FP, SX, Respitose® SV003, Respitose® SV010, and Respitose® ML006 at the weight ratio of 0.5/0.145/19/19/2 gave depositions, emitted dose, fine particle dose, fine particle fraction, and mass median aerodynamic diameter of drugs similar to the commercial product, suggesting that they had similar aerodynamic behaviors. Furthermore, it gave excellent content uniformity. Thus, this DPI using the modified RS01 device would be recommended as a candidate for FP and SX-loaded pharmaceutical DPI products.


Subject(s)
Capsules/chemistry , Fluticasone/chemistry , Powders/chemistry , Salmeterol Xinafoate/chemistry , Administration, Inhalation , Aerosols/chemistry , Chemistry, Pharmaceutical/methods , Dry Powder Inhalers/methods , Lactose/chemistry , Particle Size
17.
J Med Chem ; 60(16): 6867-6879, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28703592

ABSTRACT

To understand the relationship between structural properties of the ß2-adrenoceptor ligands and their interactions with membranes, we have investigated the location and distribution of five ß2 agonists with distinct clinical durations and onsets of action (indacaterol, two indacaterol analogues, salmeterol and formoterol) in monounsaturated model membranes using magic angle spinning NMR to measure these interactions through both 1H nuclear Overhauser enhancement (NOE) and paramagnetic relaxation enhancement (PRE) techniques. The hydrophilic aromatic groups of all five ß2 agonists show maximum distribution in the lipid/water interface, but distinct location and dynamic behavior were observed for the lipophilic aromatic rings. Our study elucidates at atomic level that the hydrophobicity and substitution geometry of lipophilic groups play important roles in compound-lipid interactions.


Subject(s)
Adrenergic beta-2 Receptor Agonists/chemistry , Liposomes/chemistry , Formoterol Fumarate/chemistry , Hydrophobic and Hydrophilic Interactions , Indans/chemistry , Ligands , Magnetic Resonance Spectroscopy , Phosphatidylcholines/chemistry , Quinolones/chemistry , Salmeterol Xinafoate/chemistry
18.
Int J Pharm ; 520(1-2): 59-69, 2017 Mar 30.
Article in English | MEDLINE | ID: mdl-28159683

ABSTRACT

Particle inhalation is an effective and rapid delivery method for a variety of pharmaceuticals, particularly bronchodilation drugs used for treating asthma and COPD. Conditions of relative humidity and temperature inside the lungs are generally very different from the outside ambient air, with the lung typically being warmer and more humid. Changes in humidity, from inhaler to lung, can cause hygroscopic phase transitions and particle growth. Increasing particle size and mass can negatively affect particle deposition within the lung leading to inefficient treatment, while deliquescence prior to impaction is liable to accelerate drug uptake. To better understand the hygroscopic properties of four pharmaceutical aerosol particles; pharmaceutical particles from four commercially available pressurised metered dose inhalers (pMDIs) were stably captured in an optical trap, and their composition was examined online via Raman spectroscopy. Micron-sized particles of salbutamol sulfate, salmeterol xinafoate, fluticasone propionate and ciclesonide were levitated and examined over a range of relative humidity values inside a chamber designed to mimic conditions within the respiratory tract. The effect of temperature upon hygroscopicity was also investigated for salbutamol sulfate particles. Salbutamol sulfate was found to have significant hygroscopicity, salmeterol xinafoate showed some hygroscopic interactions, whilst fluticasone propionate and ciclesonide revealed no observable hygroscopicity. Thermodynamic and structural modelling is used to explain the observed experimental results.


Subject(s)
Aerosols/chemistry , Spectrum Analysis, Raman , Wettability , Albuterol/chemistry , Fluticasone/chemistry , Humidity , Metered Dose Inhalers , Models, Structural , Particle Size , Pregnenediones/chemistry , Salmeterol Xinafoate/chemistry , Temperature
19.
J Pharm Sci ; 106(1): 313-321, 2017 01.
Article in English | MEDLINE | ID: mdl-27837967

ABSTRACT

Dry powder inhalers are increasingly popular for delivering drugs to the lungs for the treatment of respiratory diseases, but are complex products with multivariate performance determinants. Heuristic product development guided by in vitro aerosol performance testing is a costly and time-consuming process. This study investigated the feasibility of using artificial neural networks (ANNs) to predict fine particle fraction (FPF) based on formulation device variables. Thirty-one ANN architectures were evaluated for their ability to predict experimentally determined FPF for a self-consistent dataset containing salmeterol xinafoate and salbutamol sulfate dry powder inhalers (237 experimental observations). Principal component analysis was used to identify inputs that significantly affected FPF. Orthogonal arrays (OAs) were used to design ANN architectures, optimized using the Taguchi method. The primary OA ANN r2 values ranged between 0.46 and 0.90 and the secondary OA increased the r2 values (0.53-0.93). The optimum ANN (9-4-1 architecture, average r2 0.92 ± 0.02) included active pharmaceutical ingredient, formulation, and device inputs identified by principal component analysis, which reflected the recognized importance and interdependency of these factors for orally inhaled product performance. The Taguchi method was effective at identifying successful architecture with the potential for development as a useful generic inhaler ANN model, although this would require much larger datasets and more variable inputs.


Subject(s)
Albuterol/administration & dosage , Bronchodilator Agents/administration & dosage , Dry Powder Inhalers/methods , Neural Networks, Computer , Salmeterol Xinafoate/administration & dosage , Albuterol/chemistry , Bronchodilator Agents/chemistry , Particle Size , Powders , Principal Component Analysis , Salmeterol Xinafoate/chemistry
20.
J Pharm Sci ; 106(3): 882-891, 2017 03.
Article in English | MEDLINE | ID: mdl-27894968

ABSTRACT

Single crystals of salmeterol xinafoate (form I), prepared from slow cooled supersaturated propan-2-ol solutions, crystallize in a triclinic P1¯ symmetry with 2 closely related independent salt pairs within the asymmetric unit, with an approximately double-unit cell volume compared with the previously published crystal structure. Synthonic analysis of the bulk intermolecular packing confirms the similarity in packing energetics between the 2 salt pairs. The strongest synthons, as expected, are dominated by coulombic interactions. Morphologic prediction reveals a plate-like morphology, dominated by the {001}, {010}, and {100} surfaces, consistent with experimentally grown crystals. Although surface chemistry of the slow-growing {001} face comprises large sterically hindering phenyl groups, although weaker coulombic interactions still prevail from the alcohol group present on the phenyl and hydroxymethyl groups. The surface chemistry of the faster growing {010} and {100} faces are dominated by the significantly stronger cation/anion interactions occurring between the carboxylate and protonated secondary ammonium ion groups. The importance of understanding the cohesive and adhesive nature of the crystal surfaces of an active pharmaceutical ingredient, with respect to their interaction with other active pharmaceutical ingredient crystals and how that may affect formulation design, is highlighted.


Subject(s)
Salmeterol Xinafoate/chemistry , Salmeterol Xinafoate/metabolism , X-Ray Diffraction/methods , Bronchodilator Agents/chemistry , Bronchodilator Agents/metabolism , Crystallization/methods , Crystallography, X-Ray/methods , Energy Transfer/physiology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL