Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Lett ; 368(7)2021 04 25.
Article in English | MEDLINE | ID: mdl-33830213

ABSTRACT

Salmonellosis is an important worldwide food-borne disease. Increasing resistance to Salmonella spp. has been reported in recent years, and now the prevalence of multidrug-resistant Salmonella spp. is a worldwide problem. This necessitates alternative approaches like phage therapy. This study aimed to isolate bacteriophages specific for Salmonella enterica serovar Paratyphi B and S. enterica serovar Typhimurium isolated from different sources (chicken meat, beef and eggshells). The antibiotic resistance profiles of the bacteria were determined by phenotypic and genotypic methods. The prevalence of extended-spectrum ß-lactamase genes was examined by polymerase chain reaction. In total, 75% of the isolated Salmonella strains were resistant to tetracycline, whereas 70% of them were resistant to azithromycin. All of the isolates from beef were resistant to nalidixic acid. The most common extended-spectrum ß-lactamase genes among the isolates were blaSHV (15%) followed by blaTEM (10%) and blaCTX (5%). Two specific bacteriophages were isolated and characterized. The host range for vB_SparS-ui was Salmonella Paratyphi B, S. enterica serovar Paratyphi A and S. enterica, while that for vB_StyS-sam phage was Salmonella Typhimurium and S. enterica serovar Enteritidis. The characteristics of the isolated phages indicate that they are proper candidates to be used to control some foodstuff contaminations and also phage therapy of infected animals.


Subject(s)
Salmonella Phages/isolation & purification , Salmonella Phages/physiology , Salmonella paratyphi B/virology , Salmonella typhimurium/virology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Genome, Viral/genetics , Host Specificity , Hydrogen-Ion Concentration , Salmonella Phages/ultrastructure , Salmonella enterica/drug effects , Salmonella enterica/genetics , Salmonella enterica/virology , Salmonella paratyphi B/drug effects , Salmonella paratyphi B/genetics , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Serogroup , Sodium Chloride , Temperature , Viral Proteins/chemistry , Viral Proteins/genetics
2.
Viruses ; 13(1)2020 12 25.
Article in English | MEDLINE | ID: mdl-33375688

ABSTRACT

The increasing emergence of antimicrobial resistance has become a global issue. Therefore, many researchers have attempted to develop alternative antibiotics. One promising alternative is bacteriophage. In this study, we focused on a jumbo-phage infecting Salmonella isolated from exotic pet markets. Using a Salmonella strain isolated from reptiles as a host, we isolated and characterized the novel jumbo-bacteriophage pSal-SNUABM-04. This phage was investigated in terms of its morphology, host infectivity, growth and lysis kinetics, and genome. The phage was classified as Myoviridae based on its morphological traits and showed a comparatively wide host range. The lysis efficacy test showed that the phage can inhibit bacterial growth in the planktonic state. Genetic analysis revealed that the phage possesses a 239,626-base pair genome with 280 putative open reading frames, 76 of which have a predicted function and 195 of which have none. By genome comparison with other jumbo phages, the phage was designated as a novel member of Machinavirus composed of Erwnina phages.


Subject(s)
Salmonella Phages/isolation & purification , Salmonella Phages/physiology , Salmonella/virology , Bacteriolysis , Genome, Viral , Genomics , Hydrogen-Ion Concentration , Open Reading Frames , Salmonella Phages/ultrastructure , Temperature , Whole Genome Sequencing
3.
Viruses ; 12(9)2020 08 19.
Article in English | MEDLINE | ID: mdl-32825132

ABSTRACT

"Giant" phages have genomes of >200 kbp, confined in correspondingly large capsids whose assembly and maturation are still poorly understood. Nevertheless, the first assembly product is likely to be, as in other tailed phages, a procapsid that subsequently matures and packages the DNA. The associated transformations include the cleavage of many proteins by the phage-encoded protease, as well as the thinning and angularization of the capsid. We exploited an amber mutation in the viral protease gene of the Salmonella giant phage SPN3US, which leads to the accumulation of a population of capsids with distinctive properties. Cryo-electron micrographs reveal patterns of internal density different from those of the DNA-filled heads of virions, leading us to call them "mottled capsids". Reconstructions show an outer shell with T = 27 symmetry, an embellishment of the HK97 prototype composed of the major capsid protein, gp75, which is similar to some other giant viruses. The mottled capsid has a T = 1 inner icosahedral shell that is a complex network of loosely connected densities composed mainly of the ejection proteins gp53 and gp54. Segmentation of this inner shell indicated that a number of densities (~12 per asymmetric unit) adopt a "twisted hook" conformation. Large patches of a proteinaceous tetragonal lattice with a 67 Å repeat were also present in the cell lysate. The unexpected nature of these novel inner shell and lattice structures poses questions as to their functions in virion assembly.


Subject(s)
Capsid/metabolism , Giant Viruses/physiology , Salmonella Phages/physiology , Virus Assembly , Capsid/ultrastructure , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cryoelectron Microscopy , DNA Packaging , Genome, Viral , Giant Viruses/genetics , Giant Viruses/ultrastructure , Salmonella/virology , Salmonella Phages/genetics , Salmonella Phages/ultrastructure , Virion/genetics , Virion/physiology , Virion/ultrastructure
4.
Viruses ; 12(7)2020 07 05.
Article in English | MEDLINE | ID: mdl-32635654

ABSTRACT

The head of Salmonella virus SPN3US is composed of ~50 different proteins and is unusual because within its packaged genome there is a mass (>40 MDa) of ejection or E proteins that enter the Salmonella cell. The assembly mechanisms of this complex structure are poorly understood. Previous studies showed that eight proteins in the mature SPN3US head had been cleaved by the prohead protease. In this study, we present the characterization of SPN3US prohead protease mutants using transmission electron microscopy and mass spectrometry. In the absence of the prohead protease, SPN3US head formation was severely impeded and proheads accumulated on the Salmonella inner membrane. This impediment is indicative of proteolysis being necessary for the release and subsequent DNA packaging of proheads in the wild-type phage. Proteomic analyses of gp245- proheads that the normal proteolytic processing of head proteins had not occurred. Assays of a recombinant, truncated form of the protease found it was active, leading us to hypothesize that the C-terminal propeptide has a role in targeting the protease into the prohead core. Our findings provide new evidence regarding the essential role of proteolysis for correct head assembly in this remarkable parasite.


Subject(s)
Capsid Proteins/metabolism , Capsid/metabolism , Salmonella Phages/metabolism , Virus Assembly , Capsid/ultrastructure , Genome, Viral/genetics , Mass Spectrometry , Microscopy, Electron, Transmission , Salmonella/virology , Salmonella Phages/genetics , Salmonella Phages/ultrastructure , Sequence Analysis, DNA , Virus Internalization
5.
Viruses ; 12(4)2020 04 09.
Article in English | MEDLINE | ID: mdl-32283768

ABSTRACT

Developing novel antimicrobials capable of controlling multidrug-resistant bacterial pathogens is essential to restrict the use of antibiotics. Bacteriophages (phages) constitute a major resource that can be harnessed as an alternative to traditional antimicrobial therapies. Phage ZCSE2 was isolated among several others from raw sewage but was distinguished by broad-spectrum activity against Salmonella serovars considered pathogenic to humans and animals. Lytic profiles of ZCSE2 against a panel of Salmonella were determined together with low temperature activity and pH stability. The morphological features of the phage and host infection processes were characterized using a combination of transmission electron and atomic force microscopies. Whole genome sequencing of ZCSE2 produced a complete DNA sequence of 53,965 bp. No known virulence genes were identified in the sequence data, making ZCSE2 a good candidate for phage-mediated biological control purposes. ZCSE2 was further tested against S. Enteritidis in liquid culture and was observed to reduce the target bacterium to below the limits of detection from initial concentrations of 107-108 Colony Forming Units (CFU)/mL. With a broad host-range against pathogenic Salmonella serovars, phage ZCSE2 constitutes a potential tool against a major cause of human and animal disease.


Subject(s)
Salmonella Infections/microbiology , Salmonella Phages/physiology , Salmonella enterica/virology , Bacteriolysis , Genome, Viral , Genomics/methods , Microscopy, Atomic Force , Phage Therapy , Salmonella Infections/therapy , Salmonella Phages/isolation & purification , Salmonella Phages/ultrastructure , Salmonella enterica/classification , Whole Genome Sequencing
6.
Microb Pathog ; 143: 104119, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32169489

ABSTRACT

Salmonella Enteritidis (S. Enteritidis), which could cause human disease and death by consuming the contaminated food, is an important zoonotic pathogen. With the rapid increase of antibiotic resistance all over the world, bacteriophage-based bio-control has gradually attracted public attention widely. In order to find a suitable phage treating S. Enteritidis infection, four phages infecting S. Enteritidis were isolated from poultry fecal samples. Host range showed that four phages had a broad-host-range to Salmonella isolates. The morphological analysis illustrated that all of those phages were classified as the Myoviridae family. The one-step growth curve indicated that bacteriophage BPSELC-1 has a short latent period of about 10 min and a large burst size of 500 pfu/cell in comparison to the other three phages. Then phage BPSELC-1 was sequenced and conducted in vitro experiment. The genome of phage BPSELC-1 is 86,996 bp in size and has 140 putative genes containing structure proteins-encoding genes, tRNA genes and DNA replication or nucleotide metabolism genes. Importantly, no known virulence-associated, antibiotic and lysogeny-related genes were identified in the genome of BPSELC-1. In vitro experiment of phage treatment pointed out that the number of viable S. Enteritidis ATCC 13076 was reduced by 5.9×log10 at MOI of 102 after 4 h. To the best of our knowledge, the phage BPSELC-1 exhibited higher efficiency in S. Enteritidis treatment compared to previous studies. Moreover, it is promising to be used as a broad-spectrum candidate against Salmonella infections in commercial owing to its broad-host-range.


Subject(s)
Salmonella Phages/genetics , DNA, Viral/genetics , Microscopy, Electron, Transmission , Phylogeny , Salmonella Phages/isolation & purification , Salmonella Phages/pathogenicity , Salmonella Phages/ultrastructure , Salmonella enteritidis/virology , Virulence , Whole Genome Sequencing
7.
Microb Pathog ; 136: 103659, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31398528

ABSTRACT

For effective use of phages as antimicrobial agents for controlling multidrug resistant S. Pullorum, it is important to understand phage biology. A lytic S. Pullorum phage was isolated and characterized from chicken feces, and its whole genome was sequenced and analyzed. A new lytic phage-vB_SPuM_SP116 (in brief SP116)- isolated and characterized using S. Pullorum SPu-116 as its host belongs to Myoviridae A1 group. Phage SP116 had a lytic effect on 27 of 37 (72.9%) different serotypes of clinical Salmonella strains. It showed a high bactericidal activity in killing all pathogens in cultures containing 5 × 105 cfu/mL and achieved more than 6.58 and 5.97 log unit reductions in cultures containing 5 × 106 cfu/mL and 5 × 107 cfu/mL, respectively. The one-step growth curve showed that the burst size was up to 118 pfu/bacterial cell. Complete genome sequence analysis revealed a linear, double-stranded DNA genome of 87,510 bp with an average G + C content of 38.84%, including 128 predicted open reading frames (ORFs) and 22 tRNA genes. SP116 was classified as a Felix O1 virus based upon the general phage characterization and the genomic information. Regarding its high efficacy in preventing especially S. Pullorum infection and its lack of any bacterial virulence, antimicrobial resistance, and lysogenesis genes, it could be a potential alternative candidate for the treatment of S. Pullorum infections.


Subject(s)
Host Specificity , Myoviridae/genetics , Myoviridae/ultrastructure , Salmonella Phages/genetics , Salmonella Phages/ultrastructure , Salmonella enterica/virology , Animals , Bacteriolysis , Base Composition , Chickens , Colony Count, Microbial , DNA, Viral/chemistry , DNA, Viral/genetics , Feces/virology , Genome, Viral , Microbial Viability , Myoviridae/isolation & purification , Myoviridae/physiology , Open Reading Frames , Phage Therapy , RNA, Transfer/genetics , Salmonella Infections/therapy , Salmonella Phages/isolation & purification , Salmonella Phages/physiology , Whole Genome Sequencing
8.
J Basic Microbiol ; 59(10): 1049-1062, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31347183

ABSTRACT

The aim of this study was to identify and characterize the SE-P3, P16, P37, and P47 phages infecting Salmonella Enteritidis. Transmission electron microscopy analysis showed that the SE phages belonged to the Myoviridae or Siphoviridae family and had plaque sizes between 0.622 ± 0.027 and 1.630 ± 0.036 mm in diameter. sefC, pefA, spvC, sopE, and gipA virulent gene regions were absent in their genome and their calculated genome sizes were between 35.9 and 37.8 kbp. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the protein profiles of each phage were different. The SE phages had a short latent period (10-20 min), large burst size (76-356 PFU/cell), and a short burst time (25-35 min). The multiplicity of infection values and mutant frequency of the phages were 0.01-0.0001 and 10-7 , respectively. They were very infective against their host bacteria when applied at 20°C, 30°C, or 37°C and adsorbed to their host cells by 96.20-97.65% in the first 5 min of incubation, and also Ca2+ ions did not have a significant effect on their adsorption. The SE phages were resistant to wide pH ranges and high temperatures. These results indicate that the SE phages are good candidates as therapeutic and biocontrol agents against foodborne pathogenic S. Enteritidis.


Subject(s)
Salmonella Phages/physiology , Salmonella enteritidis/virology , Bacteriolysis , Genome Size , Genome, Viral , Hot Temperature , Hydrogen-Ion Concentration , Mutation Rate , Myoviridae/classification , Myoviridae/genetics , Myoviridae/physiology , Myoviridae/ultrastructure , Salmonella Phages/classification , Salmonella Phages/genetics , Salmonella Phages/ultrastructure , Siphoviridae/classification , Siphoviridae/genetics , Siphoviridae/physiology , Siphoviridae/ultrastructure , Species Specificity , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Attachment , Virus Latency
9.
Virus Genes ; 55(4): 532-540, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31004278

ABSTRACT

A novel virulent bacteriophage vB_SpuP_Spp16 (hereafter designated Spp16) that infects Salmonella enterica serovar pullorum was isolated. Transmission electron microscopy showed that Spp16 possessed an isometric polyhedral head (60 nm in diameter) and a short tail (10 nm in length) belonging to the family Podoviridae. Its complete genome was determined to be 41,832 bp, with a 39.46% GC content by next-generation sequencing. The genome contains 53 proposed open reading frames that are involved in DNA replication and modification, transcriptional regulation, phage structural and packaging proteins and bacterial lysis. No transfer RNA genes were identified. The termini of genome were determined using our previously proposed termini identification method, which suggests that this phage has redundant termini with 421 bp direct terminal repeats. BLASTn analysis revealed the highest sequence similarity with Yersinia phage phi80-18, with a genome coverage of 33% and highest sequence identity of 69%. The phylogenetic analysis indicated that Spp16 forms a distinct branch of the subfamily Autographivirinae. Comparative genomics analysis showed that the phage Spp16 should be regarded as a new subcluster within the GAP227-like cluster in the Autographivirinae subfamily. The phage Spp16 has an obligate lytic life cycle demonstrated by experimental data and genomic analysis. These results suggest that Spp16 may be a proper candidate to control diseases caused by Salmonella enterica serovar pullorum.


Subject(s)
Genome, Viral , Salmonella Phages/genetics , Salmonella enterica/virology , Phylogeny , Salmonella Phages/classification , Salmonella Phages/isolation & purification , Salmonella Phages/ultrastructure , Species Specificity
10.
PLoS One ; 12(1): e0170734, 2017.
Article in English | MEDLINE | ID: mdl-28118395

ABSTRACT

Forty strains of Salmonella enterica (S. enterica) subspecies salamae (II), arizonae (IIIa), diarizonae (IIIb), and houtenae (IV) were isolated from human or environmental samples and tested for bacteriophage production. Production of bacteriophages was observed in 15 S. enterica strains (37.5%) belonging to either the subspecies salamae (8 strains) or diarizonae (7 strains). Activity of phages was tested against 52 pathogenic S. enterica subsp. enterica isolates and showed that phages produced by subsp. salamae had broader activity against pathogenic salmonellae compared to phages from the subsp. diarizonae. All 15 phages were analyzed using PCR amplification of phage-specific regions and 9 different amplification profiles were identified. Five phages (SEN1, SEN4, SEN5, SEN22, and SEN34) were completely sequenced and classified as temperate phages. Phages SEN4 and SEN5 were genetically identical, thus representing a single phage type (i.e. SEN4/5). SEN1 and SEN4/5 fit into the group of P2-like phages, while the SEN22 phage showed sequence relatedness to P22-like phages. Interestingly, while phage SEN34 was genetically distantly related to Lambda-like phages (Siphoviridae), it had the morphology of the Myoviridae family. Based on sequence analysis and electron microscopy, phages SEN1 and SEN4/5 were members of the Myoviridae family and phage SEN22 belonged to the Podoviridae family.


Subject(s)
Salmonella Phages/isolation & purification , Salmonella enterica/virology , Czechoslovakia , DNA, Viral/genetics , DNA, Viral/isolation & purification , Environmental Microbiology , Genome, Viral , Lysogeny , Microscopy, Electron , Phylogeny , Salmonella Infections/microbiology , Salmonella Phages/classification , Salmonella Phages/physiology , Salmonella Phages/ultrastructure , Salmonella enterica/isolation & purification , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Species Specificity , Viral Load
11.
Curr Microbiol ; 74(2): 175-183, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27900459

ABSTRACT

Salmonella Enteritidis remains a major threat for food safety. To take efforts to develop phage-based biocontrol for S. Enteritidis contamination in food, in this study, the phages against S. Enteritidis were isolated from sewage samples, characterized by host range assays, DNA restriction enzyme pattern analyses, and transmission electron microscope observations, and tested for antibacterial activity in food; some potent phages were further characterized by bioinformatic analyses. Results showed that based on the plaque quality and host range, seven lytic phages targeting S. Enteritidis were selected, considered as seven distinct phages through DNA physical maps, and classified as Myoviridae or Siphoviridae family by morphologic observations; the combined use of such seven strain phages as a "food additive" could succeed in controlling the artificial S. Enteritidis contamination in the different physical forms of food at a range of temperatures; by bioinformatic analyses, both selected phage BPS11Q3 and BPS15Q2 seemed to be newfound obligate lytic phage strains with no indications for any potentially harmful genes in their genomes. In conclusion, our results showed a potential of isolated phages as food additives for controlling S. Enteritidis contamination in some salmonellosis outbreak-associated food vehicles, and there could be minimized potential risk associated with using BPS11Q3 and BPS15Q2 in food.


Subject(s)
Computational Biology , Food Microbiology , Salmonella Phages/isolation & purification , Salmonella Phages/physiology , Salmonella enteritidis/virology , Bacteriolysis , DNA, Viral/genetics , Gene Order , Genes, Viral , Genome, Viral , Host Specificity , Microscopy, Electron, Transmission , Myoviridae/genetics , Myoviridae/isolation & purification , Myoviridae/physiology , Myoviridae/ultrastructure , Restriction Mapping , Salmonella Phages/genetics , Salmonella Phages/ultrastructure , Salmonella enteritidis/growth & development , Sewage/virology , Siphoviridae/genetics , Siphoviridae/isolation & purification , Siphoviridae/physiology , Siphoviridae/ultrastructure , Viral Plaque Assay , Virion/ultrastructure
12.
Arch Virol ; 161(2): 377-84, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26563319

ABSTRACT

While screening for new antimicrobial agents for multidrug-resistant Salmonella enterica, the novel lytic bacteriophage STP4-a was isolated and characterized. Phage morphology revealed that STP4-a belongs to the family Myoviridae. Bacterial challenge assays showed that different serovars of Salmonella enterica were susceptible to STP4-a infection. The genomic characteristics of STP4-a, containing 159,914 bp of dsDNA with an average GC content of 36.86 %, were determined. Furthermore, the endolysin of STP4-a was expressed and characterized. The novel endolysin, LysSTP4, has hydrolytic activity towards outer-membrane-permeabilized S. enterica and Escherichia coli. These results provide essential information for the development of novel phage-based biocontrol agents against S. enterica.


Subject(s)
Myoviridae/classification , Myoviridae/genetics , Salmonella Phages/classification , Salmonella Phages/genetics , Salmonella enterica/virology , Bacteriolysis , Base Composition , DNA, Viral/chemistry , DNA, Viral/genetics , Endopeptidases , Escherichia coli/drug effects , Gene Order , Genome, Viral , Host Specificity , Microscopy, Electron, Transmission , Molecular Sequence Data , Myoviridae/isolation & purification , Myoviridae/ultrastructure , Salmonella Phages/isolation & purification , Salmonella Phages/ultrastructure , Salmonella enterica/drug effects , Sequence Analysis, DNA
13.
Viruses ; 7(8): 4836-53, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26305252

ABSTRACT

Two lytic phages, vB_SenM-PA13076 (PA13076) and vB_SenM-PC2184 (PC2184), were isolated from chicken sewage and characterized with host strains Salmonella Enteritidis (SE) ATCC13076 and CVCC2184, respectively. Transmission electron microscopy revealed that they belonged to the family Myoviridae. The lytic abilities of these two phages in liquid culture showed 104 multiplicity of infection (MOI) was the best in inhibiting bacteria, with PC2184 exhibiting more activity than PA13076. The two phages exhibited broad host range within the genus Salmonella. Phage PA13076 and PC2184 had a lytic effect on 222 (71.4%) and 298 (95.8%) of the 311 epidemic Salmonella isolates, respectively. We tested the effectiveness of phage PA13076 and PC2184 as well as a cocktail combination of both in three different foods (chicken breast, pasteurized whole milk and Chinese cabbage) contaminated with SE. Samples were spiked with 1 × 10(4) CFU individual SE or a mixture of strains (ATCC13076 and CVCC2184), then treated with 1 × 10(8) PFU individual phage or a two phage cocktail, and incubated at 4 °C or 25 °C for 5 h. In general, the inhibitory effect of phage and phage cocktail was better at 4 °C than that at 25 °C, whereas the opposite result was observed in Chinese cabbage, and phage cocktail was better than either single phage. A significant reduction in bacterial numbers (1.5-4 log CFU/sample, p < 0.05) was observed in all tested foods. The two phages on the three food samples were relatively stable, especially at 4 ºC, with the phages exhibiting the greatest stability in milk. Our research shows that our phages have potential effectiveness as a bio-control agent of Salmonella in foods.


Subject(s)
Bacteriolysis , Food Microbiology , Food Safety/methods , Myoviridae/growth & development , Salmonella Phages/growth & development , Salmonella enteritidis/physiology , Salmonella enteritidis/virology , Animals , Bacterial Load , Brassica rapa/microbiology , Chickens , Host Specificity , Meat/microbiology , Microscopy, Electron, Transmission , Milk/microbiology , Myoviridae/classification , Myoviridae/isolation & purification , Myoviridae/ultrastructure , Salmonella Phages/classification , Salmonella Phages/isolation & purification , Salmonella Phages/ultrastructure , Sewage/virology , Temperature , Time Factors , Virion/ultrastructure
14.
Appl Environ Microbiol ; 79(16): 4829-37, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23747700

ABSTRACT

A novel flagellatropic phage of Salmonella enterica serovar Typhimurium, called iEPS5, was isolated and characterized. iEPS5 has an icosahedral head and a long noncontractile tail with a tail fiber. Genome sequencing revealed a double-stranded DNA of 59,254 bp having 73 open reading frames (ORFs). To identify the receptor for iEPS5, Tn5 transposon insertion mutants of S. Typhimurium SL1344 that were resistant to the phage were isolated. All of the phage-resistant mutants were found to have mutations in genes involved in flagellar formation, suggesting that the flagellum is the adsorption target of this phage. Analysis of phage infection using the ΔmotA mutant, which is flagellated but nonmotile, demonstrated the requirement of flagellar rotation for iEPS5 infection. Further analysis of phage infection using the ΔcheY mutant revealed that iEPS5 could infect host bacteria only when the flagellum is rotating counterclockwise (CCW). These results suggested that the CCW-rotating flagellar filament is essential for phage adsorption and required for successful infection by iEPS5. In contrast to the well-studied flagellatropic phage Chi, iEPS5 cannot infect the ΔfliK mutant that makes a polyhook without a flagellar filament, suggesting that these two flagellatropic phages utilize different infection mechanisms. Here, we present evidence that iEPS5 injects its DNA into the flagellar filament for infection by assessing DNA transfer from SYBR gold-labeled iEPS5 to the host bacteria.


Subject(s)
Genome, Viral , Salmonella Phages/genetics , Siphoviridae/genetics , DNA, Viral/genetics , DNA, Viral/metabolism , Flagella/virology , Microscopy, Electron, Transmission , Molecular Sequence Data , Open Reading Frames , Phylogeny , Salmonella Phages/ultrastructure , Salmonella typhimurium/genetics , Salmonella typhimurium/virology , Sequence Analysis, DNA , Siphoviridae/ultrastructure
15.
J Microbiol Biotechnol ; 23(10): 1478-83, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-23801253

ABSTRACT

In this study the isolation and characterization of three bacteriophages (ST4, L13, and SG3) infecting Salmonella gallinarum were carried out. They were further tested for their in vivo efficacy in phage therapy. All three phages belong to the Siphoviridae family with isometric heads and non-contractile tails. They have a broad host range among serovars of Salmonella enterica. The burst sizes were observed to be 1670, 80, and 28 for ST4, L13, and SG3, respectively. The in vivo efficacy of the phages was tested in chickens. Layer chickens were challenged with S. gallinarum, whereas contact chickens were cohabited without direct challenge. Each bacteriophage was orally inoculated in the form of feed additives. Mortality was observed and S. gallinarum was periodically re-isolated from the livers, spleens, and cecums of the chickens. Bacterial re-isolation from the organs and mortality decreased significantly in both challenged and contact chickens treated with the bacteriophages compared with untreated chickens serving as the control. The three bacteriophages may be effective alternatives to antibiotics for the control of fowl typhoid disease in chickens.


Subject(s)
Biological Therapy/methods , Poultry Diseases/microbiology , Poultry Diseases/therapy , Salmonella Infections, Animal/therapy , Salmonella Phages/growth & development , Animal Structures/microbiology , Animals , Chickens , DNA, Viral/chemistry , DNA, Viral/genetics , Host Specificity , Microscopy, Electron, Transmission , Molecular Sequence Data , Poultry Diseases/pathology , Salmonella Infections, Animal/pathology , Salmonella Phages/isolation & purification , Salmonella Phages/physiology , Salmonella Phages/ultrastructure , Salmonella enterica/virology , Sequence Analysis, DNA , Siphoviridae/growth & development , Siphoviridae/isolation & purification , Siphoviridae/physiology , Siphoviridae/ultrastructure , Survival Analysis , Virion/ultrastructure
16.
J Basic Microbiol ; 53(2): 111-20, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22733367

ABSTRACT

Salmonella enterica subsp. enterica serovar Enteritidis is a major causative agent of gastroenteritis with contaminated eggs and chicken meat being the major source of infection. Phages are seriously being considered as a safe and cheaper alternative to antibiotics. The intestinal content of chicken was used as source for isolating phages. Phage designated as ΦSP-1 was selected for the study. Transmission electron microscopy (TEM) of phage ΦSP-1 revealed that it belonged to family Podoviridae. The optimal multiplicity of infection (MOI) was 5 phages/cell. Latent and rise period were calculated to be 30 and 55 minutes respectively, while burst size was 44 phages/bacterial cell. The genome size of ΦSP-1 was estimated to be 86 kb from pulsed-field gel electrophoresis analysis (PFGE). The effect of different physical and chemical parameters like temperature, pH, salinity and CaCl2 were analyzed to optimize the conditions for large scale production of phages and to check the viability of ΦSP-1 under different physiochemical conditions. A temperature of 40 °C, pH 8 and 0.25 M NaCl were found to be optimum for phage adsorption and it was able to survive up to a temperature of 50 °C for 3 min. Capability to survive under hostile environmental conditions, absence of virulence genes in genome and genus specificity suggest suitability of ΦSP-1 to be used as a biocontrol agent.


Subject(s)
Bacteriolysis , Gastrointestinal Tract/virology , Podoviridae/isolation & purification , Salmonella Phages/isolation & purification , Salmonella enterica/virology , Animals , Calcium Chloride/metabolism , Chickens , DNA, Viral/chemistry , DNA, Viral/genetics , DNA, Viral/isolation & purification , Electrophoresis, Gel, Pulsed-Field , Hydrogen-Ion Concentration , Microbial Viability , Microscopy, Electron, Transmission , Molecular Sequence Data , Podoviridae/classification , Podoviridae/physiology , Podoviridae/ultrastructure , Salinity , Salmonella Phages/classification , Salmonella Phages/physiology , Salmonella Phages/ultrastructure , Sequence Analysis, DNA , Temperature , Virus Attachment/drug effects
17.
Appl Environ Microbiol ; 78(18): 6600-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22773654

ABSTRACT

Salmonella remains the major cause of food-borne diseases worldwide, with chickens known to be the main reservoir for this zoonotic pathogen. Among the many approaches to reducing Salmonella colonization of broilers, bacteriophage offers several advantages. In this study, three bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) obtained from our collection that exhibited a broad host range against Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium were characterized with respect to morphology, genome size, and restriction patterns. A cocktail composed of the three bacteriophages was more effective in promoting the lysis of S. Enteritidis and S. Typhimurium cultures than any of the three bacteriophages alone. In addition, the cocktail was able to lyse the Salmonella enterica serovars Virchow, Hadar, and Infantis. The effectiveness of the bacteriophage cocktail in reducing the concentration of S. Typhimurium was tested in two animal models using different treatment schedules. In the mouse model, 50% survival was obtained when the cocktail was administered simultaneously with bacterial infection and again at 6, 24, and 30 h postinfection. Likewise, in the White Leghorn chicken specific-pathogen-free (SPF) model, the best results, defined as a reduction of Salmonella concentration in the chicken cecum, were obtained when the bacteriophage cocktail was administered 1 day before or just after bacterial infection and then again on different days postinfection. Our results show that frequent treatment of the chickens with bacteriophage, and especially prior to colonization of the intestinal tract by Salmonella, is required to achieve effective bacterial reduction over time.


Subject(s)
Biological Therapy/methods , Carrier State/therapy , Salmonella Infections, Animal/prevention & control , Salmonella Infections, Animal/therapy , Salmonella Phages/growth & development , Salmonella enteritidis/virology , Salmonella typhimurium/virology , Animals , Bacterial Load , Bacteriolysis , Carrier State/microbiology , Cecum/microbiology , Chickens , Disease Models, Animal , Mice , Microbial Viability , Salmonella Infections, Animal/microbiology , Salmonella Phages/genetics , Salmonella Phages/isolation & purification , Salmonella Phages/ultrastructure , Salmonella enteritidis/physiology , Salmonella typhimurium/physiology , Survival Analysis , Time Factors
18.
Arch Virol ; 157(10): 2035-46, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22707043

ABSTRACT

We suggest a bacteriophage genus, "Viunalikevirus", as a new genus within the family Myoviridae. To date, this genus includes seven sequenced members: Salmonella phages ViI, SFP10 and ΦSH19; Escherichia phages CBA120 and PhaxI; Shigella phage phiSboM-AG3; and Dickeya phage LIMEstone1. Their shared myovirus morphology, with comparable head sizes and tail dimensions, and genome organization are considered distinguishing features. They appear to have conserved regulatory sequences, a horizontally acquired tRNA set and the probable substitution of an alternate base for thymine in the DNA. A close examination of the tail spike region in the DNA revealed four distinct tail spike proteins, an arrangement which might lead to the umbrella-like structures of the tails visible on electron micrographs. These properties set the suggested genus apart from the recently ratified subfamily Tevenvirinae, although a significant evolutionary relationship can be observed.


Subject(s)
Bacteriophages/classification , Bacteriophages/genetics , Myoviridae/classification , Myoviridae/genetics , Bacteriophages/ultrastructure , Coliphages/classification , Coliphages/genetics , Coliphages/ultrastructure , Genome, Viral , Glycoside Hydrolases , Myoviridae/ultrastructure , Phylogeny , Salmonella Phages/classification , Salmonella Phages/genetics , Salmonella Phages/ultrastructure , Sequence Analysis, DNA , Species Specificity , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Tail Proteins/chemistry , Viral Tail Proteins/genetics
19.
Epidemiol Infect ; 139(8): 1262-71, 2011 Aug.
Article in English | MEDLINE | ID: mdl-20950514

ABSTRACT

Salmonellosis is an internationally important disease of mammals and birds. Unique epidemics in New Zealand in the recent past include two Salmonella serovars: Salmonella enterica subsp. enterica serovar Typhimurium definitive type (DT) 160 (S. Typhimurium DT160) and S. Brandenburg. Although not a major threat internationally, in New Zealand S. Typhimurium DT160 has been the most common serovar isolated from humans, and continues to cause significant losses in wildlife. We have identified DNA differences between the first New Zealand isolate of S. Typhimurium DT160 and the genome-sequenced strain, S. Typhimurium LT2. All the differences could be accounted for in one cryptic phage ST64B, and one novel P22-like phage, ST160. The majority of the ST160 genome is almost identical to phage SE1 but has two regions not found in SE1 which are identical to the P22-like phage ST64T, suggesting that ST160 evolved from SE1 via two recombination events with ST64T. All of the New Zealand isolates of DT160 were identical indicating the clonal spread of this particular Salmonella. Some overseas isolates of S. Typhimurium DT160 differed from the New Zealand strain and contained SE1 phage rather than ST160. ST160 was also identified in New Zealand isolates of S. Typhimurium DT74 and S. Typhimurium RDNC-April06 and in S. Typhimurium DT160 isolates from the USA. The emergence of S. Typhimurium DT160 as a significant pathogen in New Zealand is postulated to have occurred due to the sensitivity of the Salmonella strains to the ST160 phage when S. Typhimurium DT160 first arrived.


Subject(s)
Prophages/growth & development , Prophages/genetics , Salmonella Phages/growth & development , Salmonella Phages/genetics , Salmonella typhimurium/virology , Animals , Birds , DNA, Viral/chemistry , DNA, Viral/genetics , Evolution, Molecular , Humans , Mammals , Molecular Sequence Data , New Zealand , Phylogeny , Podoviridae/genetics , Podoviridae/growth & development , Podoviridae/isolation & purification , Podoviridae/ultrastructure , Prophages/isolation & purification , Prophages/ultrastructure , Recombination, Genetic , Salmonella Phages/isolation & purification , Salmonella Phages/ultrastructure , Salmonella typhimurium/isolation & purification , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
20.
Appl Environ Microbiol ; 76(21): 7338-42, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20817806

ABSTRACT

We report the selection and amplification of the broad-host-range Salmonella phage phi PVP-SE1 in an alternative nonpathogenic host. The lytic spectrum and the phage DNA restriction profile were not modified upon replication in Escherichia coli Bl21, suggesting the possibility of producing this phage in a nonpathogenic host, contributing to the safety and easier approval of a product based on this Salmonella biocontrol agent.


Subject(s)
Escherichia coli/virology , Salmonella Phages/pathogenicity , Animals , Humans , Microscopy, Electron, Transmission , Phenotype , Polymorphism, Restriction Fragment Length/genetics , Salmonella Infections/prevention & control , Salmonella Infections, Animal/prevention & control , Salmonella Phages/genetics , Salmonella Phages/growth & development , Salmonella Phages/physiology , Salmonella Phages/ultrastructure , Salmonella enterica/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...