Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.445
Filter
1.
Methods Mol Biol ; 2813: 107-115, 2024.
Article in English | MEDLINE | ID: mdl-38888773

ABSTRACT

Mass spectrometry-based proteomics provides a wealth of information about changes in protein production and abundance under diverse conditions, as well as mechanisms of regulation, signaling cascades, interaction partners, and communication patterns across biological systems. For profiling of intracellular pathogens, proteomic profiling can be performed in the absence of a host to singularly define the pathogenic proteome or during an infection-like setting to identify dual perspectives of infection. In this chapter, we present techniques to extract proteins from the human bacterial intracellular pathogen, Salmonella enterica serovar Typhimurium, in the presence of macrophages, an important innate immune cell in host defense. We outline sample preparation, including protein extraction, digestion, and purification, as well as mass spectrometry measurements and bioinformatics analysis. The data generated from our dual perspective profiling approach provides new insight into pathogen and host protein modulation under infection-like conditions.


Subject(s)
Bacterial Proteins , Macrophages , Proteomics , Salmonella typhimurium , Salmonella typhimurium/metabolism , Salmonella typhimurium/pathogenicity , Proteomics/methods , Humans , Bacterial Proteins/metabolism , Macrophages/microbiology , Macrophages/metabolism , Host-Pathogen Interactions , Proteome/metabolism , Salmonella Infections/microbiology , Salmonella Infections/metabolism , Salmonella Infections/immunology , Computational Biology/methods , Mass Spectrometry/methods
2.
Cell Host Microbe ; 32(6): 887-899.e6, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38806059

ABSTRACT

Inflammation boosts the availability of electron acceptors in the intestinal lumen, creating a favorable niche for pathogenic Enterobacteriaceae. However, the mechanisms linking intestinal inflammation-mediated changes in luminal metabolites and pathogen expansion remain unclear. Here, we show that mucosal inflammation induced by Salmonella enterica serovar Typhimurium (S. Tm) infection increases intestinal levels of the amino acid aspartate. S. Tm used aspartate-ammonia lyase (aspA)-dependent fumarate respiration for growth in the murine gut only during inflammation. AspA-dependent growth advantage was abolished in the gut of germ-free mice and restored in gnotobiotic mice colonized with members of the classes Bacteroidia and Clostridia. Reactive oxygen species (ROS) produced during the host response caused lysis of commensal microbes, resulting in the release of microbiota-derived aspartate that was used by S. Tm, in concert with nitrate-dependent anaerobic respiration, to outcompete commensal Enterobacteriaceae. Our findings demonstrate the role of microbiota-derived amino acids in driving respiration-dependent S. Tm expansion during colitis.


Subject(s)
Aspartic Acid , Gastrointestinal Microbiome , Reactive Oxygen Species , Salmonella typhimurium , Animals , Mice , Reactive Oxygen Species/metabolism , Aspartic Acid/metabolism , Colitis/microbiology , Colitis/metabolism , Mice, Inbred C57BL , Enterobacteriaceae/metabolism , Germ-Free Life , Inflammation/microbiology , Inflammation/metabolism , Salmonella Infections/microbiology , Salmonella Infections/immunology
4.
Med Microbiol Immunol ; 213(1): 8, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767707

ABSTRACT

Bacterial resistance to serum is a key virulence factor for the development of systemic infections. The amount of lipopolysaccharide (LPS) and the O-antigen chain length distribution on the outer membrane, predispose Salmonella to escape complement-mediated killing. In Salmonella enterica serovar Enteritidis (S. Enteritidis) a modal distribution of the LPS O-antigen length can be observed. It is characterized by the presence of distinct fractions: low molecular weight LPS, long LPS and very long LPS. In the present work, we investigated the effect of the O-antigen modal length composition of LPS molecules on the surface of S. Enteritidis cells on its ability to evade host complement responses. Therefore, we examined systematically, by using specific deletion mutants, roles of different O-antigen fractions in complement evasion. We developed a method to analyze the average LPS lengths and investigated the interaction of the bacteria and isolated LPS molecules with complement components. Additionally, we assessed the aspect of LPS O-antigen chain length distribution in S. Enteritidis virulence in vivo in the Galleria mellonella infection model. The obtained results of the measurements of the average LPS length confirmed that the method is suitable for measuring the average LPS length in bacterial cells as well as isolated LPS molecules and allows the comparison between strains. In contrast to earlier studies we have used much more precise methodology to assess the LPS molecules average length and modal distribution, also conducted more subtle analysis of complement system activation by lipopolysaccharides of various molecular mass. Data obtained in the complement activation assays clearly demonstrated that S. Enteritidis bacteria require LPS with long O-antigen to resist the complement system and to survive in the G. mellonella infection model.


Subject(s)
Complement System Proteins , Disease Models, Animal , Lipopolysaccharides , O Antigens , Salmonella enteritidis , Salmonella enteritidis/immunology , Salmonella enteritidis/pathogenicity , Animals , O Antigens/immunology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Lipopolysaccharides/immunology , Immune Evasion , Microbial Viability , Moths/microbiology , Moths/immunology , Virulence , Salmonella Infections/immunology , Salmonella Infections/microbiology , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Complement Activation , Lepidoptera/immunology , Lepidoptera/microbiology
5.
Genes (Basel) ; 15(4)2024 03 29.
Article in English | MEDLINE | ID: mdl-38674370

ABSTRACT

Salmonella typhimurium (S. typhimurium), a prevalent cause of foodborne infection, induces significant changes in the host transcriptome and metabolome. The lack of therapeutics with minimal or no side effects prompts the scientific community to explore alternative therapies. This study investigates the therapeutic potential of a probiotic mixture comprising Lactobacillus acidophilus (L. acidophilus 1.3251) and Lactobacillus plantarum (L. plantarum 9513) against S. typhimurium, utilizing transcriptome and metabolomic analyses, a novel approach that has not been previously documented. Twenty-four SPF-BALB/c mice were divided into four groups: control negative group (CNG); positive control group (CPG); probiotic-supplemented non-challenged group (LAPG); and probiotic-supplemented Salmonella-challenged group (LAPST). An RNA-sequencing analysis of small intestinal (ileum) tissue revealed 2907 upregulated and 394 downregulated DEGs in the LAPST vs. CPG group. A functional analysis of DEGs highlighted their significantly altered gene ontology (GO) terms related to metabolism, gut integrity, cellular development, and immunity (p ≤ 0.05). The KEGG analysis showed that differentially expressed genes (DEGs) in the LAPST group were primarily involved in pathways related to gut integrity, immunity, and metabolism, such as MAPK, PI3K-Akt, AMPK, the tryptophan metabolism, the glycine, serine, and threonine metabolism, ECM-receptor interaction, and others. Additionally, the fecal metabolic analysis identified 1215 upregulated and 305 downregulated metabolites in the LAPST vs. CPG group, implying their involvement in KEGG pathways including bile secretion, propanoate metabolism, arginine and proline metabolism, amino acid biosynthesis, and protein digestion and absorption, which are vital for maintaining barrier integrity, immunity, and metabolism. In conclusion, these findings suggest that the administration of a probiotic mixture improves immunity, maintains gut homeostasis and barrier integrity, and enhances metabolism in Salmonella infection.


Subject(s)
Lactobacillus plantarum , Mice, Inbred BALB C , Probiotics , Salmonella typhimurium , Transcriptome , Animals , Probiotics/pharmacology , Probiotics/administration & dosage , Mice , Lactobacillus acidophilus , Metabolome , Metabolomics/methods , Salmonella Infections/immunology , Salmonella Infections/genetics , Salmonella Infections/microbiology , Salmonella Infections/metabolism , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/genetics , Salmonella Infections, Animal/metabolism , Female , Gastrointestinal Microbiome/drug effects
6.
PLoS Biol ; 22(4): e3002597, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38684033

ABSTRACT

Intestinal epithelial cells (IECs) play pivotal roles in nutrient uptake and in the protection against gut microorganisms. However, certain enteric pathogens, such as Salmonella enterica serovar Typhimurium (S. Tm), can invade IECs by employing flagella and type III secretion systems (T3SSs) with cognate effector proteins and exploit IECs as a replicative niche. Detection of flagella or T3SS proteins by IECs results in rapid host cell responses, i.e., the activation of inflammasomes. Here, we introduce a single-cell manipulation technology based on fluidic force microscopy (FluidFM) that enables direct bacteria delivery into the cytosol of single IECs within a murine enteroid monolayer. This approach allows to specifically study pathogen-host cell interactions in the cytosol uncoupled from preceding events such as docking, initiation of uptake, or vacuole escape. Consistent with current understanding, we show using a live-cell inflammasome reporter that exposure of the IEC cytosol to S. Tm induces NAIP/NLRC4 inflammasomes via its known ligands flagellin and T3SS rod and needle. Injected S. Tm mutants devoid of these invasion-relevant ligands were able to grow in the cytosol of IECs despite the absence of T3SS functions, suggesting that, in the absence of NAIP/NLRC4 inflammasome activation and the ensuing cell death, no effector-mediated host cell manipulation is required to render the epithelial cytosol growth-permissive for S. Tm. Overall, the experimental system to introduce S. Tm into single enteroid cells enables investigations into the molecular basis governing host-pathogen interactions in the cytosol with high spatiotemporal resolution.


Subject(s)
Calcium-Binding Proteins , Cytosol , Flagellin , Host-Pathogen Interactions , Inflammasomes , Salmonella typhimurium , Type III Secretion Systems , Cytosol/metabolism , Cytosol/microbiology , Animals , Salmonella typhimurium/pathogenicity , Salmonella typhimurium/metabolism , Type III Secretion Systems/metabolism , Inflammasomes/metabolism , Mice , Flagellin/metabolism , Neuronal Apoptosis-Inhibitory Protein/metabolism , Neuronal Apoptosis-Inhibitory Protein/genetics , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Mice, Inbred C57BL , CARD Signaling Adaptor Proteins/metabolism , CARD Signaling Adaptor Proteins/genetics , Single-Cell Analysis/methods , Salmonella Infections/microbiology , Salmonella Infections/metabolism , Salmonella Infections/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism
7.
Cell Rep ; 42(12): 113581, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38103201

ABSTRACT

Inflammasomes are multiprotein signaling complexes that activate the innate immune system. Canonical inflammasomes recruit and activate caspase-1, which then cleaves and activates IL-1ß and IL-18, as well as gasdermin D (GSDMD) to induce pyroptosis. In contrast, non-canonical inflammasomes, caspases-4/-5 (CASP4/5) in humans and caspase-11 (CASP11) in mice, are known to cleave GSDMD, but their role in direct processing of other substrates besides GSDMD has remained unknown. Here, we show that CASP4/5 but not CASP11 can directly cleave and activate IL-18. However, CASP4/5/11 can all cleave IL-1ß to generate a 27-kDa fragment that deactivates IL-1ß signaling. Mechanistically, we demonstrate that the sequence identity of the tetrapeptide sequence adjacent to the caspase cleavage site regulates IL-18 and IL-1ß recruitment and activation. Altogether, we have identified new substrates of the non-canonical inflammasomes and reveal key mechanistic details regulating inflammation that may aid in developing new therapeutics for immune-related disorders.


Subject(s)
Caspases , Interleukin-18 , Interleukin-1beta , Caspases/genetics , Caspases/immunology , Interleukin-18/chemistry , Interleukin-18/genetics , Interleukin-18/immunology , Interleukin-1beta/chemistry , Interleukin-1beta/genetics , Interleukin-1beta/immunology , RAW 264.7 Cells , HEK293 Cells , HeLa Cells , THP-1 Cells , Humans , Inflammasomes/immunology , Signal Transduction/genetics , Proteolysis , Protein Binding , Protein Multimerization , Salmonella Infections/enzymology , Salmonella Infections/immunology
8.
Vet Microbiol ; 282: 109759, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37104940

ABSTRACT

This study presents the engineering of a less endotoxic Salmonella Typhimurium strain by manipulating the lipid-A structure of the lipopolysaccharide (LPS) component. Salmonella lipid A was dephosphorylated by using lpxE from Francisella tularensis. The 1-phosphate group from lipid-A was removed selectively, resulting in a close analog of monophosphoryl lipid A. We observed a significant impact of ∆pagL on major virulence factors such as biofilm formation, motility, persistency, and immune evasion. In correlation with biofilm and motility retardation, adhesion and invasion were elevated but with reduced intracellular survival, a favorable phenotype prospect of a vaccine strain. Western blotting and silver staining confirmed the absence of the O-antigen and truncated lipid-A core in the detoxified Salmonella mutant. In vitro and in vivo studies demonstrated that the dephosphorylated Salmonella mutant mediated lower pro-inflammatory cytokine secretion than the wild-type strain. The vaccine strains were present in the spleen and liver for five days and were cleared from the organs by day seven. However, the wild-type strain persisted in the spleen, liver, and brain, leading to sepsis-induced death. Histological evaluations of tissue samples further confirmed the reduced endotoxic activity of the detoxified Salmonella mutant. The detoxification strategy did not compromise the level of protective immunity, as the vaccine strain could enhance humoral and cellular immune responses and protect against the wild-type challenge in immunized mice.


Subject(s)
Salmonella Infections , Salmonella Vaccines , Salmonella typhimurium , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity , Salmonella typhimurium/physiology , Female , Animals , Mice , Mice, Inbred BALB C , Lipid A/metabolism , Salmonella Vaccines/adverse effects , Salmonella Vaccines/genetics , Salmonella Vaccines/immunology , Lipopolysaccharides/metabolism , Immunity, Humoral , Immunity, Cellular , Biofilms , Salmonella Infections/immunology , Salmonella Infections/microbiology , Carboxylic Ester Hydrolases/genetics
9.
Am J Hum Biol ; 35(8): e23897, 2023 08.
Article in English | MEDLINE | ID: mdl-36951242

ABSTRACT

INTRODUCTION: Multiple studies have reported that milk immune content increases for infants experiencing infectious disease (ID) episodes, suggesting that the immune system of milk (ISOM) offers enhanced protection when needed to combat ID. METHODS: To test the hypothesis that ISOM content and/or activity increases during an infant's ID episode, we characterized milk secretory immunoglobulin A (sIgA; a major ISOM constituent) and in vitro interleukin-6 (IL-6) responses to Salmonella enterica and Escherichia coli, as system-level biomarkers of ISOM activity, in a prospective study among 96 mother-infant dyads in Kilimanjaro, Tanzania. RESULTS: After control for covariates, no milk immune variables (sIgA, Coef: 0.03; 95% CI -0.25, 0.32; in vitro IL-6 response to S. enterica, Coef: 0.23; 95% CI: -0.67, 1.13; IL-6 response to E. coli, Coef: -0.11; 95% CI: -0.98, 0.77) were associated with prevalent ID (diagnosed at the initial participation visit). Among infants experiencing an incident ID (diagnosed subsequent to the initial participation), milk immune content and responses were not substantially higher or lower than the initial visit (sIgA, N: 61; p: 0.788; IL-6 response to S. enterica, N: 56; p: 0.896; IL-6 response to E. coli, N: 36; p: 0.683); this was unchanged by exclusion of infants with ID at the time of initial participation. CONCLUSION: These findings are not consistent with the hypothesis that milk delivers enhanced immune protection when infants experience ID. In environments with a high burden of ID, dynamism may be less valuable to maternal reproductive success than stability in the ISOM.


Subject(s)
Escherichia coli Infections , Escherichia coli , Immunoglobulin A, Secretory , Interleukin-6 , Milk, Human , Salmonella Infections , Salmonella enterica , Humans , Female , Milk, Human/chemistry , Interleukin-6/analysis , Interleukin-6/immunology , Salmonella enterica/physiology , Salmonella Infections/immunology , Escherichia coli/physiology , Escherichia coli Infections/immunology , Infant, Newborn , Infant , Tanzania , Prospective Studies , Adult , Cross-Sectional Studies , Immunoenzyme Techniques , Immunoglobulin A, Secretory/analysis , Immunoglobulin A, Secretory/immunology , Longitudinal Studies
10.
Nat Commun ; 13(1): 976, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190534

ABSTRACT

The MORDOR trial in Niger, Malawi, and Tanzania found that biannual mass distribution of azithromycin to children younger than 5 years led to a 13.5% reduction in all-cause mortality (NCT02048007). To help elucidate the mechanism for mortality reduction, we report IgG responses to 11 malaria, bacterial, and protozoan pathogens using a multiplex bead assay in pre-specified substudy of 30 communities in the rural Niger placebo-controlled trial over a three-year period (n = 5642 blood specimens, n = 3814 children ages 1-59 months). Mass azithromycin reduces Campylobacter spp. force of infection by 29% (hazard ratio = 0.71, 95% CI: 0.56, 0.89; P = 0.004) but serological measures show no significant differences between groups for other pathogens against a backdrop of high transmission. Results align with a recent microbiome study in the communities. Given significant sequelae of Campylobacter infection among preschool aged children, our results support an important mechanism through which biannual mass distribution of azithromycin likely reduces mortality in Niger.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Azithromycin/administration & dosage , Child Mortality , Immunoglobulin G/blood , Mass Drug Administration , Campylobacter Infections/blood , Campylobacter Infections/immunology , Campylobacter Infections/mortality , Campylobacter Infections/prevention & control , Child , Child, Preschool , Cryptosporidiosis/blood , Cryptosporidiosis/immunology , Cryptosporidiosis/mortality , Cryptosporidiosis/parasitology , Drug Resistance, Bacterial , Escherichia coli Infections/blood , Escherichia coli Infections/immunology , Escherichia coli Infections/mortality , Escherichia coli Infections/prevention & control , Follow-Up Studies , Giardiasis/blood , Giardiasis/immunology , Giardiasis/mortality , Giardiasis/parasitology , Humans , Immunoglobulin G/immunology , Infant , Malaria/blood , Malaria/immunology , Malaria/mortality , Malaria/parasitology , Niger/epidemiology , Rural Population/statistics & numerical data , Salmonella Infections/blood , Salmonella Infections/immunology , Salmonella Infections/mortality , Salmonella Infections/prevention & control
11.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163280

ABSTRACT

The rapid identification of bacterial antibiotic susceptibility is pivotal to the rational administration of antibacterial drugs. In this study, cefotaxime (CTX)-derived resistance in Salmonella typhimurium (abbr. CTXr-S. typhimurium) during 3 months of exposure was rapidly recorded using a portable Raman spectrometer. The molecular changes that occurred in the drug-resistant strains were sensitively monitored in whole cells by label-free surface-enhanced Raman scattering (SERS). Various degrees of resistant strains could be accurately discriminated by applying multivariate statistical analyses to bacterial SERS profiles. Minimum inhibitory concentration (MIC) values showed a positive linear correlation with the relative Raman intensities of I990/I1348, and the R2 reached 0.9962. The SERS results were consistent with the data obtained by MIC assays, mutant prevention concentration (MPC) determinations, and Kirby-Bauer antibiotic susceptibility tests (K-B tests). This preliminary proof-of-concept study indicates the high potential of the SERS method to supplement the time-consuming conventional method and help alleviate the challenges of antibiotic resistance in clinical therapy.


Subject(s)
Salmonella Infections/immunology , Salmonella typhimurium/immunology , Spectrum Analysis, Raman/methods , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/drug effects , Humans , Salmonella Infections/diagnosis , Salmonella typhimurium/drug effects , Salmonella typhimurium/pathogenicity
12.
PLoS Pathog ; 18(1): e1009718, 2022 01.
Article in English | MEDLINE | ID: mdl-35073381

ABSTRACT

Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that uses two distinct type III secretion systems (T3SSs), termed Salmonella pathogenicity island (SPI)-1 and SPI-2, to deliver virulence factors into the host cell. The SPI-1 T3SS enables Salmonella to invade host cells, while the SPI-2 T3SS facilitates Salmonella's intracellular survival. In mice, a family of cytosolic immune sensors, including NAIP1, NAIP2, and NAIP5/6, recognizes the SPI-1 T3SS needle, inner rod, and flagellin proteins, respectively. Ligand recognition triggers assembly of the NAIP/NLRC4 inflammasome, which mediates caspase-1 activation, IL-1 family cytokine secretion, and pyroptosis of infected cells. In contrast to mice, humans encode a single NAIP that broadly recognizes all three ligands. The role of NAIP/NLRC4 or other inflammasomes during Salmonella infection of human macrophages is unclear. We find that although the NAIP/NLRC4 inflammasome is essential for detecting T3SS ligands in human macrophages, it is partially required for responses to infection, as Salmonella also activated the NLRP3 and CASP4/5 inflammasomes. Importantly, we demonstrate that combinatorial NAIP/NLRC4 and NLRP3 inflammasome activation restricts Salmonella replication in human macrophages. In contrast to SPI-1, the SPI-2 T3SS inner rod is not sensed by human or murine NAIPs, which is thought to allow Salmonella to evade host recognition and replicate intracellularly. Intriguingly, we find that human NAIP detects the SPI-2 T3SS needle protein. Critically, in the absence of both flagellin and the SPI-1 T3SS, the NAIP/NLRC4 inflammasome still controlled intracellular Salmonella burden. These findings reveal that recognition of Salmonella SPI-1 and SPI-2 T3SSs and engagement of both the NAIP/NLRC4 and NLRP3 inflammasomes control Salmonella infection in human macrophages.


Subject(s)
Inflammasomes/immunology , Macrophages/immunology , Macrophages/microbiology , Salmonella Infections/immunology , Type III Secretion Systems/immunology , CARD Signaling Adaptor Proteins/immunology , Calcium-Binding Proteins/immunology , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Neuronal Apoptosis-Inhibitory Protein/immunology , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Virulence
13.
PLoS Pathog ; 18(1): e1010241, 2022 01.
Article in English | MEDLINE | ID: mdl-35077524

ABSTRACT

Salmonella enterica causes intracellular infections that can be limited to the intestine or spread to deeper tissues. In most cases, intracellular bacteria show moderate growth. How these bacteria face host defenses that recognize peptidoglycan, is poorly understood. Here, we report a high-resolution structural analysis of the minute amounts of peptidoglycan purified from S. enterica serovar Typhimurium (S. Typhimurium) infecting fibroblasts, a cell type in which this pathogen undergoes moderate growth and persists for days intracellularly. The peptidoglycan of these non-proliferating bacteria contains atypical crosslinked muropeptides with stem peptides trimmed at the L-alanine-D-glutamic acid-(γ) or D-glutamic acid-(γ)-meso-diaminopimelic acid motifs, both sensed by intracellular immune receptors. This peptidoglycan has a reduced glycan chain average length and ~30% increase in the L,D-crosslink, a type of bridge shared by all the atypical crosslinked muropeptides identified. The L,D-transpeptidases LdtD (YcbB) and LdtE (YnhG) are responsible for the formation of these L,D-bridges in the peptidoglycan of intracellular bacteria. We also identified in a fraction of muropeptides an unprecedented modification in the peptidoglycan of intracellular S. Typhimurium consisting of the amino alcohol alaninol replacing the terminal (fourth) D-alanine. Alaninol was still detectable in the peptidoglycan of a double mutant lacking LdtD and LdtE, thereby ruling out the contribution of these enzymes to this chemical modification. Remarkably, all multiple mutants tested lacking candidate enzymes that either trim stem peptides or form the L,D-bridges retain the capacity to modify the terminal D-alanine to alaninol and all attenuate NF-κB nuclear translocation. These data inferred a potential role of alaninol-containing muropeptides in attenuating pro-inflammatory signaling, which was confirmed with a synthetic tetrapeptide bearing such amino alcohol. We suggest that the modification of D-alanine to alaninol in the peptidoglycan of non-proliferating intracellular S. Typhimurium is an editing process exploited by this pathogen to evade immune recognition inside host cells.


Subject(s)
Peptidoglycan/chemistry , Peptidoglycan/immunology , Salmonella Infections/immunology , Salmonella enterica/immunology , Salmonella enterica/metabolism , Cell Line , Cell Wall/chemistry , Cell Wall/immunology , Cell Wall/metabolism , Humans , Immune Tolerance/immunology , Peptidoglycan/metabolism
14.
J Biol Chem ; 298(1): 101461, 2022 01.
Article in English | MEDLINE | ID: mdl-34864057

ABSTRACT

Inflammasome signaling results in cell death and release of cytokines from the IL-1 family, which facilitates control over an infection. However, some pathogens such as Salmonella typhimurium (ST) activate various innate immune signaling pathways, including inflammasomes, yet evade these cell death mechanisms, resulting in a chronic infection. Here we investigated inflammasome signaling induced by acute and chronic isolates of ST obtained from different organs. We show that ST isolated from infected mice during the acute phase displays an increased potential to activate inflammasome signaling, which then undergoes a protracted decline during the chronic phase of infection. This decline in inflammasome signaling was associated with reduced expression of virulence factors, including flagella and the Salmonella pathogenicity island I genes. This reduction in cell death of macrophages induced by chronic isolates had the greatest impact on the NLRP3 inflammasome, which correlated with a reduction in caspase-1 activation. Furthermore, rapid cell death induced by Casp-1/11 by ST in macrophages limited the subsequent activation of cell death cascade proteins Casp-8, RipK1, RipK3, and MLKL to prevent the activation of alternative forms of cell death. We observed that the lack of the ability to induce cell death conferred a competitive fitness advantage to ST only during the acute phase of infection. Finally, we show that the chronic isolates displayed a significant attenuation in their ability to infect mice through the oral route. These results reveal that ST adapts during chronic infection by circumventing inflammasome recognition to promote the survival of both the host and the pathogen.


Subject(s)
Inflammasomes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Salmonella Infections , Salmonella typhimurium , Animals , Caspase 1/genetics , Caspase 1/metabolism , Host-Pathogen Interactions/immunology , Inflammasomes/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Salmonella Infections/immunology , Salmonella Infections/microbiology , Salmonella typhimurium/immunology , Salmonella typhimurium/isolation & purification
15.
Life Sci ; 288: 120201, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34864063

ABSTRACT

AIMS: The composition, overtly abundance, and diversity of gut microbiota, play a significant role in maintaining physiological homeostasis with age. Reports revealed that the gut microbial profile might be correlated with immunity and metabolism. It is, therefore, tantamount to know if an older individual can achieve the immunity and metabolic profile of a younger individual by receiving the gut microbiome of a younger individual. In the current report, we have studied the effects of cecal microbiota transplantation (CMT) from younger to older mice. MATERIALS AND METHODS: In this study, older BALB/c mice (23 weeks) received CMT from younger BALB/c mice (3 weeks). KEY FINDINGS: CMT recipient mice showed altered expressions of immune and tight junction protein genes in the colon of mice, while the non-CMT recipient mice did not. Older mice were treated with AVNM to make them compatible with CMT. Further data from metabolite studies revealed that AVNM treatment mainly affected the aromatic amino acid biosynthesis pathway while CMT mostly affected the metabolism of different carbohydrates. We repeated the analysis in C57BL/6 mice without any significant effects of CMT. SIGNIFICANCE: Results revealed that mice who received CMT showed more efficient restoration of gut microbiota than non-CMT recipient mice. CMT caused the alleviation of Salmonella infection and efficient recovery of the cecal index in the mice following antibiotics treatment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/growth & development , Cecum/transplantation , Fecal Microbiota Transplantation/methods , Salmonella Infections/therapy , Salmonella/immunology , Th2 Cells/immunology , Animals , Gastrointestinal Microbiome , Homeostasis , Immunity, Innate , Male , Metabolome , Metagenomics , Mice , Mice, Inbred BALB C , Salmonella/drug effects , Salmonella/genetics , Salmonella/metabolism , Salmonella Infections/immunology , Salmonella Infections/metabolism , Salmonella Infections/microbiology
16.
Infect Immun ; 90(1): e0047921, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34662213

ABSTRACT

A variety of eubacteria, plants, and protozoa can modify membrane lipids by cyclopropanation, which is reported to modulate membrane permeability and fluidity. The ability to cyclopropanate membrane lipids has been associated with resistance to oxidative stress in Mycobacterium tuberculosis, organic solvent stress in Escherichia coli, and acid stress in E. coli and Salmonella. In bacteria, the cfa gene encoding cyclopropane fatty acid (CFA) synthase is induced during the stationary phase of growth. In the present study, we constructed a cfa mutant of Salmonella enterica serovar Typhimurium 14028s (S. Typhimurium) and determined the contribution of CFA-modified lipids to stress resistance and virulence in mice. Cyclopropane fatty acid content was quantified in wild-type and cfa mutant S. Typhimurium. CFA levels in the cfa mutant were greatly reduced compared to CFA levels in the wild type, indicating that CFA synthase is the major enzyme responsible for cyclopropane modification of lipids in Salmonella. S. Typhimurium cfa mutants were more sensitive to extreme acid pH, the protonophore CCCP, and hydrogen peroxide compared to the wild type. In addition, cfa mutants exhibited reduced viability in murine macrophages and could be rescued by the addition of the NADPH phagocyte oxidase inhibitor diphenyleneiodonium (DPI) chloride. S. Typhimurium lacking cfa was also attenuated for virulence in mice. These observations indicate that CFA modification of lipids makes an important contribution to Salmonella virulence.


Subject(s)
Cyclopropanes/metabolism , Fatty Acids/metabolism , Salmonella Infections/microbiology , Salmonella typhimurium/physiology , Animals , Bacterial Physiological Phenomena , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Disease Models, Animal , Fatty Acids/chemistry , Fatty Acids/pharmacology , Hydrogen-Ion Concentration , Macrophages/drug effects , Macrophages/immunology , Macrophages/microbiology , Mice , Microbial Viability/drug effects , Microbial Viability/immunology , Mutation , Oxidative Stress , Salmonella Infections/immunology , Salmonella Infections/mortality , Salmonella typhimurium/drug effects , Virulence
17.
Infect Immun ; 90(1): e0051621, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34662214

ABSTRACT

Salmonella invades and disrupts gut epithelium integrity, creating an infection-generated electric field that can drive directional migration of macrophages, a process called galvanotaxis. Phagocytosis of bacteria reverses the direction of macrophage galvanotaxis, implicating a bioelectrical mechanism to initiate life-threatening disseminations. The force that drives direction reversal of macrophage galvanotaxis is not understood. One hypothesis is that Salmonella can alter the electrical properties of the macrophages by modifying host cell surface glycan composition, which is supported by the fact that cleavage of surface-exposed sialic acids with a bacterial neuraminidase severely impairs macrophage galvanotaxis, as well as phagocytosis. Here, we utilize N-glycan profiling by nanoLC-chip QTOF mass cytometry to characterize the bacterial neuraminidase-associated compositional shift of the macrophage glycocalyx, which revealed a decrease in sialylated and an increase in fucosylated and high mannose structures. The Salmonella nanH gene, encoding a putative neuraminidase, is required for invasion and internalization in a human colonic epithelial cell infection model. To determine whether NanH is required for the Salmonella infection-dependent direction reversal, we constructed and characterized a nanH deletion mutant and found that NanH is partially required for Salmonella infection in primary murine macrophages. However, compared to wild type Salmonella, infection with the nanH mutant only marginally reduced the cathode-oriented macrophage galvonotaxis, without canceling direction reversal. Together, these findings strongly suggest that while neuraminidase-mediated N-glycan modification impaired both macrophage phagocytosis and galvanotaxis, yet to be defined mechanisms other than NanH may play a more important role in bioelectrical control of macrophage trafficking, which potentially triggers dissemination.


Subject(s)
Chemotaxis, Leukocyte/immunology , Macrophages/immunology , Macrophages/metabolism , Neuraminidase/metabolism , Salmonella Infections/immunology , Salmonella Infections/metabolism , Salmonella/physiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Female , Host-Pathogen Interactions/immunology , Male , Mice , Models, Biological , Mutation , Phagocytosis/immunology , Polysaccharides/metabolism , Salmonella Infections/microbiology , Sialic Acids/metabolism , Virulence
18.
Mucosal Immunol ; 15(1): 130-142, 2022 01.
Article in English | MEDLINE | ID: mdl-34497340

ABSTRACT

Intestinal homeostasis and the maintenance of the intestinal epithelial barrier are essential components of host defense during gastrointestinal Salmonella Typhimurium infection. Both require a strict regulation of cell death. However, the molecular pathways regulating epithelial cell death have not been completely understood. Here, we elucidated the contribution of central mechanisms of regulated cell death and upstream regulatory components during gastrointestinal infection. Mice lacking Caspase-8 in the intestinal epithelium are highly sensitive towards bacterial induced enteritis and intestinal inflammation, resulting in an enhanced lethality of these mice. This phenotype was associated with an increased STAT1 activation during Salmonella infection. Cell death, barrier breakdown and systemic infection were abrogated by an additional deletion of STAT1 in Casp8ΔIEC mice. In the absence of epithelial STAT1, loss of epithelial cells was abolished which was accompanied by a reduced Caspase-8 activation. Mechanistically, we demonstrate that epithelial STAT1 acts upstream of Caspase-8-dependent as well as -independent cell death and thus might play a major role at the crossroad of several central cell death pathways in the intestinal epithelium. In summary, we uncovered that transcriptional control of STAT1 is an essential host response mechanism that is required for the maintenance of intestinal barrier function and host survival.


Subject(s)
Caspase 8/metabolism , Epithelial Cells/physiology , Gastrointestinal Diseases/immunology , STAT1 Transcription Factor/metabolism , Salmonella Infections/immunology , Salmonella typhimurium/physiology , Animals , Caspase 8/genetics , Cell Death , Homeostasis , Mice , Mice, Inbred C57BL , Mice, Knockout , STAT1 Transcription Factor/genetics , Signal Transduction
19.
Front Immunol ; 12: 725996, 2021.
Article in English | MEDLINE | ID: mdl-34887848

ABSTRACT

Objective: We investigated the correlation between nontyphoidal Salmonella (NTS) infection and systemic lupus erythematosus (SLE) risk. Methods: This case-control study comprised 6,517 patients with newly diagnosed SLE between 2006 and 2013. Patients without SLE were randomly selected as the control group and were matched at a case-control ratio of 1:20 by age, sex, and index year. All study individuals were traced from the index date back to their NTS exposure, other relevant covariates, or to the beginning of year 2000. Conditional logistic regression analysis was used to analyze the risk of SLE with adjusted odds ratios (aORs) and 95% confidence intervals (CIs) between the NTS and control groups. Results: The mean age was 37.8 years in the case and control groups. Females accounted for 85.5%. The aOR of having NTS infection were significantly increased in SLE relative to controls (aOR, 9.20; 95% CI, 4.51-18.78) in 1:20 sex-age matching analysis and (aOR, 7.47; 95% CI=2.08-26.82) in propensity score matching analysis. Subgroup analysis indicated that the SLE risk was high among those who dwelled in rural areas; had rheumatoid arthritis, multiple sclerosis, or Sjogren's syndrome; and developed intensive and severe NTS infection during admission. Conclusions: Exposure to NTS infection is associated with the development of subsequent SLE in Taiwanese individuals. Severe NTS infection and other autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, or Sjogren's syndrome also contributed to the risk of developing SLE.


Subject(s)
Lupus Erythematosus, Systemic/etiology , Salmonella Infections/complications , Adaptive Immunity , Adult , Case-Control Studies , Causality , Cytokines/metabolism , Female , Humans , Immunity, Innate , Logistic Models , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/immunology , Male , Middle Aged , Odds Ratio , Propensity Score , Risk Factors , Salmonella Infections/epidemiology , Salmonella Infections/immunology , Taiwan/epidemiology , Young Adult
20.
Viruses ; 13(12)2021 12 09.
Article in English | MEDLINE | ID: mdl-34960737

ABSTRACT

Non-typhoid Salmonella (NTS) represents one of the major causes of foodborne diseases, which are made worse by the increasing emergence of antibiotic resistance. Thus, NTS are a significant and common public health concern. The purpose of this study is to investigate whether selection for phage-resistance alters bacterial phenotype, making this approach suitable for candidate vaccine preparation. We therefore compared two strains of Salmonella enterica serovar Rissen: RR (the phage-resistant strain) and RW (the phage-sensitive strain) in order to investigate a potential cost associated with the bacterium virulence. We tested the ability of both RR and RW to infect phagocytic and non-phagocytic cell lines, the activity of virulence factors associated with the main Type-3 secretory system (T3SS), as well as the canonic inflammatory mediators. The mutant RR strain-compared to the wildtype RW strain-induced in the host a weaker innate immune response. We suggest that the mitigated inflammatory response very likely is due to structural modifications of the lipopolysaccharide (LPS). Our results indicate that phage-resistance might be exploited as a means for the development of LPS-based antibacterial vaccines.


Subject(s)
Bacteriophages/physiology , Salmonella Infections/immunology , Salmonella Infections/microbiology , Salmonella enterica/virology , Humans , Immunity, Innate , Salmonella enterica/genetics , Salmonella enterica/immunology , Salmonella enterica/pathogenicity , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...