Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.588
Filter
1.
Food Microbiol ; 122: 104568, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839227

ABSTRACT

The plasmid of emerging S. Infantis (pESI) or pESI-like plasmid in Salmonella enterica Infantis are consistently reported in poultry and humans worldwide. However, there has been limited research on these plasmids of S. Infantis isolated from eggs. Therefore, this study aimed to analyze the prevalence and characteristics of S. Infantis carrying the pESI-like plasmid from eggs in egg grading and packing plants. In this study, the pESI-like plasmid was only detected in 18 (78.3%) of 23 S. Infantis isolates, and it was absent in the other 9 Salmonella serovars. In particular, S. Infantis isolates carrying the pESI-like plasmid showed the significantly higher resistance to ß-lactams, phenicols, cephams, aminoglycosides, quinolones, sulfonamides, and tetracyclines than Salmonella isolates without the pESI-like plasmid (p < 0.05). Moreover, all S. Infantis isolates carrying the pESI-like plasmid were identified as extended-spectrum ß-lactamase (ESBL) producer, harboring the blaCTX-M-65 and blaTEM-1 genes, and carried non-ß-lactamase resistance genes (ant(3'')-Ia, aph(4)-Ia, aac(3)-IVa, aph(3')-Ic, sul1, tetA, dfrA14, and floR) against five antimicrobial classes. However, all isolates without the pESI-like plasmid only carried the blaTEM-1 gene among the ß-lactamase genes, and either had no non-ß-lactamase resistance genes or harbored non-ß-lactamase resistance genes against one or two antimicrobial classes. Furthermore, all S. Infantis isolates carrying the pESI-like plasmid carried class 1 and 2 integrons and the aadA1 gene cassette, but none of the other isolates without the pESI-like plasmid harbored integrons. In particular, D87Y substitution in the gyrA gene and IncP replicon type were observed in all the S. Infantis isolates carrying the pESI-like plasmid but not in the S. Infantis isolates without the pESI-like plasmid. The distribution of pulsotypes between pESI-positive and pESI-negative S. Infantis isolates was clearly distinguished, but all S. Infantis isolates were classified as sequence type 32, regardless of whether they carried the pESI-like plasmid. This study is the first to report the characteristics of S. Infantis carrying the pESI-like plasmid isolated from eggs and can provide valuable information for formulating strategies to control the spread of Salmonella in the egg industry worldwide.


Subject(s)
Anti-Bacterial Agents , Eggs , Plasmids , beta-Lactamases , Plasmids/genetics , Republic of Korea , Anti-Bacterial Agents/pharmacology , Eggs/microbiology , Animals , beta-Lactamases/genetics , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Salmonella/drug effects , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Chickens/microbiology , Humans , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Salmonella enterica/classification
2.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38691424

ABSTRACT

Antibiotic persistence (heterotolerance) allows a subpopulation of bacteria to survive antibiotic-induced killing and contributes to the evolution of antibiotic resistance. Although bacteria typically live in microbial communities with complex ecological interactions, little is known about how microbial ecology affects antibiotic persistence. Here, we demonstrated within a synthetic two-species microbial mutualism of Escherichia coli and Salmonella enterica that the combination of cross-feeding and community spatial structure can emergently cause high antibiotic persistence in bacteria by increasing the cell-to-cell heterogeneity. Tracking ampicillin-induced death for bacteria on agar surfaces, we found that E. coli forms up to 55 times more antibiotic persisters in the cross-feeding coculture than in monoculture. This high persistence could not be explained solely by the presence of S. enterica, the presence of cross-feeding, average nutrient starvation, or spontaneous resistant mutations. Time-series fluorescent microscopy revealed increased cell-to-cell variation in E. coli lag time in the mutualistic co-culture. Furthermore, we discovered that an E. coli cell can survive antibiotic killing if the nearby S. enterica cells on which it relies die first. In conclusion, we showed that the high antibiotic persistence phenotype can be an emergent phenomenon caused by a combination of cross-feeding and spatial structure. Our work highlights the importance of considering spatially structured interactions during antibiotic treatment and understanding microbial community resilience more broadly.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Salmonella enterica , Symbiosis , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/growth & development , Anti-Bacterial Agents/pharmacology , Salmonella enterica/drug effects , Salmonella enterica/genetics , Coculture Techniques , Microbial Interactions , Ampicillin/pharmacology , Drug Resistance, Bacterial
3.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38717818

ABSTRACT

Evidence is accumulating in the literature that the horizontal spread of antimicrobial resistance (AMR) genes mediated by bacteriophages and bacteriophage-like plasmid (phage-plasmid) elements is much more common than previously envisioned. For instance, we recently identified and characterized a circular P1-like phage-plasmid harbouring a bla CTX-M-15 gene conferring extended-spectrum beta-lactamase (ESBL) resistance in Salmonella enterica serovar Typhi. As the prevalence and epidemiological relevance of such mechanisms has never been systematically assessed in Enterobacterales, in this study we carried out a follow-up retrospective analysis of UK Salmonella isolates previously sequenced as part of routine surveillance protocols between 2016 and 2021. Using a high-throughput bioinformatics pipeline we screened 47 784 isolates for the presence of the P1 lytic replication gene repL, identifying 226 positive isolates from 25 serovars and demonstrating that phage-plasmid elements are more frequent than previously thought. The affinity for phage-plasmids appears highly serovar-dependent, with several serovars being more likely hosts than others; most of the positive isolates (170/226) belonged to S. Typhimurium ST34 and ST19. The phage-plasmids ranged between 85.8 and 98.2 kb in size, with an average length of 92.1 kb; detailed analysis indicated a high amount of diversity in gene content and genomic architecture. In total, 132 phage-plasmids had the p0111 plasmid replication type, and 94 the IncY type; phylogenetic analysis indicated that both horizontal and vertical gene transmission mechanisms are likely to be involved in phage-plasmid propagation. Finally, phage-plasmids were present in isolates that were resistant and non-resistant to antimicrobials. In addition to providing a first comprehensive view of the presence of phage-plasmids in Salmonella, our work highlights the need for a better surveillance and understanding of phage-plasmids as AMR carriers, especially through their characterization with long-read sequencing.


Subject(s)
Plasmids , Salmonella enterica , Serogroup , Plasmids/genetics , Salmonella enterica/virology , Salmonella enterica/genetics , Salmonella Infections/microbiology , Bacteriophages/genetics , Bacteriophages/classification , Salmonella Phages/genetics , Salmonella Phages/classification , Humans , Phylogeny , Gene Transfer, Horizontal , Retrospective Studies
4.
Mol Genet Genomics ; 299(1): 61, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806731

ABSTRACT

Salmonella enterica serovar Infantis (S. Infantis) is a globally distributed non-typhoid serovar infecting humans and food-producing animals. Considering the zoonotic potential and public health importance of this serovar, strategies to characterizing, monitor and control this pathogen are of great importance. This study aimed to determine the genetic relatedness of 80 Brazilian S. Infantis genomes in comparison to 40 non-Brazilian genomes from 14 countries using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Multi-Locus Virulence Sequence Typing (CRISPR-MVLST). CRISPR spacers were searched using CRISPR-Cas++ and fimH and sseL alleles using BLAST and MEGA X. Results were analyzed using BioNumerics 7.6 in order to obtain similarity dendrograms. A total of 23 CRISPR1 and 11 CRISPR2 alleles formed by 37 and 26 types of spacers, respectively, were detected. MVLST revealed the presence of five fimH and three sseL alleles. CRISPR's similarity dendrogram showed 32 strain subtypes, with an overall similarity ≥ 78.6. The CRISPR-MVLST similarity dendrogram showed 37 subtypes, with an overall similarity ≥ 79.2. In conclusion, S. Infantis strains isolated from diverse sources in Brazil and other countries presented a high genetic similarity according to CRISPR and CRISPR-MVLST, regardless of their source, year, and/or place of isolation. These results suggest that both methods might be useful for molecular typing S. Infantis strains using WGS data.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Genome, Bacterial , Salmonella enterica , Brazil , Salmonella enterica/genetics , Salmonella enterica/classification , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome, Bacterial/genetics , Humans , Phylogeny , Multilocus Sequence Typing , Animals , CRISPR-Cas Systems/genetics , Serogroup
5.
PeerJ ; 12: e17306, 2024.
Article in English | MEDLINE | ID: mdl-38784399

ABSTRACT

Background: Salmonella enterica serovar Infantis (Salmonella Infantis) is a zoonotic, ubiquitous and foodborne pathogen of worldwide distribution. Despite Brazil's relevance as a major meat exporter, few studies were conducted to characterize strains of this serovar by genomic analyses in this country. Therefore, this study aimed to assess the diversity of 80 Salmonella Infantis strains isolated from veterinary, food and human sources in Brazil between 2013 and 2018 by comparative genomic analyses. Additional genomes of non-Brazilian countries (n = 18) were included for comparison purposes in some analyses. Methods: Analyses of whole-genome multi-locus sequence typing (wgMLST), using PGAdb-builder, and of fragmented genomes, using Gegenees, were conducted to compare the 80 Brazilian strains to the 18 non-Brazilian genomes. Pangenome analyses and calculations were performed for all Salmonella Infantis genomes analyzed. The presence of prophages was determined using PHASTER for the 80 Brazilian strains. The genome plasticity using BLAST Ring Image Generator (BRIG) and gene synteny using Mauve were evaluated for 20 selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Unique orthologous protein clusters were searched in ten selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Results: wgMLST and Gegenees showed a high genomic similarity among some Brazilian Salmonella Infantis genomes, and also the correlation of some clusters with non-Brazilian genomes. Gegenees also showed an overall similarity >91% among all Salmonella Infantis genomes. Pangenome calculations revealed an open pangenome for all Salmonella Infantis subsets analyzed and a high gene content in the core genomes. Fifteen types of prophages were detected among 97.5% of the Brazilian strains. BRIG and Mauve demonstrated a high structural similarity among the Brazilian and non-Brazilian isolates. Unique orthologous protein clusters related to biological processes, molecular functions, and cellular components were detected among Brazilian and non-Brazilian genomes. Conclusion: The results presented using different genomic approaches emphasized the significant genomic similarity among Brazilian Salmonella Infantis genomes analyzed, suggesting wide distribution of closely related genotypes among diverse sources in Brazil. The data generated contributed to novel information regarding the genomic diversity of Brazilian and non-Brazilian Salmonella Infantis in comparison. The different genetically related subtypes of Salmonella Infantis from Brazil can either occur exclusively within the country, or also in other countries, suggesting that some exportation of the Brazilian genotypes may have already occurred.


Subject(s)
Genome, Bacterial , Genomics , Multilocus Sequence Typing , Salmonella enterica , Brazil , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Genome, Bacterial/genetics , Humans , Animals , Salmonella Infections/microbiology , Salmonella Infections/epidemiology , Serogroup , Food Microbiology , Phylogeny , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology
6.
Braz J Microbiol ; 55(2): 1773-1781, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702536

ABSTRACT

The aim of this study was to identify virulence and antimicrobial resistance profiles and determine the sequence type (ST) by multilocus sequence typing (MLST) of Salmonella enterica isolates from bovine carcasses from slaughterhouse located in Minas Gerais state, Brazil, and its relationship with bovine isolates obtained on the American continent based on sequence type profile. The MLST results were compared with all Salmonella STs associated with cattle on American continent, and a multi-locus sequence tree (MS tree) was built. Among the 17 S. enterica isolates, five ST profiles identified, and ST10 were the most frequent, grouping seven (41.2%) isolates. The isolates presented 11 different profiles of virulence genes, and six different antibiotics resistance profiles. The survey on Enterobase platform showed 333 Salmonella STs from American continent, grouped into four different clusters. Most of the isolates in the present study (13/17), were concentrated in a single cluster (L4) composed by 74 STs. As a conclusion, five different STs were identified, with ST10 being the most common. The isolates showed great diversity of virulence genes and antibiotics resistance profiles. Most of the isolates of this study were grouped into a single cluster composed by 74 STs formed by bovine isolates obtained on the American continent.


Subject(s)
Anti-Bacterial Agents , Multilocus Sequence Typing , Salmonella Infections, Animal , Salmonella enterica , Virulence Factors , Animals , Cattle , Salmonella enterica/genetics , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Salmonella enterica/pathogenicity , Salmonella enterica/classification , Brazil , Anti-Bacterial Agents/pharmacology , Salmonella Infections, Animal/microbiology , Virulence/genetics , Virulence Factors/genetics , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Cattle Diseases/microbiology , Abattoirs
7.
Sci Rep ; 14(1): 12260, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806511

ABSTRACT

Salmonella enterica is a pathogenic bacterium known for causing severe typhoid fever in humans, making it important to study due to its potential health risks and significant impact on public health. This study provides evolutionary classification of proteins from Salmonella enterica pangenome. We classified 17,238 domains from 13,147 proteins from 79,758 Salmonella enterica strains and studied in detail domains of 272 proteins from 14 characterized Salmonella pathogenicity islands (SPIs). Among SPIs-related proteins, 90 proteins function in the secretion machinery. 41% domains of SPI proteins have no previous sequence annotation. By comparing clinical and environmental isolates, we identified 3682 proteins that are overrepresented in clinical group that we consider as potentially pathogenic. Among domains of potentially pathogenic proteins only 50% domains were annotated by sequence methods previously. Moreover, 36% (1330 out of 3682) of potentially pathogenic proteins cannot be classified into Evolutionary Classification of Protein Domains database (ECOD). Among classified domains of potentially pathogenic proteins the most populated homology groups include helix-turn-helix (HTH), Immunoglobulin-related, and P-loop domains-related. Functional analysis revealed overrepresentation of these protein in biological processes related to viral entry into host cell, antibiotic biosynthesis, DNA metabolism and conformation change, and underrepresentation in translational processes. Analysis of the potentially pathogenic proteins indicates that they form 119 clusters or novel potential pathogenicity islands (NPPIs) within the Salmonella genome, suggesting their potential contribution to the bacterium's virulence. One of the NPPIs revealed significant overrepresentation of potentially pathogenic proteins. Overall, our analysis revealed that identified potentially pathogenic proteins are poorly studied.


Subject(s)
Bacterial Proteins , Genome, Bacterial , Genomic Islands , Salmonella enterica , Genomic Islands/genetics , Salmonella enterica/genetics , Salmonella enterica/pathogenicity , Salmonella enterica/classification , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Humans , Protein Domains
8.
Nat Food ; 5(5): 413-422, 2024 May.
Article in English | MEDLINE | ID: mdl-38724686

ABSTRACT

Salmonella enterica causes severe food-borne infections through contamination of the food supply chain. Its evolution has been associated with human activities, especially animal husbandry. Advances in intensive farming and global transportation have substantially reshaped the pig industry, but their impact on the evolution of associated zoonotic pathogens such as S. enterica remains unresolved. Here we investigated the population fluctuation, accumulation of antimicrobial resistance genes and international serovar Choleraesuis transmission of nine pig-enriched S. enterica populations comprising more than 9,000 genomes. Most changes were found to be attributable to the developments of the modern pig industry. All pig-enriched salmonellae experienced host transfers in pigs and/or population expansions over the past century, with pigs and pork having become the main sources of S. enterica transmissions to other hosts. Overall, our analysis revealed strong associations between the transmission of pig-enriched salmonellae and the global pork trade.


Subject(s)
Salmonella enterica , Animals , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Swine , Europe/epidemiology , Humans , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/transmission , Salmonella Infections, Animal/microbiology , Swine Diseases/microbiology , Swine Diseases/transmission , Swine Diseases/epidemiology , Animal Husbandry/methods , Pork Meat/microbiology , Americas/epidemiology , Food Microbiology
9.
Int J Food Microbiol ; 417: 110708, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38653121

ABSTRACT

Salmonella Thompson is a prevalent foodborne pathogen and a major threat to food safety and public health. This study aims to reveal the dissemination mechanism of S. Thompson with co-resistance to ceftriaxone and ciprofloxacin. In this study, 181 S. Thompson isolates were obtained from a retrospective screening on 2118 serotyped Salmonella isolates from foods and patients, which were disseminated in 12 of 16 districts in Shanghai, China. A total of 10 (5.5 %) S. Thompson isolates exhibited resistance to ceftriaxone (MIC ranging from 8 to 32 µg/mL) and ciprofloxacin (MIC ranging from 2 to 8 µg/mL). The AmpC ß-lactamase gene blaCMY-2 and plasmid-mediated quinolone resistance (PMQR) genes of qnrS and qepA were identified in the 9 isolates. Conjugation results showed that the co-transfer of blaCMY-2, qnrS, and qepA occurred on the IncC plasmids with sizes of ∼150 (n = 8) or ∼138 (n = 1) kbp. Three typical modules of ISEcp1-blaCMY-2-blc-sugE, IS26-IS15DIV-qnrS-ISKpn19, and ISCR3-qepA-intl1 were identified in an ST3 IncC plasmid pSH11G0791. Phylogenetic analysis indicated that IncC plasmids evolved into Lineages 1, 2, and 3. IncC plasmids from China including pSH11G0791 in this study fell into Lineage 1 with those from the USA, suggesting their close genotype relationship. In conclusion, to our knowledge, it is the first report of the co-existence of blaCMY-2, qnrS, and qepA in IncC plasmids, and the conjugational transfer contributed to their dissemination in S. Thompson. These findings underline further challenges for the prevention and treatment of Enterobacteriaceae infections posed by IncC plasmids bearing blaCMY-2, qnrS, and qepA.


Subject(s)
Anti-Bacterial Agents , Diarrhea , Plasmids , Salmonella enterica , Seafood , Humans , Plasmids/genetics , China , Anti-Bacterial Agents/pharmacology , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Seafood/microbiology , Diarrhea/microbiology , Microbial Sensitivity Tests , beta-Lactamases/genetics , Retrospective Studies , Drug Resistance, Multiple, Bacterial/genetics , Ciprofloxacin/pharmacology , Ceftriaxone/pharmacology , Bacterial Proteins/genetics , Serogroup , Food Microbiology
10.
J Hazard Mater ; 471: 134323, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640680

ABSTRACT

Sensitive detection and point-of-care test of bacterial pathogens is of great significance in safeguarding the public health worldwide. Inspired by the characteristics of horseradish peroxidase (HRP), we synthesized a hybrid nanoflower with peroxidase-like activity via a three-component self-assembled strategy. Interestingly, the prepared nanozyme not only could act as an alternative to HRP for colorimetric biosensing, but also function as a unique signal probe that could be recognized by a pregnancy test strip. By combining the bifunctional properties of hybrid nanoflower, isothermal amplification of LAMP, and the specific recognition and non-specific cleavage properties of CRISPR/Cas12a system, the dual-readout CRISPR/Cas12a biosensor was developed for sensitive and rapid detection of Salmonella enterica. Moreover, this platform in the detection of Salmonella enterica had limits of detection of 1 cfu/mL (colorimetric assay) in the linear range of 101-108 cfu/mL and 102 cfu/mL (lateral flow assay) in the linear range of 102-108 cfu/mL, respectively. Furthermore, the developed biosensor exhibited good recoveries in the spiked samples (lake water and milk) with varying concentrations of Salmonella enterica. This work provides new insights for the design of multifunctional nanozyme and the development of innovative dual-readout CRISPR/Cas system-based biosensing platform for the detection of pathogens.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Salmonella enterica , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Biosensing Techniques/methods , Milk/microbiology , Nucleic Acid Amplification Techniques/methods , Nanostructures/chemistry , Colorimetry/methods , Animals , Limit of Detection , Molecular Diagnostic Techniques
11.
Avian Dis ; 68(1): 2-9, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687101

ABSTRACT

Salmonella enterica subspecies enterica serovar Gallinarum biovar Pullorum (S. Pullorum) is a pathogenic bacterium that causes Pullorum disease (PD). PD is an acute systemic disease that affects young chickens, causing white diarrhea and high mortality. Although many sanitary programs have been carried out to eradicate S. Pullorum, PD outbreaks have been reported in different types of birds (layers, broilers, breeders) worldwide. This study aimed to evaluate the evolution and genetic characteristics of S. Pullorum isolated from PD in Brazil. Phylogenetic analysis of S. Pullorum genomes sequenced in this study and available genomic databases demonstrated that all isolates from Brazil are from sequence type 92 (ST92) and cluster into two lineages (III and IV). ColpVC, IncFIC(FII), and IncFII(S) were plasmid replicons frequently found in the Brazilian lineages. Two resistance genes (aac(6')-Iaa, conferring resistance to aminoglycoside, disinfecting agents, and antiseptics (mdf(A)) and tetracycline (mdf(A)) were detected frequently. Altogether, these results are important to understand the circulation of S. Pullorum and, consequently, to develop strategies to reduce losses due to PD.


Evolución y perfil genómico de aislados de Salmonella enterica serovar Gallinarum biovar Pullorum de Brasil. Salmonella enterica subespecie enterica serovar Gallinarum biovar Pullorum (S. Pullorum) es una bacteria patógena que causa la enfermedad de Pullorum (EP). La EP es una enfermedad sistémica aguda que afecta a los pollos jóvenes causando diarrea blanca y alta mortalidad. Aunque se han llevado a cabo muchos programas sanitarios para erradicar S. Pullorum, se han informado brotes de EP en diferentes tipos de aves (ponedoras, pollos de engorde, reproductoras) en todo el mundo. Este estudio tuvo como objetivo evaluar la evolución y las características genéticas de S. Pullorum aislado de EP en Brasil. El análisis filogenético de los genomas de S. Pullorum secuenciados en este estudio y las bases de datos genómicas disponibles demostraron que todos los aislamientos de Brasil son del tipo de secuencia 92 (ST92) y se agrupan en dos linajes (III y IV). ColpVC, IncFIC (FII) e IncFII(S) fueron replicones de plásmidos frecuentemente encontrados en los linajes brasileños. Dos genes de resistencia (aac(6')-Iaa, que confiere resistencia a aminoglucósidos, desinfectantes y antisépticos (mdf(A)), y tetraciclina (mdf(A)) fueron detectados con frecuencia. En conjunto, estos resultados son importantes para comprender la circulación de S. Pullorum y, en consecuencia, desarrollar estrategias para reducir las pérdidas por EP.


Subject(s)
Chickens , Poultry Diseases , Salmonella Infections, Animal , Salmonella enterica , Brazil/epidemiology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Animals , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology , Salmonella enterica/genetics , Salmonella enterica/drug effects , Phylogeny , Genome, Bacterial , Serogroup , Evolution, Molecular
12.
Science ; 384(6691): 100-105, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38574144

ABSTRACT

Phage viruses shape the evolution and virulence of their bacterial hosts. The Salmonella enterica genome encodes several stress-inducible prophages. The Gifsy-1 prophage terminase protein, whose canonical function is to process phage DNA for packaging in the virus head, unexpectedly acts as a transfer ribonuclease (tRNase) under oxidative stress, cleaving the anticodon loop of tRNALeu. The ensuing RNA fragmentation compromises bacterial translation, intracellular survival, and recovery from oxidative stress in the vertebrate host. S. enterica adapts to this transfer RNA (tRNA) fragmentation by transcribing the RNA repair Rtc system. The counterintuitive translational arrest provided by tRNA cleavage may subvert prophage mobilization and give the host an opportunity for repair as a way of maintaining bacterial genome integrity and ultimately survival in animals.


Subject(s)
Endodeoxyribonucleases , Prophages , Salmonella Phages , Salmonella enterica , Viral Proteins , Animals , Endodeoxyribonucleases/metabolism , Oxidative Stress , Prophages/enzymology , Prophages/genetics , RNA , RNA, Transfer , Salmonella enterica/genetics , Salmonella enterica/virology , Salmonella Phages/enzymology , Salmonella Phages/genetics , Viral Proteins/metabolism
13.
J Bacteriol ; 206(4): e0004224, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38563759

ABSTRACT

In Salmonella enterica, the absence of the RidA deaminase results in the accumulation of the reactive enamine 2-aminoacrylate (2AA). The resulting 2AA stress impacts metabolism and prevents growth in some conditions by inactivating a specific target pyridoxal 5'-phosphate (PLP)-dependent enzyme(s). The detrimental effects of 2AA stress can be overcome by changing the sensitivity of a critical target enzyme or modifying flux in one or more nodes in the metabolic network. The catabolic L-alanine racemase DadX is a target of 2AA, which explains the inability of an alr ridA strain to use L-alanine as the sole nitrogen source. Spontaneous mutations that suppressed the growth defect of the alr ridA strain were identified as lesions in folE, which encodes GTP cyclohydrolase and catalyzes the first step of tetrahydrofolate (THF) synthesis. The data here show that THF limitation resulting from a folE lesion, or inhibition of dihydrofolate reductase (FolA) by trimethoprim, decreases the 2AA generated from endogenous serine. The data are consistent with an increased level of threonine, resulting from low folate levels, decreasing 2AA stress.IMPORTANCERidA is an enamine deaminase that has been characterized as preventing the 2-aminoacrylate (2AA) stress. In the absence of RidA, 2AA accumulates and damages various cellular enzymes. Much of the work describing the 2AA stress system has depended on the exogenous addition of serine to increase the production of the enamine stressor. The work herein focuses on understanding the effect of 2AA stress generated from endogenous serine pools. As such, this work describes the consequences of a subtle level of stress that nonetheless compromises growth in at least two conditions. Describing mechanisms that alter the physiological consequences of 2AA stress increases our understanding of endogenous metabolic stress and how the robustness of the metabolic network allows perturbations to be modulated.


Subject(s)
Salmonella enterica , Scrapie , Sheep , Animals , Salmonella enterica/genetics , Acrylates/metabolism , Bacterial Proteins/genetics , Pyridoxal Phosphate/metabolism , Tetrahydrofolates/metabolism , Serine/metabolism
14.
Diagn Microbiol Infect Dis ; 109(3): 116305, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643675

ABSTRACT

In this study, we present the complete annotated genome of a novel Salmonella phage, vB_SenS_ST1UNAM. This phage exhibits lytic activity against several Salmonella enterica serotypes, such as S. Typhi, S. Enteritidis, and S. Typhimurium strains, which are major causes of foodborne illness worldwide. Its genome consists of a linear, double-stranded DNA of 47,877 bp with an average G+C content of 46.6%. A total of 85 coding regions (CDS) were predicted, of which only 43 CDS were functionally assigned. Neither genes involved in the regulation of lysogeny, nor antibiotic resistance genes were identified. This phage harbors a lytic cassette that encodes a type II-holin and a Rz/Rz1-like spanin complex, along with a restriction-modification evasion system and a depolymerase that degrades Salmonella exopolysaccharide. Moreover, the comparative analysis with closely related phage genomes revealed that vB_SenS_ST1UNAM represents a novel genus, for which the genus "Gomezvirus" within the subfamily "ST1UNAM-like" is proposed.


Subject(s)
Base Composition , Genome, Viral , Salmonella Phages , Salmonella enterica , Serogroup , Genome, Viral/genetics , Salmonella enterica/virology , Salmonella enterica/genetics , Salmonella enterica/drug effects , Salmonella Phages/genetics , Salmonella Phages/classification , DNA, Viral/genetics , Sequence Analysis, DNA , Genomics/methods , Open Reading Frames
15.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673776

ABSTRACT

Salmonella enterica is a leading cause of bacterial food-borne illness in humans and is responsible for millions of cases annually. A critical strategy for the survival of this pathogen is the translocation of bacterial virulence factors termed effectors into host cells, which primarily function via protein-protein interactions with host proteins. The Salmonella genome encodes several paralogous effectors believed to have arisen from duplication events throughout the course of evolution. These paralogs can share structural similarities and enzymatic activities but have also demonstrated divergence in host cell targets or interaction partners and contributions to the intracellular lifecycle of Salmonella. The paralog effectors SopD and SopD2 share 63% amino acid sequence similarity and extensive structural homology yet have demonstrated divergence in secretion kinetics, intracellular localization, host targets, and roles in infection. SopD and SopD2 target host Rab GTPases, which represent critical regulators of intracellular trafficking that mediate diverse cellular functions. While SopD and SopD2 both manipulate Rab function, these paralogs display differences in Rab specificity, and the effectors have also evolved multiple mechanisms of action for GTPase manipulation. Here, we highlight this intriguing pair of paralog effectors in the context of host-pathogen interactions and discuss how this research has presented valuable insights into effector evolution.


Subject(s)
Bacterial Proteins , Host-Pathogen Interactions , Salmonella Infections , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Humans , Host-Pathogen Interactions/genetics , Salmonella Infections/microbiology , Salmonella Infections/metabolism , Salmonella enterica/metabolism , Salmonella enterica/genetics , Salmonella enterica/pathogenicity , Virulence Factors/metabolism , Virulence Factors/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Animals , Evolution, Molecular
16.
Microbiol Spectr ; 12(5): e0421623, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38563788

ABSTRACT

Antimicrobial resistance (AMR) poses an escalating global public health threat. Canals are essential in Thailand, including the capital city, Bangkok, as agricultural and daily water sources. However, the characteristic and antimicrobial-resistance properties of the bacteria in the urban canals have never been elucidated. This study employed whole genome sequencing to characterize 30 genomes of a causal pathogenic bacteria, Salmonella enterica, isolated from Bangkok canal water between 2016 and 2020. The dominant serotype was Salmonella Agona. In total, 35 AMR genes and 30 chromosomal-mediated gene mutations were identified, in which 21 strains carried both acquired genes and mutations associated with fluoroquinolone resistance. Virulence factors associated with invasion, adhesion, and survival during infection were detected in all study strains. 75.9% of the study stains were multidrug-resistant and all the strains harbored the necessary virulence factors associated with salmonellosis. One strain carried 20 resistance genes, including mcr-3.1, mutations in GyrA, ParC, and ParE, and typhoid toxin-associated genes. Fifteen plasmid replicon types were detected, with Col(pHAD28) being the most common type. Comparative analysis of nine S. Agona from Bangkok and 167 from public databases revealed that specific clonal lineages of S. Agona might have been circulating between canal water and food sources in Thailand and globally. These findings provide insight into potential pathogens in the aquatic ecosystem and support the inclusion of environmental samples into comprehensive AMR surveillance initiatives as part of a One Health approach. This approach aids in comprehending the rise and dissemination of AMR and devising sustainable intervention strategies.IMPORTANCEBangkok is the capital city of Thailand and home to a large canal network that serves the city in various ways. The presence of pathogenic and antimicrobial-resistant Salmonella is alarming and poses a significant public health risk. The present study is the first characterization of the genomic of Salmonella strains from Bangkok canal water. Twenty-two of 29 strains (75.9%) were multidrug-resistant Salmonella and all the strains carried essential virulence factors for pathogenesis. Various plasmid types were identified in these strains, potentially facilitating the horizontal transfer of AMR genes. Additional investigations indicated a potential circulation of S. Agona between canal water and food sources in Thailand. The current study underscores the role of environmental water in an urban city as a reservoir of pathogens and these data obtained can serve as a basis for public health risk assessment and help shape intervention strategies to combat AMR challenges in Thailand.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Virulence Factors , Whole Genome Sequencing , Thailand/epidemiology , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial/genetics , Water Microbiology , Plasmids/genetics , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Salmonella enterica/classification , Salmonella enterica/pathogenicity , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Salmonella/drug effects , Microbial Sensitivity Tests , Genomics , Humans , Phylogeny , Salmonella Infections/microbiology , Serogroup
17.
Poult Sci ; 103(6): 103733, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631233

ABSTRACT

Salmonella is considered one of the most common foodborne pathogens worldwide. The annual number of hospitalizations and deaths related to zoonotic salmonellosis, which is transmitted from animals to humans and infects poultry and meat, is expected to be significant. Hence, the primary aims of this research were to isolate and characterize Salmonella species obtained from an integrated poultry company and identify some virulence, and antimicrobial resistance, with a specific concern about colistin resistance genes. A total of 635 samples collected from various sources in an integrated company in Jordan were screened for Salmonella species accompanying their virulence and antimicrobial resistance genes. Samples were collected from parent stock house drag swabs, broiler farms, premix, cecum at the slaughterhouse level, prechilling and postchilling stages, and the final product. Salmonella species were detected in 3% (6/200) of investigated parent stock house drag swabs, 13.8% (11/80) from cloacal swabs from broiler farms, 16.9% (11/65) from boiler farms premix, 24.4% (11/45) from the cecum at slaughterhouse level, 16.4% (9/55) from the prechilling stage, 37.8% (17/45) from the postchilling stage and 53.3% (24/45) from the final product stage. No isolates were detected in feed mills (0/20), parents' premix (0/40), or hatcheries (0/40). Salmonella isolates were resistant to ciprofloxacin (91.0%), nalidixic acid (86.5%), doxycycline (83.1%), tetracycline (83.1%), sulphamethoxazole-trimethoprim (79.8%) and ampicillin (76.4%). Serotyping shows that S. Infantis was the predominant serovar, with 56.2%. Based on the minimum inhibitory concentration (MIC) test, 39.3% (35/89) of the isolates were resistant to colistin; however, no mcr genes were detected. Among antimicrobial-resistant genes, blaTEM was the most prevalent (88.8%). Furthermore, the spvC, ompA, and ompF virulence genes showed the highest percentages (97.8%, 97.8%, and 96.6%, respectively). In conclusion, Salmonella isolates were found at various stages in the integrated company. S. Infantis was the most prevalent serotype. No mcr genes were detected. Cross-contamination between poultry production stages highlights the importance of good hygiene practices. Furthermore, the presence of virulence genes and the patterns of antimicrobial resistance present significant challenges for public health.


Subject(s)
Chickens , Drug Resistance, Bacterial , Poultry Diseases , Salmonella Infections, Animal , Salmonella enterica , Animals , Jordan/epidemiology , Salmonella enterica/drug effects , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Chickens/microbiology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology , Virulence/genetics , Anti-Bacterial Agents/pharmacology , Prevalence
18.
Braz J Microbiol ; 55(2): 1703-1714, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38592593

ABSTRACT

The microbiological quality of meat is influenced by the conditions of hygiene prevailing during production and handling. Thus, this study aimed to assess the prevalence of Salmonella enterica and its antimicrobial resistance, load of hygiene indicator bacteria including E. coli (ECC), coliforms (CC), total coliform (TCC), Enterobacteriaceae (EB) and aerobic plate count (APC), and meat handler's food safety knowledge and hygiene practices in butcher shops in two cities, Addis Ababa and Hawassa in Ethiopia, during 2020 and 2021. A total of 360 samples of beef carcasses (n = 120), knives (n = 60), chopping boards (n = 60), weighing balance (n = 60), and personnel's hands (n = 60) were randomly collected for microbial analysis. Besides, 120 participants were selected to participate in a food safety knowledge and hygiene practices assessment. The S. enterica isolates were identified by agglutination test followed by qPCR targeting invA gene. Phenotypic antimicrobial resistance profiles of S. enterica were determined using disk diffusion assays as described in CLSI. The ECC, CC, TCC, EB, and APC populations were quantified by plating onto petrifilm plates. A structured questionnaire was used to determine food safety knowledge and hygiene practices of participants. Overall prevalence of S. enterica was 16.7% (95% CI, 8.3-26.7) and location seems to have no effect (p = 0.806). Only 20% of the S. enterica were resistant to ampicillin and tetracycline. However, the majority (80%) of S. enterica isolates were susceptible to the panel of 11 antimicrobials tested. The overall mean ± SD (log CFU/cm2) of ECC, CC, TCC, EB, and APC were 4.31 ± 1.15; 4.61 ± 1.33; 4.77 ± 1.32; 4.59 ± 1.38 and 5.87 ± 1.52, respectively. No significant difference (p = 0.123) in E. coli contamination was observed between samples of beef carcasses and chopping boards. The EB contamination showed no significant difference (p > 0.05) among sample sources. The APC contamination levels on beef carcass were significantly higher (p > 0.05) than other sample sources. A total of 56% (95% CI: 46.7 - 65.0) of the participants had poor knowledge and 65% (95% CI: 56.7 - 73.3) had poor hygiene practices towards food safety. This study highlighted the poor hygiene status of butcher facilities with a potential risk of beef safety. Thus, appropriate food safety control strategies and inspection is needed at retail establishments.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Hygiene , Salmonella enterica , Ethiopia/epidemiology , Salmonella enterica/drug effects , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Animals , Cattle , Humans , Anti-Bacterial Agents/pharmacology , Food Microbiology , Red Meat/microbiology , Adult , Food Safety , Food Handling , Male , Female , Microbial Sensitivity Tests , Young Adult
19.
Microbiol Spectr ; 12(6): e0011724, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687063

ABSTRACT

Oxford Nanopore sequencing is one of the high-throughput sequencing technologies that facilitates the reconstruction of metagenome-assembled genomes (MAGs). This study aimed to assess the potential of long-read assembly algorithms in Oxford Nanopore sequencing to enhance the MAG-based identification of bacterial pathogens using both simulated and mock communities. Simulated communities were generated to mimic those on fresh spinach and in surface water. Long reads were produced using R9.4.1+SQK-LSK109 and R10.4 + SQK-LSK112, with 0.5, 1, and 2 million reads. The simulated bacterial communities included multidrug-resistant Salmonella enterica serotypes Heidelberg, Montevideo, and Typhimurium in the fresh spinach community individually or in combination, as well as multidrug-resistant Pseudomonas aeruginosa in the surface water community. Real data sets of the ZymoBIOMICS HMW DNA Standard were also studied. A bioinformatic pipeline (MAGenie, freely available at https://github.com/jackchen129/MAGenie) that combines metagenome assembly, taxonomic classification, and sequence extraction was developed to reconstruct draft MAGs from metagenome assemblies. Five assemblers were evaluated based on a series of genomic analyses. Overall, Flye outperformed the other assemblers, followed by Shasta, Raven, and Unicycler, while Canu performed least effectively. In some instances, the extracted sequences resulted in draft MAGs and provided the locations and structures of antimicrobial resistance genes and mobile genetic elements. Our study showcases the viability of utilizing the extracted sequences for precise phylogenetic inference, as demonstrated by the consistent alignment of phylogenetic topology between the reference genome and the extracted sequences. R9.4.1+SQK-LSK109 was more effective in most cases than R10.4+SQK-LSK112, and greater sequencing depths generally led to more accurate results.IMPORTANCEBy examining diverse bacterial communities, particularly those housing multiple Salmonella enterica serotypes, this study holds significance in uncovering the potential of long-read assembly algorithms to improve metagenome-assembled genome (MAG)-based pathogen identification through Oxford Nanopore sequencing. Our research demonstrates that long-read assembly stands out as a promising avenue for boosting precision in MAG-based pathogen identification, thus advancing the development of more robust surveillance measures. The findings also support ongoing endeavors to fine-tune a bioinformatic pipeline for accurate pathogen identification within complex metagenomic samples.


Subject(s)
Algorithms , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Metagenome , Nanopore Sequencing , Nanopore Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Computational Biology/methods , Salmonella enterica/genetics , Salmonella enterica/classification , Salmonella enterica/isolation & purification , Metagenomics/methods , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/classification
20.
Microbiol Spectr ; 12(6): e0399423, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687075

ABSTRACT

Salmonella enterica serovar Kentucky ST198 is a major health threat due to its resistance to ciprofloxacin and several other drugs, including third-generation cephalosporins. Many drug-resistant genes have been identified in the Salmonella genomic island 1 variant K (SGI1-K). In this study, we investigated the antimicrobial resistance (AMR) profile and genotypic relatedness of two isolates of ciprofloxacin-resistant (CIPR) S. Kentucky ST198 from poultry in Northeastern Thailand. We successfully assembled the complete genomes of both isolates, namely SSSE-01 and SSSE-03, using hybrid de novo assembly of both short- and long-read sequence data. The complete genomes revealed their highly similar genomic structures and a novel variant of SGI1-K underlying multidrug-resistant (MDR) patterns, including the presence of blaTEM-1b, which confers resistance to beta-lactams, including cephalosporins and lnu(F) which confers resistance to lincomycin and other lincosamides. In addition, the chromosomal mutations in the quinolone resistance-determining region (QRDR) were found at positions 83 (Ser83Phe) and 87 (Asp87Asn) of GyrA and at positions 57 (Thr57Ser) and 80 (Ser80Ile) of ParC suggesting high resistance to ciprofloxacin. We also compared SSSE-01 and SSSE-03 with publicly available complete genome data and revealed significant variations in SGI1-K genetic structures and variable relationships to antibiotic resistance. In comparison to the other isolates, SGI1-K of SSSE-01 and SSSE-03 had a relatively large deletion in the backbone, spanning from S011 (traG∆) to S027 (resG), and the inversion of the IS26-S044∆-yidY segment. Their MDR region was characterized by the inversion of a large segment, including the mer operon and the relocation of IntI1 and several resistance genes downstream of the IS26-S044∆-yidY segment. These structural changes were likely mediated by the recombination of IS26. The findings broaden our understanding of the possible evolution pathway of SGI1-K in fostering drug resistance, which may provide opportunities to control these MDR strains.IMPORTANCEThe emergence of ciprofloxacin-resistant (CIPR) Salmonella Kentucky ST198 globally has raised significant concerns. This study focuses on two poultry isolates from Thailand, revealing a distinct Salmonella genomic island 1 variant K (SGI1-K) genetic structure. Remarkably, multiple antibiotic resistance genes (ARGs) were identified within the SGI1-K as well as other locations in the chromosome, but not in plasmids. Comparing the SGI1-K genetic structures among global and even within-country isolates unveiled substantial variations. Intriguingly, certain isolates lacked ARGs within the SGI1-K, while others had ARGs relocated outside. The presence of chromosomal extended-spectrum ß-lactamase (ESBL) genes and lincosamide resistance, lnu(F), gene, could potentially inform the choices of the treatment of CIPRS. Kentucky ST198 infections in humans. This study highlights the importance of understanding the diverse genetic structures of SGI1-K and emphasizes the role of animals and humans in the emergence of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genomic Islands , Salmonella enterica , Genomic Islands/genetics , Drug Resistance, Multiple, Bacterial/genetics , Salmonella enterica/genetics , Salmonella enterica/drug effects , Salmonella enterica/classification , Salmonella enterica/isolation & purification , Anti-Bacterial Agents/pharmacology , Animals , Serogroup , Microbial Sensitivity Tests , Ciprofloxacin/pharmacology , Thailand , Poultry/microbiology , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Bacterial Proteins/genetics , Genome, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...