Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.278
Filter
1.
J Vet Sci ; 25(3): e39, 2024 May.
Article in English | MEDLINE | ID: mdl-38834509

ABSTRACT

IMPORTANCE: Salmonella outbreaks linked to poultry meat have been reported continuously worldwide. Therefore, Salmonella contamination of poultry meats in slaughterhouses is one of the critical control points for reducing disease outbreaks in humans. OBJECTIVE: This study examined the carry-over contamination of Salmonella species through the entire slaughtering process in South Korea. METHODS: From 2018 to 2019, 1,097 samples were collected from the nine slaughterhouses distributed nationwide. One hundred and seventeen isolates of Salmonella species were identified using the invA gene-specific polymerase chain reaction, as described previously. The serotype, phylogeny, and antimicrobial resistance of isolates were examined. RESULTS: Among the 117 isolates, 93 were serotyped into Salmonella Mbandaka (n = 36 isolates, 30.8%), Salmonella Thompson (n = 33, 28.2%), and Salmonella Infantis (n = 24, 20.5%). Interestingly, allelic profiling showed that all S. Mbandaka isolates belonged to the lineage of the sequence type (ST) 413, whereas all S. Thompson isolates were ST292. Moreover, almost all S. Thompson isolates (97.0%, 32/33 isolates) belonging to ST292 were multidrug-resistant and possessed the major virulence genes whose products are required for full virulence. Both serotypes were distributed widely throughout the slaughtering process. Pulsed-field gel electrophoretic analysis demonstrated that seven S. Infantis showed 100% identities in their phylogenetic relatedness, indicating that they were sequentially transmitted along the slaughtering processes. CONCLUSIONS AND RELEVANCE: This study provides more evidence of the carry-over transmission of Salmonella species during the slaughtering processes. ST292 S. Thompson is a potential pathogenic clone of Salmonella species possibly associated with foodborne outbreaks in South Korea.


Subject(s)
Abattoirs , Chickens , Salmonella , Animals , Republic of Korea/epidemiology , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Salmonella/physiology , Poultry Diseases/microbiology , Poultry Diseases/transmission , Poultry Diseases/epidemiology , Phylogeny , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/transmission , Salmonella Infections, Animal/epidemiology , Food Microbiology , Poultry/microbiology , Serogroup , Meat/microbiology
2.
Front Immunol ; 15: 1368545, 2024.
Article in English | MEDLINE | ID: mdl-38835764

ABSTRACT

There is a rapidly growing interest in how the avian intestine is affected by dietary components and feed additives. The paucity of physiologically relevant models has limited research in this field of poultry gut health and led to an over-reliance on the use of live birds for experiments. The development of complex 3D intestinal organoids or "mini-guts" has created ample opportunities for poultry research in this field. A major advantage of the floating chicken intestinal organoids is the combination of a complex cell system with an easily accessible apical-out orientation grown in a simple culture medium without an extracellular matrix. The objective was to investigate the impact of a commercial proprietary blend of organic acids and essential oils (OA+EO) on the innate immune responses and kinome of chicken intestinal organoids in a Salmonella challenge model. To mimic the in vivo prolonged exposure of the intestine to the product, the intestinal organoids were treated for 2 days with 0.5 or 0.25 mg/mL OA+EO and either uninfected or infected with Salmonella and bacterial load in the organoids was quantified at 3 hours post infection. The bacteria were also treated with OA+EO for 1 day prior to challenge of the organoids to mimic intestinal exposure. The treatment of the organoids with OA+EO resulted in a significant decrease in the bacterial load compared to untreated infected organoids. The expression of 88 innate immune genes was investigated using a high throughput qPCR array, measuring the expression of 88 innate immune genes. Salmonella invasion of the untreated intestinal organoids resulted in a significant increase in the expression of inflammatory cytokine and chemokines as well as genes involved in intracellular signaling. In contrast, when the organoids were treated with OA+EO and challenged with Salmonella, the inflammatory responses were significantly downregulated. The kinome array data suggested decreased phosphorylation elicited by the OA+EO with Salmonella in agreement with the gene expression data sets. This study demonstrates that the in vitro chicken intestinal organoids are a new tool to measure the effect of the feed additives in a bacterial challenge model by measuring innate immune and protein kinases responses.


Subject(s)
Animal Feed , Chickens , Intestines , Organoids , Animals , Intestines/immunology , Intestines/drug effects , Intestines/microbiology , Immunity, Innate , Oils, Volatile/pharmacology , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Poultry Diseases/microbiology , Poultry Diseases/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/drug effects
3.
BMC Vet Res ; 20(1): 179, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715123

ABSTRACT

Salmonella infections pose a significant threat to animal and human health. Phytochemicals present a potential alternative treatment. Galla chinensis tannic acid (GCTA), a hydrolyzable polyphenolic compound, inhibits bacterial growth and demonstrates potential as an alternative or supplement to antibiotics to prevent Salmonella infections. However, little is known about the antimicrobial mechanism of GCTA against Salmonella. Here, we revealed 456 differentially expressed proteins upon GCTA treatment, impacting pathways related to DNA replication, repair, genomic stability, cell wall biogenesis, and lipid metabolism using TMT-labeled proteomic analysis. TEM analysis suggested altered bacterial morphology and structure post-treatment. A Salmonella-infected-mouse model indicated that GCTA administration improved inflammatory markers, alleviated intestinal histopathological alterations, and reduced Salmonella enterica serovar Enteritidis (S. Enteritidis) colonization in the liver and spleen of Salmonella-infected mice. The LD50 of GCTA was 4100 mg/kg with an oral single dose, vastly exceeding the therapeutic dose. Thus, GCTA exhibited antibacterial and anti-infective activity against S. Enteritidis. Our results provided insight into the molecular mechanisms of these antibacterial effects, and highlights the potential of GCTA as an alternative to antibiotics.


Subject(s)
Proteomics , Salmonella Infections, Animal , Salmonella enteritidis , Tannins , Animals , Salmonella enteritidis/drug effects , Mice , Tannins/pharmacology , Tannins/therapeutic use , Salmonella Infections, Animal/drug therapy , Salmonella Infections, Animal/microbiology , Female , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Mice, Inbred BALB C , Drugs, Chinese Herbal , Polyphenols
4.
Environ Microbiol Rep ; 16(3): e13265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747207

ABSTRACT

Role of dust in Salmonella transmission on chicken farms is not well characterised. Salmonella Typhimurium (ST) infection of commercial layer chickens was investigated using a novel sprinkling method of chicken dust spiked with ST and the uptake compared to a conventional oral infection. While both inoculation methods resulted in colonisation of the intestines, the Salmonella load in liver samples was significantly higher at 7 dpi after exposing chicks to sprinkled dust compared to the oral infection group. Infection of chickens using the sprinkling method at a range of doses showed a threshold for colonisation of the gut and organs as low as 1000 CFU/g of dust. Caecal content microbiota analysis post-challenge showed that the profiles of chickens infected by the sprinkling and oral routes were not significantly different; however, both challenges induced differences when compared to the uninfected negative controls. Overall, the study showed that dust sprinkling was an effective way to experimentally colonise chickens with Salmonella and alter the gut microbiota than oral gavage at levels as low as 1000 CFU/g dust. This infection model mimics the field scenario of Salmonella infection in poultry sheds. The model can be used for future challenge studies for effective Salmonella control.


Subject(s)
Chickens , Dust , Gastrointestinal Microbiome , Poultry Diseases , Salmonella Infections, Animal , Salmonella typhimurium , Animals , Chickens/microbiology , Salmonella typhimurium/growth & development , Dust/analysis , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/prevention & control , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Cecum/microbiology , Liver/microbiology
5.
Vet Res ; 55(1): 66, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778424

ABSTRACT

The lasso peptide microcin Y (MccY) effectively inhibits various serotypes of Salmonella in vitro, but the antibacterial effect against S. Pullorum in poultry is still unclear. This study was the first to evaluate the safety and anti-S. Pullorum infection of MccY in specific pathogen-free (SPF) chicks. The safety test showed that the body weight, IgA and IgM levels of serum, and cecal microbiota structure of 3 groups of chicks orally administrated with different doses of MccY (5 mg/kg, 10 mg/kg, 20 mg/kg) for 14 days were not significantly different from those of the control group. Then, the chicks were randomized into 3 groups for the experiment of anti-S. Pullorum infection: (I) negative control group (NC), (II) S. Pullorum-challenged group (SP, 5 × 108 CFU/bird), (III) MccY-treated group (MccY, 20 mg/kg). The results indicated that compared to the SP group, treatment of MccY increased body weight and average daily gain (P < 0.05), reduced S. Pullorum burden in feces, liver, and cecum (P < 0.05), enhanced the thymus, and decreased the spleen and liver index (P < 0.05). Additionally, MccY increased the jejunal villus height, lowered the jejunal and ileal crypt depth (P < 0.05), and upregulated the expression of IL-4, IL-10, ZO-1 in the jejunum and ileum, as well as CLDN-1 in the jejunum (P < 0.05) compared to the SP group. Furthermore, MccY increased probiotic flora (Barnesiella, etc.), while decreasing (P < 0.05) the relative abundance of pathogenic flora (Escherichia and Salmonella, etc.) compared to the SP group.


Subject(s)
Bacteriocins , Chickens , Gastrointestinal Microbiome , Poultry Diseases , Salmonella Infections, Animal , Animals , Gastrointestinal Microbiome/drug effects , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Bacteriocins/administration & dosage , Bacteriocins/pharmacology , Administration, Oral , Salmonella/drug effects , Salmonella/physiology , Specific Pathogen-Free Organisms , Animal Feed/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Random Allocation , Intestinal Barrier Function
6.
PeerJ ; 12: e17306, 2024.
Article in English | MEDLINE | ID: mdl-38784399

ABSTRACT

Background: Salmonella enterica serovar Infantis (Salmonella Infantis) is a zoonotic, ubiquitous and foodborne pathogen of worldwide distribution. Despite Brazil's relevance as a major meat exporter, few studies were conducted to characterize strains of this serovar by genomic analyses in this country. Therefore, this study aimed to assess the diversity of 80 Salmonella Infantis strains isolated from veterinary, food and human sources in Brazil between 2013 and 2018 by comparative genomic analyses. Additional genomes of non-Brazilian countries (n = 18) were included for comparison purposes in some analyses. Methods: Analyses of whole-genome multi-locus sequence typing (wgMLST), using PGAdb-builder, and of fragmented genomes, using Gegenees, were conducted to compare the 80 Brazilian strains to the 18 non-Brazilian genomes. Pangenome analyses and calculations were performed for all Salmonella Infantis genomes analyzed. The presence of prophages was determined using PHASTER for the 80 Brazilian strains. The genome plasticity using BLAST Ring Image Generator (BRIG) and gene synteny using Mauve were evaluated for 20 selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Unique orthologous protein clusters were searched in ten selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Results: wgMLST and Gegenees showed a high genomic similarity among some Brazilian Salmonella Infantis genomes, and also the correlation of some clusters with non-Brazilian genomes. Gegenees also showed an overall similarity >91% among all Salmonella Infantis genomes. Pangenome calculations revealed an open pangenome for all Salmonella Infantis subsets analyzed and a high gene content in the core genomes. Fifteen types of prophages were detected among 97.5% of the Brazilian strains. BRIG and Mauve demonstrated a high structural similarity among the Brazilian and non-Brazilian isolates. Unique orthologous protein clusters related to biological processes, molecular functions, and cellular components were detected among Brazilian and non-Brazilian genomes. Conclusion: The results presented using different genomic approaches emphasized the significant genomic similarity among Brazilian Salmonella Infantis genomes analyzed, suggesting wide distribution of closely related genotypes among diverse sources in Brazil. The data generated contributed to novel information regarding the genomic diversity of Brazilian and non-Brazilian Salmonella Infantis in comparison. The different genetically related subtypes of Salmonella Infantis from Brazil can either occur exclusively within the country, or also in other countries, suggesting that some exportation of the Brazilian genotypes may have already occurred.


Subject(s)
Genome, Bacterial , Genomics , Multilocus Sequence Typing , Salmonella enterica , Brazil , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Genome, Bacterial/genetics , Humans , Animals , Salmonella Infections/microbiology , Salmonella Infections/epidemiology , Serogroup , Food Microbiology , Phylogeny , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology
7.
Nat Food ; 5(5): 413-422, 2024 May.
Article in English | MEDLINE | ID: mdl-38724686

ABSTRACT

Salmonella enterica causes severe food-borne infections through contamination of the food supply chain. Its evolution has been associated with human activities, especially animal husbandry. Advances in intensive farming and global transportation have substantially reshaped the pig industry, but their impact on the evolution of associated zoonotic pathogens such as S. enterica remains unresolved. Here we investigated the population fluctuation, accumulation of antimicrobial resistance genes and international serovar Choleraesuis transmission of nine pig-enriched S. enterica populations comprising more than 9,000 genomes. Most changes were found to be attributable to the developments of the modern pig industry. All pig-enriched salmonellae experienced host transfers in pigs and/or population expansions over the past century, with pigs and pork having become the main sources of S. enterica transmissions to other hosts. Overall, our analysis revealed strong associations between the transmission of pig-enriched salmonellae and the global pork trade.


Subject(s)
Salmonella enterica , Animals , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Swine , Europe/epidemiology , Humans , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/transmission , Salmonella Infections, Animal/microbiology , Swine Diseases/microbiology , Swine Diseases/transmission , Swine Diseases/epidemiology , Animal Husbandry/methods , Pork Meat/microbiology , Americas/epidemiology , Food Microbiology
8.
Med Microbiol Immunol ; 213(1): 8, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767707

ABSTRACT

Bacterial resistance to serum is a key virulence factor for the development of systemic infections. The amount of lipopolysaccharide (LPS) and the O-antigen chain length distribution on the outer membrane, predispose Salmonella to escape complement-mediated killing. In Salmonella enterica serovar Enteritidis (S. Enteritidis) a modal distribution of the LPS O-antigen length can be observed. It is characterized by the presence of distinct fractions: low molecular weight LPS, long LPS and very long LPS. In the present work, we investigated the effect of the O-antigen modal length composition of LPS molecules on the surface of S. Enteritidis cells on its ability to evade host complement responses. Therefore, we examined systematically, by using specific deletion mutants, roles of different O-antigen fractions in complement evasion. We developed a method to analyze the average LPS lengths and investigated the interaction of the bacteria and isolated LPS molecules with complement components. Additionally, we assessed the aspect of LPS O-antigen chain length distribution in S. Enteritidis virulence in vivo in the Galleria mellonella infection model. The obtained results of the measurements of the average LPS length confirmed that the method is suitable for measuring the average LPS length in bacterial cells as well as isolated LPS molecules and allows the comparison between strains. In contrast to earlier studies we have used much more precise methodology to assess the LPS molecules average length and modal distribution, also conducted more subtle analysis of complement system activation by lipopolysaccharides of various molecular mass. Data obtained in the complement activation assays clearly demonstrated that S. Enteritidis bacteria require LPS with long O-antigen to resist the complement system and to survive in the G. mellonella infection model.


Subject(s)
Complement System Proteins , Disease Models, Animal , Lipopolysaccharides , O Antigens , Salmonella enteritidis , Salmonella enteritidis/immunology , Salmonella enteritidis/pathogenicity , Animals , O Antigens/immunology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Lipopolysaccharides/immunology , Immune Evasion , Microbial Viability , Moths/microbiology , Moths/immunology , Virulence , Salmonella Infections/immunology , Salmonella Infections/microbiology , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Complement Activation , Lepidoptera/immunology , Lepidoptera/microbiology
9.
Sci Rep ; 14(1): 11479, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769412

ABSTRACT

Salmonella enterica serovar Dublin (S. Dublin) is an important enteric pathogen affecting cattle and poses increasing public health risks. Understanding the pathophysiology and host-pathogen interactions of S. Dublin infection are critical for developing effective control strategies, yet studies are hindered by the lack of physiologically relevant in vitro models. This study aimed to generate a robust ileal monolayer derived from adult bovine organoids, validate its feasibility as an in vitro infection model with S. Dublin, and evaluate the epithelial response to infection. A stable, confluent monolayer with a functional epithelial barrier was established under optimized culture conditions. The model's applicability for studying S. Dublin infection was confirmed by documenting intracellular bacterial invasion and replication, impacts on epithelial integrity, and a specific inflammatory response, providing insights into the pathogen-epithelium interactions. The study underscores the utility of organoid-derived monolayers in advancing our understanding of enteric infections in livestock and highlights implications for therapeutic strategy development and preventive measures, with potential applications extending to both veterinary and human medicine. The established bovine ileal monolayer offers a novel and physiologically relevant in vitro platform for investigating enteric pathogen-host interactions, particularly for pathogens like S. Dublin.


Subject(s)
Host-Pathogen Interactions , Ileum , Organoids , Salmonella Infections, Animal , Animals , Cattle , Organoids/microbiology , Ileum/microbiology , Ileum/pathology , Salmonella Infections, Animal/microbiology , Salmonella enterica/pathogenicity , Salmonella enterica/physiology , Inflammation/microbiology , Inflammation/pathology , Intestinal Mucosa/microbiology , Cattle Diseases/microbiology
10.
Appl Environ Microbiol ; 90(5): e0026424, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38695519

ABSTRACT

The emergence of foodborne Salmonella strains carrying antimicrobial resistance (AMR) in mobile genetic elements (MGE) is a significant public health threat in a One Health context requiring continuous surveillance. Resistance to ciprofloxacin and cephalosporins is of particular concern. Since pigs are a relevant source of foodborne Salmonella for human beings, we studied transmissible AMR genes and MGE in a collection of 83 strains showing 9 different serovars and 15 patterns of multidrug resistant (MDR) previously isolated from pigs raised in the conventional breeding system of Northern Spain. All isolates were susceptible to ciprofloxacin and three isolates carried blaCMY-2 or blaCTX-M-9 genes responsible for cefotaxime resistance. Filter mating experiments showed that the two plasmids carrying blaCTX-M-9 were conjugative while that carrying blaCMY-2 was self-transmissible by transformation. Whole-genome sequencing and comparative analyses were performed on the isolates and plasmids. The IncC plasmid pSB109, carrying blaCMY-2, was similar to one found in S. Reading from cattle, indicating potential horizontal transfer between serovars and animal sources. The IncHI2 plasmids pSH102 in S. Heidelberg and pSTM45 in S. Typhimurium ST34, carrying blaCTX-M-9, shared similar backbones and two novel "complex class 1 integrons" containing different AMR and heavy metal genes. Our findings emphasize the importance of sequencing techniques to identify emerging AMR regions in conjugative and stable plasmids from livestock production. The presence of MGE carrying clinically relevant AMR genes raises public health concerns, requiring monitoring to mitigate the emergence of bacteria carrying AMR genes and subsequent spread through animals and food.IMPORTANCEThe emergence of foodborne Salmonella strains carrying antimicrobial resistance (AMR) in mobile genetic elements (MGE) is a significant public health threat in a One Health context. Since pigs are a relevant source of foodborne Salmonella for humans, in this study, we investigate different aspects of AMR in a collection of 83 Salmonella showing nine different serovars and 15 patterns of multidrug resistant (MDR) isolated from pigs raised in the conventional breeding system. Our findings emphasize the importance of sequencing techniques to identify emerging AMR regions in conjugative and stable plasmids from livestock production. The presence of MGE carrying clinically relevant AMR genes raises public health concerns, requiring monitoring to mitigate the emergence of bacteria carrying AMR genes and subsequent spread through animals and food.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Interspersed Repetitive Sequences , Plasmids , Salmonella , Animals , Swine/microbiology , Plasmids/genetics , Salmonella/genetics , Salmonella/drug effects , Salmonella/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Humans , Cephalosporin Resistance/genetics , Salmonella Infections, Animal/microbiology , Spain , Swine Diseases/microbiology , Cephalosporins/pharmacology , Gene Transfer, Horizontal
11.
Braz J Microbiol ; 55(2): 1773-1781, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702536

ABSTRACT

The aim of this study was to identify virulence and antimicrobial resistance profiles and determine the sequence type (ST) by multilocus sequence typing (MLST) of Salmonella enterica isolates from bovine carcasses from slaughterhouse located in Minas Gerais state, Brazil, and its relationship with bovine isolates obtained on the American continent based on sequence type profile. The MLST results were compared with all Salmonella STs associated with cattle on American continent, and a multi-locus sequence tree (MS tree) was built. Among the 17 S. enterica isolates, five ST profiles identified, and ST10 were the most frequent, grouping seven (41.2%) isolates. The isolates presented 11 different profiles of virulence genes, and six different antibiotics resistance profiles. The survey on Enterobase platform showed 333 Salmonella STs from American continent, grouped into four different clusters. Most of the isolates in the present study (13/17), were concentrated in a single cluster (L4) composed by 74 STs. As a conclusion, five different STs were identified, with ST10 being the most common. The isolates showed great diversity of virulence genes and antibiotics resistance profiles. Most of the isolates of this study were grouped into a single cluster composed by 74 STs formed by bovine isolates obtained on the American continent.


Subject(s)
Anti-Bacterial Agents , Multilocus Sequence Typing , Salmonella Infections, Animal , Salmonella enterica , Virulence Factors , Animals , Cattle , Salmonella enterica/genetics , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Salmonella enterica/pathogenicity , Salmonella enterica/classification , Brazil , Anti-Bacterial Agents/pharmacology , Salmonella Infections, Animal/microbiology , Virulence/genetics , Virulence Factors/genetics , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Cattle Diseases/microbiology , Abattoirs
12.
Braz J Microbiol ; 55(2): 2035-2041, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713279

ABSTRACT

Salmonella spp. and Escherichia coli are implicated in human and animal infections and require antimicrobial treatment in many situations. Faecal samples of healthy white-lipped peccaries (Pecari tajacu) (n = 30) and collared peccaries (Tayassu pecari ) (n = 60) obtained in three farms located in the Midwest Brazil. The antimicrobial profiles of commensal E. coli from P. tajacu and T. pecari from commercial herds in Brazil were isolated and analyzed and virulence genes were detected. Among 90 healthy animals, no Salmonella spp. were isolated. However, 30 samples (27%) tested positive for E. coli, with 18 isolates from P. tajacu and 12 from T. pecari, representing frequencies of 58.0% and 38.7%, respectively. Additionally, other Enterobacteriaceae family bacteria were detected but not included in this analysis. However, individual samples from 30 animals tested positive for E. coli, of which 16 were isolated from P. tajacu presenting multidrug resistance and six were isolated from T. pecari presenting a similar pattern. The E. coli virulence genes detected were papC (pilus-associated pyelonephritis) in five isolates, tsh (temperature-sensitive hemagglutinin) in one isolate, and eae (enteric attachment and effacement) in one isolate. The serum resistance gene, iss (increased serum survival), was detected in four isolates. An association between these genes and the presence of hemolysin was also observed in one isolate. Thus, T. pecari and P. tajacu are potential reservoirs of pathogenic and multidrug-resistant and E. coli. Faecal E. coli of healthy P. tajacu and T. pecari could act as a possible reservoir of antimicrobial resistance genes in environment.


Subject(s)
Anti-Bacterial Agents , Artiodactyla , Escherichia coli , Feces , Salmonella , Virulence Factors , Animals , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Escherichia coli/classification , Salmonella/genetics , Salmonella/drug effects , Salmonella/isolation & purification , Salmonella/pathogenicity , Salmonella/classification , Brazil , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Feces/microbiology , Artiodactyla/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/epidemiology , Salmonella Infections, Animal/microbiology , Virulence/genetics , Prevalence , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests
13.
Int J Food Microbiol ; 419: 110753, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38797020

ABSTRACT

Salmonella enterica subsp. enterica serovar Typhimurium variant 4,[5],12:i:- (so called S. 4,[5],12:i:-) has rapidly become one of the most prevalent serovars in humans in Europe, with clinical cases associated with foodborne from pork products. The mechanisms, genetic basis and biofilms relevance by which S. 4,[5],12:i:- maintains and spreads its presence in pigs remain unclear. In this study, we examined the genetic basis of biofilm production in 78 strains of S. 4,[5],12:i:- (n = 57) and S. Typhimurium (n = 21), from human gastroenteritis, food products and asymptomatic pigs. The former showed a lower Specific Biofilm Formation index (SBF) and distant phylogenetic clades, suggesting that the ability to form biofilms is not a crucial adaptation for the S. 4,[5],12:i:- emerging success in pigs. However, using a pan-Genome-Wide Association Study (pan-GWAS) we identified genetic determinants of biofilm formation, revealing 167 common orthologous groups and genes associated with the SBF. The analysis of annotated sequences highlighted specific genetic deletions in three chromosomal regions of S. 4,[5],12:i:- correlating with SBF values: i) the complete fimbrial operon stbABCDE widely recognized as the most critical factor involved in Salmonella adherence; ii) the hxlA, hlxB, and pgiA genes, which expression in S. Typhimurium is induced in the tonsils during swine infection, and iii) the entire iroA locus related to the characteristic deletion of the second-phase flagellar genomic region in S. 4,[5],12:i:-. Consequently, we further investigated the role of the iro-genes on biofilm by constructing S. Typhimurium deletion mutants in iroBCDE and iroN. While iroBCDE showed no significant impact, iroN clearly contributed to S. Typhimurium biofilm formation. In conclusion, the pan-GWAS approach allowed us to uncover complex interactions between genetic and phenotypic factors influencing biofilm formation in S. 4,[5],12:i:- and S. Typhimurium.


Subject(s)
Bacterial Proteins , Biofilms , Genome-Wide Association Study , Salmonella typhimurium , Biofilms/growth & development , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Animals , Swine , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Iron/metabolism , Phylogeny , Salmonella Infections, Animal/microbiology , Salmonella Infections/microbiology , Gastroenteritis/microbiology , Serogroup
14.
Poult Sci ; 103(6): 103679, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701627

ABSTRACT

Vaccination is one of the most important control tools to reduce Salmonella in poultry production. In order for a live vaccine to be licensed for field use it should be provided with the detection methods to differentiate it from field strains. This paper aims to describe the validation of an alternative method for the differentiation of the Salmonella 441/014 vaccine strain from field strains, using a chromogenic Media, ASAP from bioMérieux. The ASAP-based differentiation method was compared with already authorized methods, namely the Anicon SE Kylt PCR DIVA 1 assay and Ceva S-Check Salmonella differentiation kit, following the ISO 16140-6:2019 validation method guidelines. A Generalised Linear Model was fitted to the data to determine the inclusivity and exclusivity of differentiation methods (PCR Kylt vs. S-Check vs. ASAPTM). Statistical differences were based on a P-value level of < 0.05 (SPSS Inc., Chicago, IL). In this study, we show that the ASAP media was able to differentiate Salmonella Enteritidis vaccine strains from field strains, obtaining 100% agreement between the three differentiation assays. This differentiation approach is quicker, easier to deploy and cheaper as compared to alternative methods.


Subject(s)
Chickens , Poultry Diseases , Salmonella Infections, Animal , Salmonella Vaccines , Salmonella enteritidis , Salmonella Vaccines/immunology , Animals , Salmonella Infections, Animal/prevention & control , Salmonella Infections, Animal/microbiology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Culture Media , Salmonella/isolation & purification
15.
Vet Med Sci ; 10(3): e1475, 2024 May.
Article in English | MEDLINE | ID: mdl-38739101

ABSTRACT

BACKGROUND AND AIM: Different Salmonella serotypes are considered one of the most important food pathogens in the world. Poultry meat and eggs are the primary carriers of Salmonella in human populations. This study aimed to estimate the Salmonella enteritidis and Salmonella typhimurium contamination rates of retail hen and quail eggs in Karaj, Iran. Moreover, the antimicrobial resistance patterns of the strains were evaluated, and the efficiency of the standard culture method and multiplex polymerase chain reaction (m-PCR) were compared. MATERIALS AND METHODS: In this descriptive cross-sectional study over 1 year (Jan-Dec 2022), 150 commercial and 150 backyard hen eggs and 300 commercial quail eggs, without cracks and fractures, were collected randomly from best selling groceries in Karaj city. All samples were examined for Salmonella contamination independently by standard culture and m-PCR approaches. A standard disc diffusion method was employed to assess the antimicrobial susceptibility of the strains against 18 antimicrobial agents. RESULTS: Out of 300 examined eggs, 2 S. enteritidis strains were isolated from the shell of backyard hen eggs. The same serotype was also detected in the contents of one of these two eggs. One S. typhimurium was isolated from the shell of a commercial hen egg. Overall, the Salmonella contamination of the shell and contents was 1% and 0.3%, respectively. Salmonella was not isolated from the eggshells or the contents of the quail eggs. There was complete agreement between the results of m-PCR and the standard culture methods. Among the 18 tested antibiotics, the highest resistance was recorded for colistin (100%), followed by nalidixic acid (75%). CONCLUSION: As most Salmonella spp. are associated with human food poisoning, continuous surveillance is required to effectively reduce the risk posed by contaminated poultry eggs. Furthermore, mandatory monitoring of antimicrobial use on Iranian poultry farms is recommended.


Subject(s)
Chickens , Eggs , Salmonella enteritidis , Salmonella typhimurium , Animals , Iran/epidemiology , Salmonella enteritidis/drug effects , Salmonella enteritidis/isolation & purification , Eggs/microbiology , Salmonella typhimurium/drug effects , Salmonella typhimurium/isolation & purification , Cross-Sectional Studies , Prevalence , Anti-Bacterial Agents/pharmacology , Quail/microbiology , Drug Resistance, Bacterial , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology
16.
Open Vet J ; 14(3): 913-918, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682131

ABSTRACT

Background: Salmonella is a major food-borne bacterial pathogen that causes food poisoning related to the consumption of eggs, milk, and meat. Food safety in relation to Salmonella is particularly important for eggs because their shells as well as their contents can be a source of contamination. Chicken can also be infected with influenza virus, but it remains unclear how co-infection of Salmonella and influenza virus affect each other. Aim: The potential influence of co-infection of Salmonella and influenza virus was examined. Methods: Salmonella Abony and influenza virus were injected into chicken embryonated eggs. After incubation, proliferation of Salmonella and influenza virus was measured using a direct culture assay for bacteria and an enzyme-linked immunosorbent assay for influenza virus, respectively. Results: Our findings indicate that the number of colony-forming units (CFUs) of Salmonella did not vary between chicken embryonated eggs co-infected with influenza A virus and Salmonella-only infected eggs. Furthermore, we found the proliferation of influenza A or B virus was not significantly influenced by co-infection of the eggs with Salmonella. Conclusion: These results suggest that combined infection of Salmonella with influenza virus does not affect each other, at least in terms of their proliferation.


Subject(s)
Coinfection , Influenza in Birds , Salmonella , Animals , Chick Embryo , Influenza in Birds/virology , Coinfection/veterinary , Coinfection/microbiology , Coinfection/virology , Salmonella/isolation & purification , Salmonella/physiology , Chickens , Salmonella Infections, Animal/microbiology , Poultry Diseases/microbiology , Poultry Diseases/virology , Influenza A virus/physiology , Influenza B virus/physiology , Influenza B virus/isolation & purification
17.
Avian Dis ; 68(1): 2-9, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687101

ABSTRACT

Salmonella enterica subspecies enterica serovar Gallinarum biovar Pullorum (S. Pullorum) is a pathogenic bacterium that causes Pullorum disease (PD). PD is an acute systemic disease that affects young chickens, causing white diarrhea and high mortality. Although many sanitary programs have been carried out to eradicate S. Pullorum, PD outbreaks have been reported in different types of birds (layers, broilers, breeders) worldwide. This study aimed to evaluate the evolution and genetic characteristics of S. Pullorum isolated from PD in Brazil. Phylogenetic analysis of S. Pullorum genomes sequenced in this study and available genomic databases demonstrated that all isolates from Brazil are from sequence type 92 (ST92) and cluster into two lineages (III and IV). ColpVC, IncFIC(FII), and IncFII(S) were plasmid replicons frequently found in the Brazilian lineages. Two resistance genes (aac(6')-Iaa, conferring resistance to aminoglycoside, disinfecting agents, and antiseptics (mdf(A)) and tetracycline (mdf(A)) were detected frequently. Altogether, these results are important to understand the circulation of S. Pullorum and, consequently, to develop strategies to reduce losses due to PD.


Evolución y perfil genómico de aislados de Salmonella enterica serovar Gallinarum biovar Pullorum de Brasil. Salmonella enterica subespecie enterica serovar Gallinarum biovar Pullorum (S. Pullorum) es una bacteria patógena que causa la enfermedad de Pullorum (EP). La EP es una enfermedad sistémica aguda que afecta a los pollos jóvenes causando diarrea blanca y alta mortalidad. Aunque se han llevado a cabo muchos programas sanitarios para erradicar S. Pullorum, se han informado brotes de EP en diferentes tipos de aves (ponedoras, pollos de engorde, reproductoras) en todo el mundo. Este estudio tuvo como objetivo evaluar la evolución y las características genéticas de S. Pullorum aislado de EP en Brasil. El análisis filogenético de los genomas de S. Pullorum secuenciados en este estudio y las bases de datos genómicas disponibles demostraron que todos los aislamientos de Brasil son del tipo de secuencia 92 (ST92) y se agrupan en dos linajes (III y IV). ColpVC, IncFIC (FII) e IncFII(S) fueron replicones de plásmidos frecuentemente encontrados en los linajes brasileños. Dos genes de resistencia (aac(6')-Iaa, que confiere resistencia a aminoglucósidos, desinfectantes y antisépticos (mdf(A)), y tetraciclina (mdf(A)) fueron detectados con frecuencia. En conjunto, estos resultados son importantes para comprender la circulación de S. Pullorum y, en consecuencia, desarrollar estrategias para reducir las pérdidas por EP.


Subject(s)
Chickens , Poultry Diseases , Salmonella Infections, Animal , Salmonella enterica , Brazil/epidemiology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Animals , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology , Salmonella enterica/genetics , Salmonella enterica/drug effects , Phylogeny , Genome, Bacterial , Serogroup , Evolution, Molecular
18.
Avian Dis ; 68(1): 18-24, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687103

ABSTRACT

The application of live attenuated Salmonella Typhimurium vaccines has significantly helped control Salmonella in poultry products. Because the U.S. Department of Agriculture-Food Safety Inspection Service (USDA-FSIS) scores all Salmonella as positive, regardless of serovar, attenuated vaccine strains that are identified at processing contribute negatively toward Salmonella performance standards. This study was designed to determine the incidence of a live attenuated Salmonella serovar Typhimurium vaccine identified in broiler products by FSIS and to develop a PCR assay for screening of isolates. Salmonella Typhimurium short-read sequences from broiler samples uploaded to the National Center for Biotechnology Information (NCBI) Pathogen Detection database by the USDA-FSIS from 2016 to 2022 were downloaded and assembled. These were analyzed using the Basic Local Alignment Search Tool (BLAST) with a sequence unique to field strains, followed by a sequence unique to the vaccine strain. The PCR assays were developed against field and vaccine strains by targeting transposition events in the crp and cya genes and validated by screening Salmonella serovar Typhimurium isolates. Between 2016 and 2022, 1708 Salmonella Typhimurium isolates of chicken origin were found in the NCBI Pathogen Detection database, corresponding to 7.99% of all Salmonella identified. Of these, 104 (5.97%) were identified as the vaccine strain. The PCR assay differentiated field strains from the vaccine strain when applied to isolates and was also able to detect the vaccine strain from DNA isolated from mixed serovar overnight Salmonella enrichment cultures. Live attenuated Salmonella vaccines are a critical preharvest tool for Salmonella control and are widely used in industry. With forthcoming regulations that will likely focus on Salmonella Typhimurium, along with other serovars, there is a need to distinguish between isolates belonging to the vaccine strain and those that are responsible for causing human illness.


Detección in silico y por PCR de una cepa vacunal viva atenuada de Salmonella Typhimurium. La aplicación de vacunas vivas atenuadas contra Salmonella Typhimurium ha ayudado significativamente a controlar Salmonella en productos avícolas. Debido a que el Servicio de Inspección de Seguridad Alimentaria del Departamento de Agricultura de los Estados Unidos. (USDA-FSIS) califica todas las Salmonella como positivas, independientemente del serovar. Las cepas atenuadas de la vacuna que se identifican en el procesamiento contribuyen negativamente a los estándares de desempeño de Salmonella. Este estudio fue diseñado para determinar la incidencia de una vacuna viva atenuada de Salmonella serovar Typhimurium identificada en productos de pollo de engorde por el FSIS y para desarrollar un ensayo de PCR para la detección de aislados. Se recolectaron y ensamblaron secuencias de lectura corta de Salmonella Typhimurium de muestras de pollos de engorde introducidas en la plataforma de detección de patógenos del Centro Nacional de Información Biotecnológica (NCBI) por el USDA-FSIS entre los años 2016 al 2022. Estos se analizaron utilizando la herramienta de búsqueda de alineación local básica con una secuencia exclusiva para las cepas de campo, seguida de una secuencia exclusiva para la cepa vacunal. Los ensayos de PCR se desarrollaron contra cepas de campo y vacunales centrándose en eventos de transposición en los genes crp y cya y se validaron mediante la detección de aislados de Salmonella serovar Typhimurium. Entre 2016 y 2022, se encontraron 1708 aislados de Salmonella Typhimurium de origen avícola en el sistema de detección de patógenos del NCBI, lo que corresponde al 7.99 % de todas las Salmonellas identificadas. De ellas, 104 (5.97%) fueron identificadas como cepa vacunal. El ensayo de PCR diferenció las cepas de campo de la cepa de la vacuna cuando se aplicó a los aislados y también fue capaz de detectar la cepa de la vacuna a partir del ADN aislado de cultivos de enriquecimiento por toda la noche de Salmonella con serovares mixtos. Las vacunas vivas atenuadas contra Salmonella son una herramienta fundamental para el control de Salmonella y se utilizan ampliamente en la industria. Con las próximas regulaciones que probablemente se centrarán en Salmonella Typhimurium, junto con otros serovares, es necesario distinguir entre los aislados que pertenecen a la cepa vacunal y los que son responsables de causar enfermedades humanas.


Subject(s)
Chickens , Polymerase Chain Reaction , Poultry Diseases , Salmonella Infections, Animal , Salmonella Vaccines , Salmonella typhimurium , Vaccines, Attenuated , Salmonella typhimurium/genetics , Salmonella typhimurium/isolation & purification , Vaccines, Attenuated/immunology , Animals , Salmonella Vaccines/immunology , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Salmonella Infections, Animal/prevention & control , Salmonella Infections, Animal/microbiology , Polymerase Chain Reaction/veterinary , Computer Simulation
19.
Genes (Basel) ; 15(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38674370

ABSTRACT

Salmonella typhimurium (S. typhimurium), a prevalent cause of foodborne infection, induces significant changes in the host transcriptome and metabolome. The lack of therapeutics with minimal or no side effects prompts the scientific community to explore alternative therapies. This study investigates the therapeutic potential of a probiotic mixture comprising Lactobacillus acidophilus (L. acidophilus 1.3251) and Lactobacillus plantarum (L. plantarum 9513) against S. typhimurium, utilizing transcriptome and metabolomic analyses, a novel approach that has not been previously documented. Twenty-four SPF-BALB/c mice were divided into four groups: control negative group (CNG); positive control group (CPG); probiotic-supplemented non-challenged group (LAPG); and probiotic-supplemented Salmonella-challenged group (LAPST). An RNA-sequencing analysis of small intestinal (ileum) tissue revealed 2907 upregulated and 394 downregulated DEGs in the LAPST vs. CPG group. A functional analysis of DEGs highlighted their significantly altered gene ontology (GO) terms related to metabolism, gut integrity, cellular development, and immunity (p ≤ 0.05). The KEGG analysis showed that differentially expressed genes (DEGs) in the LAPST group were primarily involved in pathways related to gut integrity, immunity, and metabolism, such as MAPK, PI3K-Akt, AMPK, the tryptophan metabolism, the glycine, serine, and threonine metabolism, ECM-receptor interaction, and others. Additionally, the fecal metabolic analysis identified 1215 upregulated and 305 downregulated metabolites in the LAPST vs. CPG group, implying their involvement in KEGG pathways including bile secretion, propanoate metabolism, arginine and proline metabolism, amino acid biosynthesis, and protein digestion and absorption, which are vital for maintaining barrier integrity, immunity, and metabolism. In conclusion, these findings suggest that the administration of a probiotic mixture improves immunity, maintains gut homeostasis and barrier integrity, and enhances metabolism in Salmonella infection.


Subject(s)
Lactobacillus plantarum , Mice, Inbred BALB C , Probiotics , Salmonella typhimurium , Transcriptome , Animals , Probiotics/pharmacology , Probiotics/administration & dosage , Mice , Lactobacillus acidophilus , Metabolome , Metabolomics/methods , Salmonella Infections/immunology , Salmonella Infections/genetics , Salmonella Infections/microbiology , Salmonella Infections/metabolism , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/genetics , Salmonella Infections, Animal/metabolism , Female , Gastrointestinal Microbiome/drug effects
20.
Microbiol Spectr ; 12(6): e0399423, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687075

ABSTRACT

Salmonella enterica serovar Kentucky ST198 is a major health threat due to its resistance to ciprofloxacin and several other drugs, including third-generation cephalosporins. Many drug-resistant genes have been identified in the Salmonella genomic island 1 variant K (SGI1-K). In this study, we investigated the antimicrobial resistance (AMR) profile and genotypic relatedness of two isolates of ciprofloxacin-resistant (CIPR) S. Kentucky ST198 from poultry in Northeastern Thailand. We successfully assembled the complete genomes of both isolates, namely SSSE-01 and SSSE-03, using hybrid de novo assembly of both short- and long-read sequence data. The complete genomes revealed their highly similar genomic structures and a novel variant of SGI1-K underlying multidrug-resistant (MDR) patterns, including the presence of blaTEM-1b, which confers resistance to beta-lactams, including cephalosporins and lnu(F) which confers resistance to lincomycin and other lincosamides. In addition, the chromosomal mutations in the quinolone resistance-determining region (QRDR) were found at positions 83 (Ser83Phe) and 87 (Asp87Asn) of GyrA and at positions 57 (Thr57Ser) and 80 (Ser80Ile) of ParC suggesting high resistance to ciprofloxacin. We also compared SSSE-01 and SSSE-03 with publicly available complete genome data and revealed significant variations in SGI1-K genetic structures and variable relationships to antibiotic resistance. In comparison to the other isolates, SGI1-K of SSSE-01 and SSSE-03 had a relatively large deletion in the backbone, spanning from S011 (traG∆) to S027 (resG), and the inversion of the IS26-S044∆-yidY segment. Their MDR region was characterized by the inversion of a large segment, including the mer operon and the relocation of IntI1 and several resistance genes downstream of the IS26-S044∆-yidY segment. These structural changes were likely mediated by the recombination of IS26. The findings broaden our understanding of the possible evolution pathway of SGI1-K in fostering drug resistance, which may provide opportunities to control these MDR strains.IMPORTANCEThe emergence of ciprofloxacin-resistant (CIPR) Salmonella Kentucky ST198 globally has raised significant concerns. This study focuses on two poultry isolates from Thailand, revealing a distinct Salmonella genomic island 1 variant K (SGI1-K) genetic structure. Remarkably, multiple antibiotic resistance genes (ARGs) were identified within the SGI1-K as well as other locations in the chromosome, but not in plasmids. Comparing the SGI1-K genetic structures among global and even within-country isolates unveiled substantial variations. Intriguingly, certain isolates lacked ARGs within the SGI1-K, while others had ARGs relocated outside. The presence of chromosomal extended-spectrum ß-lactamase (ESBL) genes and lincosamide resistance, lnu(F), gene, could potentially inform the choices of the treatment of CIPRS. Kentucky ST198 infections in humans. This study highlights the importance of understanding the diverse genetic structures of SGI1-K and emphasizes the role of animals and humans in the emergence of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genomic Islands , Salmonella enterica , Genomic Islands/genetics , Drug Resistance, Multiple, Bacterial/genetics , Salmonella enterica/genetics , Salmonella enterica/drug effects , Salmonella enterica/classification , Salmonella enterica/isolation & purification , Anti-Bacterial Agents/pharmacology , Animals , Serogroup , Microbial Sensitivity Tests , Ciprofloxacin/pharmacology , Thailand , Poultry/microbiology , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Bacterial Proteins/genetics , Genome, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...