Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 413
Filter
1.
Food Microbiol ; 122: 104552, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839232

ABSTRACT

In this study, we investigated the combined effect of 222 nm krypton-chlorine excilamp (EX) and 307 nm ultraviolet-B (UVB) light on the inactivation of Salmonella Typhimurium and Listeria monocytogenes on sliced cheese. The data confirmed that simultaneous exposure to EX and UVB irradiation for 80 s reduced S. Typhimurium and L. monocytogenes population by 3.50 and 3.20 log CFU/g, respectively, on sliced cheese. The synergistic cell count reductions in S. Typhimurium and L. monocytogenes in the combined treatment group were 0.88 and 0.59 log units, respectively. The inactivation mechanism underlying the EX and UVB combination treatment was evaluated using fluorescent staining. The combination of EX and UVB light induced the inactivation of reactive oxygen species (ROS) defense enzymes (superoxide dismutase) and synergistic ROS generation, resulting in synergistic lipid peroxidation and destruction of the cell membrane. There were no significant (P > 0.05) differences in the color, texture, or sensory attributes of sliced cheese between the combination treatment and control groups. These results demonstrate that combined treatment with EX and UVB light is a potential alternative strategy for inactivating foodborne pathogens in dairy products without affecting their quality.


Subject(s)
Cheese , Chlorine , Listeria monocytogenes , Reactive Oxygen Species , Salmonella typhimurium , Ultraviolet Rays , Cheese/microbiology , Cheese/analysis , Listeria monocytogenes/radiation effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/drug effects , Salmonella typhimurium/radiation effects , Salmonella typhimurium/growth & development , Salmonella typhimurium/drug effects , Reactive Oxygen Species/metabolism , Chlorine/pharmacology , Food Irradiation/methods , Food Microbiology , Microbial Viability/radiation effects , Colony Count, Microbial
2.
J Food Prot ; 85(8): 1172-1176, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35512126

ABSTRACT

ABSTRACT: Inshell walnuts can be contaminated with pathogens through direct contact or cross-contamination during harvesting and postharvest hulling, drying, or storage. This study aimed to assess the efficacy of UV-C radiation in inactivating foodborne pathogens on inshell walnut surfaces. Intact inshell walnut surfaces were inoculated separately with Salmonella,Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus and then were subjected to UV-C radiation at doses of 29.4, 147.0, 294.0, 588.0, and 882.0 mJ/cm2. UV-C radiation inactivated the inoculated pathogens in a dose-dependent manner, and a tailing effect was observed for the inactivation of pathogens. UV-C radiation at 29.4 and 882.0 mJ/cm2 reduced the populations of Salmonella Enteritidis PT 30, Salmonella Typhimurium, E. coli O157:H7, L. monocytogenes, and S. aureus on inshell walnut surfaces by 0.82 to 1.25 and 1.76 to 2.41 log CFU per walnut, respectively. Scanning electron photomicrographs showed pathogenic bacterial cells in the cracks and crevices of the inshell walnut surface, and the shielding of microorganisms by the cracks and crevices may have contributed to the tailing effect observed during UV-C inactivation. No significant changes (P > 0.05) were found in walnut lipid oxidation following UV-C radiation at doses up to 882.0 mJ/cm2. Together, the results indicate that UV-C radiation could be a potential technology for reducing the populations of various foodborne pathogens on inshell walnut surfaces while maintaining the quality of walnuts.


Subject(s)
Escherichia coli O157 , Juglans , Listeria monocytogenes , Colony Count, Microbial , Escherichia coli O157/radiation effects , Food Microbiology , Juglans/microbiology , Listeria monocytogenes/physiology , Salmonella typhimurium/radiation effects , Staphylococcus aureus
3.
Foodborne Pathog Dis ; 18(8): 599-606, 2021 08.
Article in English | MEDLINE | ID: mdl-34403268

ABSTRACT

Salmonella is a global foodborne pathogen that causes human diseases ranging from mild gastroenteritis to severe systemic infections. Recently, antimicrobial blue light (aBL) showed effective bactericidal activity against a variety of bacteria (e.g., Salmonella) with varying efficiency. However, the antimicrobial mechanism of aBL has not been fully elucidated. Our previous report showed that the outer membrane (OM) is a key target of aBL. The major component of the OM, lipopolysaccharide (LPS), may play a role in aBL bactericidal effect. Therefore, the influence of LPS truncation on the sensitivity of Salmonella Typhimurium SL1344 to aBL was investigated for the first time. First, the rfaC gene in the SL1344 strain likely involved in linking lipid A to the core region of LPS was inactivated and the influence on LPS structure was verified in the mutant strain SL1344ΔrfaC. SL1344ΔrfaC showed a significant increase in sensitivity to aBL, and the bactericidal efficiency exceeded 8 log CFU at an aBL dose of 383 J/cm2, while that of its parental SL1344 strain approached 4 log CFU. To discover the possible mechanism of higher sensitivity, the permeability of OM was determined. Compared to SL1344, SL1344ΔrfaC showed 2.7-fold higher permeability of the OM at 20 J/cm2, this may explain the higher vulnerability of the OM to aBL. Furthermore, the fatty acid profile was analyzed to reveal the detailed changes in the OM and inner membrane of the mutant. Results showed that the membrane lipids of SL1344ΔrfaC were markedly different to SL1344, indicating that change in fatty acid profile might mediate the enhancement of OM permeability and the increased sensitivity to aBL in SL1344ΔrfaC. Hence, we concluded that disruption of rfaC in Salmonella Typhimurium led to the formation of truncated LPS and thus enhanced the permeability of the OM, which contributed to the increased sensitivity to aBL.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bacterial Outer Membrane Proteins/radiation effects , Phototherapy/methods , Salmonella typhimurium/genetics , Salmonella typhimurium/radiation effects , Bacterial Outer Membrane Proteins/metabolism , Cell Membrane Permeability/radiation effects , Humans , Lipopolysaccharides/biosynthesis , Microbial Viability , Mutation
4.
Food Microbiol ; 99: 103825, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34119110

ABSTRACT

This study aimed to investigate the effect of different growth temperatures on the resistance of Escherichia coli O157:H7 and Salmonella Typhimurium to low-energy X-ray irradiation. Irradiation of contaminated phosphate-buffered saline with 0.6 kGy X-ray decreased the counts of E. coli O157:H7 cultured at 37 °C to below the detection limit (<1.0 colony-forming unit (CFU)/mL) and those of E. coli O157:H7 cultured at 25 and 15 °C by 4.82 and 4.45 log CFU/mL, respectively. The viable counts of S. Typhimurium cultured at 37, 25, and 15 °C in phosphate-buffered saline decreased by 3.56, 3.08, and 2.75 log CFU/mL, respectively, after irradiation with 0.6 kGy X-ray. Irradiation of contaminated lettuce with 0.4 kGy decreased the counts of E. coli O157:H7 cultured at 37, 25, and 15 °C by 3.97, 3.45, and 3.10 log CFU/cm2, respectively, and those of S. Typhimurium by 4.41, 3.84, and 3.40 log CFU/cm2, respectively. Growth temperature influenced pathogen resistance to X-ray irradiation by modulating cellular membrane and DNA integrity, intracellular enzyme activity, and efflux pump function. The results of this study suggest that the stress resistance status of pathogenic bacteria cultured at different growth temperatures should be considered for the application of X-ray irradiation for fresh produce sterilization.


Subject(s)
Escherichia coli O157/growth & development , Escherichia coli O157/radiation effects , Lactuca/microbiology , Salmonella typhimurium/growth & development , Salmonella typhimurium/radiation effects , Colony Count, Microbial , Food Contamination/prevention & control , Food Irradiation , Plant Leaves/microbiology , Temperature , X-Rays
5.
Appl Environ Microbiol ; 87(15): e0063121, 2021 07 13.
Article in English | MEDLINE | ID: mdl-33990307

ABSTRACT

The aim of this study was to evaluate the antibacterial activity of caffeic acid (CA), which is a natural polyphenol, combined with UV-A light against the representative foodborne bacteria Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes. Data regarding the inactivation of these bacteria and its dependence on CA concentration, light wavelength, and light dose were obtained. E. coli O157:H7 and Salmonella Typhimurium were reduced to the detection limit when treated with 3 mM CA and UV-A for 3 J/cm2 and 4 J/cm2, respectively, and 5 J/cm2 treatment induced 3.10 log reduction in L. monocytogenes. To investigate the mechanism for inactivation of Salmonella Typhimurium and L. monocytogenes, measurement of polyphenol uptake, membrane damage assessment, enzymatic activity assay, and transmission electron microscopy (TEM) were conducted. It was revealed that CA was significantly (P < 0.05) absorbed by bacterial cells, and UV-A light allowed a higher uptake of CA for both pathogens. Additionally, CA plus UV-A treatment induced significant (P < 0.05) cell membrane damage. In the enzymatic activity assay, the activities of both pathogens were reduced by CA, and a greater reduction occurred by use of CA plus UV-A. Moreover, transmission electron microscopy (TEM) images indicated that CA plus UV-A treatment notably destroyed the intercellular structure. In addition, antibacterial activity was also observed in commercial apple juice, which showed results similar to those obtained from phosphate-buffered saline (PBS), resulting in a significant (P < 0.05) reduction for all three pathogens without any changes in color parameters (L*, a*, and b*), total phenolic compounds, and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity. IMPORTANCE Photodynamic inactivation (PDI), which involves photoactivation of a photosensitizer (PS), is an emerging field of study, as it effectively reduces various kinds of microorganisms. Although there are several PSs that have been used for PDI, there is a need to find naturally occurring PSs for safer application in the food industry. Caffeic acid, a natural polyphenol found in most fruits and vegetables, has recently been studied for its potential to act as a novel photosensitizer. However, no studies have been conducted regarding its antibacterial activity depending on treatment conditions and its antibacterial mechanism. In this study, we closely examined the effectiveness of caffeic acid in combination with UV-A light for inactivating representative foodborne bacteria in liquid medium. Therefore, the results of this research are expected to be utilized as basic data for future application of caffeic acid in PDI, especially when controlling pathogens in liquid food processing.


Subject(s)
Anti-Bacterial Agents/pharmacology , Caffeic Acids/pharmacology , Escherichia coli O157 , Food Preservation/methods , Fruit and Vegetable Juices/microbiology , Listeria monocytogenes , Salmonella typhimurium , Ultraviolet Rays , Cell Membrane/drug effects , Cell Membrane/radiation effects , Escherichia coli O157/drug effects , Escherichia coli O157/growth & development , Escherichia coli O157/metabolism , Escherichia coli O157/radiation effects , Food Microbiology , Fruit , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/metabolism , Listeria monocytogenes/radiation effects , Malus , Polyphenols/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/growth & development , Salmonella typhimurium/metabolism , Salmonella typhimurium/radiation effects
6.
Meat Sci ; 172: 108308, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32966953

ABSTRACT

This study aimed to test the effect of UV-C light (0.01-0.64 J/cm2) (UV) and lactic acid (0.1-12.9%) (LA) combined treatment on sliced Brazilian dry-cured loin (Socol, BDL) for (i) Salmonella Typhimurium reduction, (ii) physicochemical changes (color (a*, cured color, and ΔE), protein and lipid oxidation) and (iii) optimization using response surface methodology (RSM). Linear inactivation rate was achieved and UV was 2-fold more efficient than LA to inactivate S. Typhimurium. At the same time these combined technologies increased lipid (linear rate, R2adj = 0.88), protein oxidation (quadratic rate, R2adj = 0.86) and meat discoloration. Furthermore, the minimum point of the physicochemical changes was obtained using RSM, and the decontamination process was optimized. Hence, a reduction of 1.3 log cfu/g was achieved using 0.36 J/cm2 of UV and 7.7% of LA. These combined methods represent a promising industrial intervention strategy to dry-meat safety and quality.


Subject(s)
Lactic Acid/pharmacology , Meat Products/microbiology , Salmonella typhimurium/drug effects , Salmonella typhimurium/radiation effects , Ultraviolet Rays , Animals , Color , Decontamination/methods , Food Handling/methods , Food Microbiology , Meat Products/analysis , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Swine
7.
Food Sci Technol Int ; 27(2): 99-111, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32580589

ABSTRACT

As a result of increasing interest in non-thermal technologies as a possible alternative or complementary to milk pasteurization processing, the objectives of this study were to determine the effects of different ultraviolet-C light doses on the viability of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium and chemical changes to camel milk components. Pasteurized and inoculated camel milk samples were ultraviolet-C treated in a continuous flow system. The viability of E. coli O157:H7 and S. Typhimurium was evaluated with both in vivo imaging system and traditional plate count agar method. Samples subjected to the 4.15, 8.30, and 12.45 mJ/cm2 of ultraviolet-C treatment resulted in 1.9, 3.3, and 3.9-log reductions in E. coli O157:H7 and 0.9, 3, and 3.9-log reductions in S. Typhimurium, respectively. The measurement of secondary lipid peroxidation products (or ThioBarbituric Acid Reactive Substance values) showed no significant (P > 0.05) differences between the raw and ultraviolet-C treated milk samples. Additionally, no changes (P > 0.05) in the protein profiles of αs1-casein, α-lactalbumin, and lactoferrin were observed between both samples. Compared to the untreated raw milk, c9t11 conjugated linoleic acid decreased (P < 0.01) while t10c12 conjugated linoleic acid increased (P < 0.01) in the ultraviolet-C treated milk. Furthermore, three new volatile compounds were identified in the ultraviolet-C treated milk compared to the control. In conclusion, milk treated with the ultraviolet-C light at a dose of 12.45 mJ/cm2 did not meet the Food and Drug Administration (FDA) requirements for the 5-log pathogen reduction. The ultraviolet-C treatment, on the other hand, had minimal effects on camel milk components.


Subject(s)
Escherichia coli O157 , Food Microbiology , Milk , Salmonella typhimurium , Ultraviolet Rays , Animals , Camelus , Colony Count, Microbial , Escherichia coli O157/radiation effects , Food Microbiology/methods , Milk/microbiology , Salmonella typhimurium/radiation effects
8.
Food Microbiol ; 92: 103584, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32950168

ABSTRACT

The objectives of this study were to evaluate the bactericidal effects of X-ray irradiation and gallic acid (GA) against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on lettuce leaves and in phosphate-buffered saline (PBS). Inoculated PBS and lettuce were exposed to X-rays (0.05, 0.1, and 0.15; 0.1, 0.2, and 0.3 kGy, respectively), and GA was applied to lettuce leaves as a solution and in PBS at concentrations of 0.5% (w/v). Combined treatment with 0.3 kGy and 0.5% GA reduced E. coli O157:H7, S. Typhimurium, and L. monocytogenes cell counts 5.41, 2.57, and 1.36 log CFU/cm2 on lettuce, respectively. Combined treatment with 0.15 kGy X-ray and 0.5% GA reduced counts for the same species by 6.54, 4.24, and 1.51 log CFU/mL in PBS. The combined treatments exerted a synergistic antibacterial effect against E. coli O157:H7 on lettuce, but not against S. Typhimurium or L. monocytogenes. In PBS, the synergistic effect was confirmed in both E. coli O157:H7 and S. Typhimurium cells. Mechanistic investigations indicated that the synergistic antibacterial effect was associated with intracellular reactive oxygen species (ROS) generation and bacterial cell membrane damage. Additionally, the X-ray and GA combination treatment did not adversely affect the color, total phenol content, and texture of lettuce. These findings demonstrate that treatment with X-ray radiation and GA can enhance the microbiological safety of fresh produce.


Subject(s)
Anti-Bacterial Agents/pharmacology , Food Preservation/methods , Gallic Acid/pharmacology , Lactuca/microbiology , Colony Count, Microbial , Escherichia coli O157/drug effects , Escherichia coli O157/growth & development , Escherichia coli O157/radiation effects , Food Irradiation/methods , Food Preservation/instrumentation , Food Preservatives/pharmacology , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/radiation effects , Microbial Viability/drug effects , Microbial Viability/radiation effects , Salmonella typhimurium/drug effects , Salmonella typhimurium/growth & development , Salmonella typhimurium/radiation effects , X-Rays
9.
Bioelectrochemistry ; 135: 107580, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32526677

ABSTRACT

This study aimed to gain more in-depth knowledge of the mechanisms involved in microbial inactivation by pulsed electric fields (PEF) to understand the tailing observed in survival curves of Salmonella Typhimurium (STCC 878). The comparison of the inactivation achieved by the application of one train of pulses with those obtained with pulses applied in two trains shows that the tail of the survival curves was a consequence of a transient increment of the microbial resistance to the effect of the electric field in a proportion of the cells. After some time following the application of the first pulse train, cells became again sensitive to the second train, and tailing tended to disappear. The required time was highly dependent on the characteristics of the incubation medium. Similar effects were observed when the treatments were validated on whole milk and orange juice. This study has demonstrated by the first time on microbial cells the benefits of splitting the delivered PEF treatment in two trains with a period of delay between them. Therefore, this insight opens up the possibility of developing new strategies to achieve the required inactivation levels to guarantee food safety by moderate PEF treatments.


Subject(s)
Electricity , Salmonella typhimurium/radiation effects , Electroporation , Hydrogen-Ion Concentration , Microbial Viability
10.
Food Microbiol ; 87: 103382, 2020 May.
Article in English | MEDLINE | ID: mdl-31948623

ABSTRACT

Although due to their acidity some fruit juices are considered safe, several outbreaks have been reported. For processing fruit juices, microwave heating offers advantages such as shorter come-up time, faster and uniform heating, and energy efficiency. Thus, it could be a beneficial alternative to conventional pasteurization. The objective of this study was to study the inactivation kinetics of Escherichia coli O157:H7 and Salmonella Typhimurium under microwave pasteurization at temperatures between 80 and 90 °C, i.e., at conditions that are employed in conventional pasteurization. Inoculated juices were treated at different power levels (600 W, 720 W) and treatment times (5s, 10s, 15s, 20s, 25s). Time-temperature profiles were obtained by fiber-optic sensors in contact with the samples allowing continuous data collection. The log-logistic and Arrhenius equations were used to account for the influence of the temperature history; thus, resulting in two different modeling approaches that were compared in terms of their prediction abilities. Survival kinetics including non-isothermal conditions were described by a non-linear ordinary differential equation that was numerically solved by the Runge-Kutta method (ode45 in MATLAB ®). The lsqcurvefit function (MATLAB®) was employed to estimate the corresponding survival parameters, which were obtained from freshly made apple juice, whereas the prediction ability of these parameters was evaluated on commercial apple juices. Results indicated that inactivation increased with power level, temperature, and treatment time reaching a microbial reduction up to 7 Log10 cycles. The study is relevant to the food industry because it provides a quantitative tool to predict survival characteristics of pathogens at other non-isothermal processing conditions.


Subject(s)
Escherichia coli O157/radiation effects , Food Irradiation/methods , Fruit and Vegetable Juices/microbiology , Malus/microbiology , Salmonella typhimurium/radiation effects , Colony Count, Microbial , Escherichia coli O157/growth & development , Food Irradiation/instrumentation , Microwaves , Salmonella typhimurium/growth & development , Temperature
11.
Food Microbiol ; 87: 103387, 2020 May.
Article in English | MEDLINE | ID: mdl-31948628

ABSTRACT

We evaluated the bactericidal efficacy of the simultaneous application of ultraviolet-A (UV-A) irradiation and fumaric acid (FA) against Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice and as well as investigated the effects of this treatment on product quality. Further, we elucidated the mechanisms underlying their synergistic bactericidal action. Simultaneous UV-A light irradiation and 0.1% FA treatment for 30 min resulted in 6.65-, 6.27-, and 6.49-log CFU/ml reductions in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, which involved 3.15, 2.21, and 3.43 log CFU reductions, respectively, and these were attributed to the synergistic action of the combined treatments. Mechanistic investigations suggested that the combined UVA-FA treatment resulted in significantly greater bacterial cell membrane damage and intracellular reactive oxygen species (ROS) generation. UVA-FA treatment for 30 min did not cause significant changes to the color, nonenzymatic browning index, pH, and total phenolic content of apple juice. These results suggest that combined UVA-FA treatment can be effectively used to control foodborne pathogens in apple juice without affecting its quality.


Subject(s)
Anti-Bacterial Agents/pharmacology , Food Preservation/methods , Fruit and Vegetable Juices/microbiology , Fumarates/pharmacology , Malus/microbiology , Escherichia coli O157/drug effects , Escherichia coli O157/growth & development , Escherichia coli O157/metabolism , Escherichia coli O157/radiation effects , Food Preservation/instrumentation , Fruit and Vegetable Juices/analysis , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/metabolism , Listeria monocytogenes/radiation effects , Microbial Viability/drug effects , Microbial Viability/radiation effects , Reactive Oxygen Species/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/growth & development , Salmonella typhimurium/metabolism , Salmonella typhimurium/radiation effects , Ultraviolet Rays
12.
J Dairy Sci ; 103(2): 1261-1268, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31759598

ABSTRACT

Food safety and quality management play a pivotal role in the dairy industry. Milk is a highly nutritious food that also provides an excellent medium for growth of pathogenic microorganisms. Thus, dairy industry focuses most of their processes and costs on keeping contamination levels as low as possible. Thermal processes for microbial decontamination may be effective; however, they cannot provide excellent organoleptic, nutritional, and decontamination properties simultaneously. In this scenario, microbial inactivation by exposure to blue light is a promising alternative method in the food industry due to its intrinsic antimicrobial properties free of any thermal effect. Therefore, this study aimed to determine the inactivation kinetics induced by blue light (λ = 413 nm) against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium, and Mycobacterium fortuitum cells suspended in whole milk or saline solution. We also performed a series of optic spectroscopies to investigate possible degradation of milk components. All species were sensitive to photoinactivation suspended either in saline solution or milk. Inactivation kinetics differs significantly depending on the suspension medium and each species is differently affected. All bacterial species tested presented more than 5 log10 of inactivation within less than 2 h of irradiation (720 J/cm2). Infrared spectroscopy did not reveal any significant alteration in any of the milk constituents (e.g., sugars, proteins, and lipids). Riboflavin (vitamin B2) was the only significantly degraded constituent found. Therefore, we conclude that microbial inactivation performed by blue light presents extraordinary potential for processes in the dairy industry.


Subject(s)
Light , Microbial Viability/radiation effects , Milk/microbiology , Animals , Decontamination , Escherichia coli/radiation effects , Food Microbiology , Microbial Viability/drug effects , Milk/radiation effects , Salmonella typhimurium/radiation effects , Staphylococcus aureus/radiation effects
13.
J Food Prot ; 82(12): 2065-2070, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31714805

ABSTRACT

The objective of this study was to evaluate the efficacy of simultaneous UV-A and UV-B irradiation (UV-A+B) for inactivating Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in both phosphate-buffered saline (PBS) and apple juice. A cocktail of the three pathogens was inoculated into PBS and apple juice, and then the suspensions were irradiated with UV lamps of 356 nm (UV-A) and 307 nm (UV-B). Significant (P < 0.05) log reductions of the three pathogens in PBS and apple juice were observed after a maximum dose of UV-B alone or the UV-A+B treatment, but few reductions were observed upon UV-A treatment alone. At all irradiation times, antagonistic effects were observed for the application of UV-A+B against in E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes in PBS and apple juice. The degree of antagonistic effect in apple juice was greater than that in PBS. The results of this study suggest that the combined treatment of commercial UV-A and UV-B lamps would be impractical for disinfecting juice products.


Subject(s)
Escherichia coli O157 , Food Microbiology , Listeria monocytogenes , Microbial Viability , Salmonella typhimurium , Ultraviolet Rays , Colony Count, Microbial , Escherichia coli O157/radiation effects , Food Microbiology/methods , Fruit and Vegetable Juices/microbiology , Listeria monocytogenes/radiation effects , Malus , Microbial Viability/radiation effects , Salmonella typhimurium/radiation effects
14.
J Food Prot ; 82(11): 1896-1900, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31622164

ABSTRACT

Chicken carcass frames are used to obtain mechanically separated chicken (MSC) for use in other further processed food products. Previous foodborne disease outbreaks involving Salmonella-contaminated MSC have demonstrated the potential for the human pathogen to be transmitted to consumers via MSC. The current study evaluated the efficacy of multiple treatments applied to the surfaces of chicken carcass frames to reduce microbial loads on noninoculated frames and frames inoculated with a cocktail of Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium. Inoculated or noninoculated frames were left untreated (control) or were subjected to treatment using a prototype sanitization apparatus. Treatments consisted of (i) a sterile water rinse, (ii) a water rinse followed by 5 s of UV-C light application, or (iii) an advanced oxidation process (AOP) combining 5 or 7% (v/v) hydrogen peroxide (H2O2) with UV-C light. Treatment with 7% H2O2 and UV-C light reduced numbers of aerobic bacteria by up to 1.5 log CFU per frame (P < 0.05); reductions in aerobic bacteria subjected to other treatments did not statistically differ from one another (initial mean load on nontreated frames: 3.6 ± 0.1 log CFU per frame). Salmonella numbers (mean load on inoculated, nontreated control was 5.6 ± 0.2 log CFU per frame) were maximally reduced by AOP application in comparison with other treatments. No difference in Salmonella reductions obtained by 5% H2O2 (1.1 log CFU per frame) was detected compared with that obtained following 7% H2O2 use (1.0 log CFU per frame). The AOP treatment for sanitization of chicken carcass frames reduces microbial contamination on chicken carcass frames that are subsequently used for manufacture of MSC.


Subject(s)
Chickens , Food Microbiology , Hydrogen Peroxide , Ultraviolet Rays , Animals , Colony Count, Microbial , Food Microbiology/methods , Humans , Hydrogen Peroxide/pharmacology , Salmonella enteritidis/drug effects , Salmonella enteritidis/radiation effects , Salmonella typhimurium/drug effects , Salmonella typhimurium/radiation effects
15.
Food Microbiol ; 84: 103277, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31421776

ABSTRACT

The purpose of this study was to evaluate the synergistic bactericidal efficacy of combining ultrasound (US) and fumaric acid (FA) treatment against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in apple juice and to identify the synergistic bactericidal mechanisms. Additionally, the effect of combination treatment on juice quality was determined by measuring the changes in color, pH, non-enzymatic browning index, and total phenolic content. A mixed cocktail of the three pathogens was inoculated into apple juice, followed by treatment with US (40 kHz) alone, FA (0.05, 0.1, and 0.15%) alone, and a combination of US and FA for 1, 2, 3, 4, and 5 min. Combined US and 0.15% FA treatment for 5 min achieved 5.67, 6.35, and 3.47 log reductions in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, with the 1.55, 2.37, and 0.57 log CFU reductions attributed to the synergistic effect. Although the pH value slightly decreased as FA increased, there were no significant (P > 0.05) differences in color values, browning indices, and phenolic content between untreated and treated samples. To identify the mechanism of this synergistic bactericidal action, membrane integrity, malfunctions in the membrane efflux pump, and intracellular enzyme activity were measured. The analyses confirmed that damage to the cell envelope (membrane integrity and efflux pump) was strongly related to the synergistic microbial inactivation. These results suggest that simultaneous application of US treatment and FA is a novel method for ensuring the microbial safety of apple juice.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/radiation effects , Fruit and Vegetable Juices/microbiology , Fumarates/pharmacology , Malus/microbiology , Microbial Viability/radiation effects , Ultrasonic Waves , Bacteria/pathogenicity , Colony Count, Microbial , Escherichia coli O157/drug effects , Escherichia coli O157/radiation effects , Food Microbiology/methods , Food Preservation/methods , Listeria monocytogenes/drug effects , Listeria monocytogenes/radiation effects , Salmonella typhimurium/drug effects , Salmonella typhimurium/radiation effects
16.
J Food Prot ; 82(8): 1272-1277, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31294634

ABSTRACT

Chia seeds provide a suitable environment for microorganisms. However, it is difficult to disinfect these seeds with water and/or chemical disinfectant solutions because the mucilage in the seeds can absorb water and consequently form gels. High-intensity light pulses (HILP) is one of the most promising emerging technologies for inactivating microorganisms on surfaces, in clear liquids and beverages, and on solid foods. The aim of this work was to evaluate the effect of HILP on Salmonella Typhimurium in culture medium (in vitro tests) and inoculated onto chia seeds (in vivo tests). HILP was effective against Salmonella Typhimurium under both conditions: 8 s of treatment (10.32 J/cm2) resulted in a 9-log reduction during in vitro tests, and 15 s of treatment (19.35 J/cm2) resulted in a 4-log reduction on the inoculated chia seeds. Salmonella Typhimurium inactivation kinetics were accurately described using the Weibull model (R2 > 0.939). These results indicate that the use of HILP for microbial inactivation on seeds could generate products suitable for human consumption.


Subject(s)
Food Handling , Food Microbiology , Microbial Viability , Salmonella typhimurium , Salvia , Seeds , Food Handling/methods , Food Microbiology/methods , Salmonella typhimurium/radiation effects , Salvia/microbiology , Seeds/microbiology , Water
17.
Appl Environ Microbiol ; 85(12)2019 06 15.
Article in English | MEDLINE | ID: mdl-30952663

ABSTRACT

In this study, we developed a washing system capable of decontaminating fresh produce by combining the Spindle apparatus, which detaches microorganisms on sample surfaces, and a 222-nm krypton-chlorine excimer lamp (KrCl excilamp) (Sp-Ex) and investigated their decontamination effect against Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes on apple (Malus domestica Borkh.) and bell pepper (Capsicum annuum L.) surfaces. Initial levels of the three pathogens were approximately 108 CFU/sample. Both E. coli O157:H7 and S. Typhimurium were reduced to below the detection limit (2.0 log CFU/sample) after 5 and 7 min of treatment on apple and bell pepper surfaces, respectively. The amounts of L. monocytogenes on apple and bell pepper surfaces were reduced by 4.26 and 5.48 logs, respectively, after 7 min of treatment. The decontamination effect of the Sp-Ex was influenced by the hydrophobicity of the sample surface as well as the microbial cell surface, and the decontamination effect decreased as the two hydrophobicity values increased. To improve the decontamination effect of the Sp-Ex, Tween 20, a surfactant that weakens the hydrophobic interaction between the sample surface and pathogenic bacteria, was incorporated into Sp-Ex processing. It was found that its decontamination effect was significantly (P < 0.05) increased by the addition of 0.1% Tween 20. Sp-Ex did not cause significant quality changes in apple or bell pepper surfaces during 7 days storage following treatment (P > 0.05). Our results suggest that Sp-Ex could be applied as a system to control pathogens in place of chemical sanitizer washing by the fresh-produce industry.IMPORTANCE Although most fresh-produce processing currently controls pathogens by means of washing with sanitizers, there are still problems such as the generation of harmful substances and changes in product quality. A combination system composed of the Spindle and a 222-nm KrCl excilamp (Sp-Ex) developed in this study reduced pathogens on apple and bell pepper surfaces using sanitizer-free water without altering produce color and texture. This study demonstrates the potential of the Sp-Ex to replace conventional washing with sanitizers, and it can be used as baseline data for practical application by industry. In addition, implementation of the Sp-Ex developed in this study is expected not only to meet consumer preference for fresh, minimally processed produce but also to reduce human exposure to harmful chemicals while being beneficial to the environment.


Subject(s)
Capsicum/microbiology , Chlorine/pharmacology , Decontamination/methods , Disinfectants/pharmacology , Krypton/pharmacology , Lasers, Excimer , Malus/microbiology , Decontamination/instrumentation , Escherichia coli O157/radiation effects , Food Microbiology , Listeria monocytogenes/radiation effects , Salmonella typhimurium/radiation effects
18.
Food Microbiol ; 82: 171-176, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31027771

ABSTRACT

We examined the control effect of a 222-nm KrCl excilamp on foodborne pathogens on alfalfa seeds and compared it with a conventional 254-nm low-pressure (LP) Hg lamp. When the 222-nm KrCl excilamp treated seeds at 87, 174 and 261 mJ/cm2, the log reductions of Escherichia coli O157:H7 (E. coli O157:H7) were 0.85, 1.77, and 2.77, respectively, and Salmonella Typhimurium (S. Typhimurium) experienced log reductions of 1.22, 2.27, and 3.04, respectively. When the 254-nm LP Hg lamp was applied at 87, 174, and 261 mJ/cm2, the log reductions of E. coli O157: H7 were 0.7, 1.16, and 1.43, respectively, and those of S. Typhimurium were 0.75, 1.15, and 1.85, respectively. Therefore, it was shown that the 222-nm KrCl excilamp was more effective than the 254-nm LP Hg lamp in reducing foodborne pathogens. The germination rate decreased to less than 80% after 261 mJ/cm2 treatment with the 254-nm LP Hg lamp, while more than 90% was maintained with 261 mJ/cm2 222-nm KrCl excilamp treatment. DNA damage assay showed that the difference in germination rate was due to DNA damage resulting from 254-nm LP Hg lamp treatment. However, 222 nm KrCl excilamp treatment did not cause DNA damage, resulting in no difference in germination rate compared to that of non-treated alfalfa seeds. Overall, these results demonstrate the utility of the 222-nm KrCl excilamp as a foodborne pathogen control intervention for the alfalfa seed industry.


Subject(s)
Escherichia coli O157/radiation effects , Food Irradiation/standards , Food Microbiology/methods , Germination/radiation effects , Medicago sativa , Salmonella typhimurium/radiation effects , Seeds/microbiology , Chlorides/chemistry , Colony Count, Microbial , Krypton/chemistry , Lasers, Excimer , Seeds/physiology
19.
J Sci Food Agric ; 99(9): 4276-4286, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30815876

ABSTRACT

BACKGROUND: Cantaloupe melon (Cucumis melo L.) is one of the most important dessert fruits and is cultivated in many countries of the world. The effects of microwave (400 and 800 W for 110 s), ohmic (100 and 200 V for 110 s) and conventional heating (27-75 °C for 30 min) treatments on inactivation of Escherichia coli, Salmonella Typhimurium, S. Enteritidis and Staphylococcus aureus pathogens; pH and degradation of vitamin C, ß-carotene and phenolic compounds of cantaloupe juice were investigated. RESULTS: As time passed, all of the treatments resulted in significant (P ≤ 0.05) decreases in the number of pathogens and vitamin C, ß-carotene and phenolic compound content, whereas the pH of samples did not show significant changes. The mentioned parameters were more reduced by increasing the power, voltage and temperature of ohmic, microwave and conventional heating treatments, respectively. Comparison of the results for conventional heating with those of ohmic and microwave heating revealed that the complete inactivation time of pathogens by the two latter treatments was much shorter than that of the former. After 20 s, the effect of ohmic heating at 200 V on decreasing vitamin C content was significantly (P ≤ 0.05) higher than that of the other treatments. The amounts of ß-carotene and phenolic compounds showed the most reduction under 800 W microwave treatment. CONCLUSION: The results obtained for conventional, ohmic and microwave heating treatments indicated a higher degradation of ß-carotene and phenolic compounds and a lower loss of vitamin C in the former. © 2019 Society of Chemical Industry.


Subject(s)
Cucumis melo/microbiology , Fruit and Vegetable Juices/microbiology , Microbial Viability/radiation effects , Pasteurization/methods , Cucumis melo/chemistry , Escherichia coli/growth & development , Escherichia coli/radiation effects , Fruit/chemistry , Fruit/microbiology , Fruit and Vegetable Juices/analysis , Hot Temperature , Microwaves , Pasteurization/instrumentation , Salmonella typhimurium/growth & development , Salmonella typhimurium/radiation effects , Staphylococcus aureus/growth & development , Staphylococcus aureus/radiation effects
20.
Appl Environ Microbiol ; 85(6)2019 03 15.
Article in English | MEDLINE | ID: mdl-30610077

ABSTRACT

In this study, we examined the change in resistance of Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 to 222-nm krypton-chlorine (KrCl) excilamp treatment as influenced by acid adaptation and identified a mechanism of resistance change. In addition, we measured changes in apple juice quality indicators, such as color, total phenols, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, during treatment. Non-acid-adapted and acid-adapted pathogens were induced by growing the cells in tryptic soy broth without dextrose (TSB w/o D) at pH 7.3 and in TSB w/o D at pH 5.0 (adjusted with HCl), respectively. For the KrCl excilamp treatment, acid-adapted pathogens exhibited significantly (P < 0.05) higher D5d values, which indicate dosages required to achieve a 5-log reduction, than those for non-acid-adapted pathogens in both commercially clarified apple juice and phosphate-buffered saline (PBS), and the pathogens in the juice showed significantly (P < 0.05) higher D5d values than those for pathogens in PBS because of the UV-absorbing characteristics of apple juice. Through mechanism identification, it was found that the generation of lipid peroxidation in the cell membrane, inducing cell membrane destruction, was significantly (P < 0.05) lower in acid-adapted cells than in non-acid-adapted cells for the same amount of reactive oxygen species (ROS) generated at the same dose because the ratio of unsaturated to saturated fatty acids (USFA/SFA) in the cell membrane was significantly (P < 0.05) decreased as a result of acid adaptation. Treated apple juice showed no significant (P > 0.05) difference in quality indicators compared to those of untreated controls during treatment at 1,773 mJ/cm2IMPORTANCE There is a need for novel, mercury-free UV lamp technology to replace germicidal lamps containing harmful mercury, which are routinely utilized for UV pasteurization of apple juice. In addition, consideration of the changes in response to antimicrobial treatments that may occur when pathogens are adapted to the acid in an apple juice matrix is critical to the practical application of this technology. Based on this, an investigation using 222-nm KrCl excilamp technology, an attractive alternative to mercury lamps, was conducted. Our study demonstrated increased resistance to 222-nm KrCl excilamp treatment as pathogens adapted to acids, and this was due to changes in reactivity to ROS with changes in the fatty acid composition of the cell membrane. Despite increased resistance, the 222-nm KrCl excilamp achieved pathogen reductions of 5 log or more at laboratory scale without affecting apple juice quality. These results provide valuable baseline data for application of 222-nm KrCl excilamps in the apple juice industry.


Subject(s)
Acids/metabolism , Escherichia coli O157/physiology , Escherichia coli O157/radiation effects , Fruit and Vegetable Juices/microbiology , Salmonella typhimurium/physiology , Salmonella typhimurium/radiation effects , Adaptation, Physiological , Chlorine/chemistry , Chlorine/pharmacology , Escherichia coli O157/growth & development , Food Irradiation/instrumentation , Food Irradiation/methods , Fruit and Vegetable Juices/analysis , Hydrogen-Ion Concentration , Krypton/chemistry , Krypton/pharmacology , Lasers, Excimer , Malus/chemistry , Malus/microbiology , Salmonella typhimurium/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...