Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 938
Filter
1.
Sci Rep ; 14(1): 9651, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671194

ABSTRACT

In contrast to most fishes, salmonids exhibit the unique ability to hold their eggs for several days after ovulation without significant loss of viability. During this period, eggs are held in the body cavity in a biological fluid, the coelomic fluid (CF) that is responsible for preserving egg viability. To identify CF proteins responsible for preserving egg viability, a proteomic comparison was performed using 3 salmonid species and 3 non-salmonid species to identify salmonid-specific highly abundant proteins. In parallel, rainbow trout CF fractions were purified and used in a biological test to estimate their egg viability preservation potential. The most biologically active CF fractions were then subjected to mass spectrometry analysis. We identified 50 proteins overabundant in salmonids and present in analytical fractions with high egg viability preservation potential. The identity of these proteins illuminates the biological processes participating in egg viability preservation. Among identified proteins of interest, the ovarian-specific expression and abundance in CF at ovulation of N-acetylneuraminic acid synthase a (Nansa) suggest a previously unsuspected role. We show that salmonid CF is a complex biological fluid containing a diversity of proteins related to immunity, calcium binding, lipid metabolism, proteolysis, extracellular matrix and sialic acid metabolic pathway that are collectively responsible for preserving egg viability.


Subject(s)
Ovary , Salmonidae , Animals , Female , Ovary/metabolism , Salmonidae/metabolism , Ovum/metabolism , Fish Proteins/metabolism , Proteomics/methods , Body Fluids/metabolism , Oncorhynchus mykiss/metabolism
2.
Sci Rep ; 13(1): 18147, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875540

ABSTRACT

Thiamine (vitamin B1) is required by all living organisms in multiple metabolic pathways. It is scarce in natural systems, and deficiency can lead to reproductive failure, neurological issues, and death. One major cause of thiamine deficiency is an overreliance on diet items containing the enzyme thiaminase. Thiaminase activity has been noted in many prey fishes and linked to cohort failure in salmonid predators that eat prey fish with thiaminase activity, yet it is generally unknown whether evolutionary history, fish traits, and/or environmental conditions lead to production of thiaminase. We conducted literature and GenBank BLAST sequence searches to collect thiaminase activity data and sequence homology data in expressed protein sequences for 300 freshwater and marine fishes. We then tested whether presence or absence of thiaminase could be predicted by evolutionary relationships, trophic level, omega-3 fatty acid concentrations, habitat, climate, invasive potential, and body size. There was no evolutionary relationship with thiaminase activity. It first appears in Class Actinoptergyii (bony ray-finned fishes) and is present across the entire Actinoptergyii phylogeny in both primitive and derived fish orders. Instead, ecological factors explained the most variation in thiaminase: fishes were more likely to express thiaminase if they fed closer to the base of the food web, were high in polyunsaturated fatty acids, lived in freshwater, and were from tropical climates. These data provide a foundation for understanding sources of thiaminase leading to thiamine deficiency in fisheries and other organisms, including humans that eat uncooked fish.


Subject(s)
Salmonidae , Thiamine Deficiency , Humans , Animals , Thiamine/metabolism , Fishes/metabolism , Hydrolases/metabolism , Salmonidae/metabolism
3.
Ecotoxicol Environ Saf ; 266: 115607, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37862746

ABSTRACT

Tsinling lenok trout (Brachymystax lenok tsinlingensis Li) is a species of cold-water salmon that faces serious challenges due to global warming. High temperature stress has been found to damage the gut integrity of cold-water fish, impacting their growth and immunity. However, limited research exists on the causal relationship between gut microbial disturbance and metabolic dysfunction in cold-water fish induced by high temperature stress. To address this gap, we conducted a study to investigate the effects of high temperature stress (24 °C) on the gut tissue structure, antioxidant capacity, gut microorganisms, and metabolome reactions of tsinling lenok trout. Our analysis using 16 S rDNA gene sequencing revealed significant changes in the gut microbial composition and metabolic profile. Specifically, the abundance of Firmicutes and Gemmatimonadetes decreased significantly with increasing temperature, while the abundance of Bacteroidetes increased significantly. Metabolic analysis revealed a significant decrease in the abundance of glutathione, which is synthesized from glutamate and glycine, under high temperature stress. Additionally, there was a notable reduction in the levels of adenosine, inosine, xanthine, guanosine, and deoxyguanosine, which are essential for DNA/RNA synthesis. Conversely, there was a significant increase in the abundance of D-glucose 6 P. Furthermore, high temperature stress adversely affects intestinal structure and barrier function. Our findings provide valuable insights into the mechanism of high temperature stress in cold-water fish and serve as a foundation for future research aimed at mitigating the decline in production performance caused by such stress.


Subject(s)
Microbiota , Salmonidae , Animals , Trout , Temperature , Salmonidae/metabolism , Metabolome , Oxidative Stress , Water/metabolism
4.
Sci Rep ; 13(1): 16643, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37789097

ABSTRACT

Anadromous salmonids exhibit partial migration, where some individuals within a population migrate down to the ocean through complex interactions between body size and photoperiod. This study aimed to integrate the ontogenetic and seasonal patterns of smoltification, a series of changes for future marine life, in a strain of masu salmon (Oncorhynchus masou). Spring smoltification, as evidenced by the activation of gill Na+,K+-ATPase (NKA), was induced during winter under an advanced photoperiod. In addition, juveniles showed an additional peak in gill NKA activity in August regardless of the photoperiod. When juvenile masu salmon were subjected to feeding manipulations during the first spring/summer, only fish exceeding a fork length of 12 cm exhibited an increased gill NKA activity. We tested whether size-driven smoltification required a long-day period by exposing juveniles to a constant short-day length (9-h light and 15-h dark) from January to November. Juveniles under short-day conditions exceeded 12 cm in June but showed no signs of smoltification. Thus, masu salmon undergo photoperiod-limited, size-driven smoltification during the first summer and size-limited, photoperiod-driven smoltification the following spring. The findings of the present study provide a framework for further elucidation of the physiological mechanisms underlying partial migration in salmonids.


Subject(s)
Oncorhynchus , Salmonidae , Animals , Oncorhynchus/physiology , Photoperiod , Body Size , Growth Hormone , Sodium-Potassium-Exchanging ATPase/metabolism , Gills/metabolism , Salmonidae/metabolism
5.
Evol Dev ; 25(4-5): 274-288, 2023 07.
Article in English | MEDLINE | ID: mdl-37540043

ABSTRACT

Adaptation to different environments can be achieved by physiological shifts throughout development. Hormonal regulators shape the physiological and morphological traits of the evolving animals making them fit for the particular ecological surroundings. We hypothesized that the artificially induced hypersynthesis of calcitonin and parathyroid hormone mutually influencing calcium metabolism could affect bone formation during early ontogeny in fish imitating the heterochrony in craniofacial ossification in natural adaptive morphs. Conducting an experiment, we found that the long-standing treatment of salmonid juveniles with high doses of both hormones irreversibly shifts the corresponding hormone status for a period well beyond the time scale for total degradation of the injected hormone. The hormones program the ossification of the jaw suspension bones and neurocranial elements in a specific manner affecting the jaws position and pharingo-branchial area stretching. These morphological shifts resemble the adaptive variants found in sympatric pelagic and demersal morphs of salmonids. We conclude that solitary deviations in the regulators of calcium metabolism could determine functional morphological traits via transformations in skeletal development.


Subject(s)
Calcium , Salmonidae , Animals , Calcium/metabolism , Parathyroid Hormone/pharmacology , Parathyroid Hormone/physiology , Osteogenesis , Salmonidae/metabolism , Skull
6.
Article in English | MEDLINE | ID: mdl-37423420

ABSTRACT

Insulin-like growth factor-binding proteins (IGFBPs) regulate the activity of insulin-like growth factor (IGF)-1. Among the three major circulating IGFBPs in salmonids, IGFBP-1b is an inhibitor of IGF activity induced under catabolic conditions. IGFBP-1b is considered to quickly sequester IGF-1 from the circulation. However, the level of circulating IGFBP-1b present in its unoccupied free form is unknown. Here, we aimed to develop a non-equilibrium ligand immunofunctional assay (LIFA) to evaluate IGF-binding capacity of circulating intact IGFBP-1b. Purified Chinook salmon IGFBP-1b, its antiserum, and europium-labeled salmon IGF-1 were used as the assay components. In the LIFA, IGFBP-1b was first captured by the antiserum, allowed to bind to the labeled IGF-1 for 22 h at 4 °C, and quantified its IGF-binding capacity. Serial dilutions of the standard and serum were prepared simultaneously within a certain concentration range (1.1-12.5 ng/ml). In underyearling masu salmon, IGF-binding capacity of intact IGFBP-1b was higher in fasted fish than in fed fish. Transferring Chinook salmon parr to seawater also increased IGF-binding capacity of IGFBP-1b, most likely due to osmotic stress. In addition, there was a strong relationship between total IGFBP-1b levels and its IGF-binding capacity. These results suggest that IGFBP-1b expressed under stress is mostly present in the free form. On the contrary, during smoltification of masu salmon, IGF-binding capacity of IGFBP-1b in the serum was relatively low and less related to the total IGFBP-1b level, suggesting its functional difference under certain physiological conditions. These results indicate that estimating both total IGFBP-1b level and its IGF-binding capacity is useful for evaluating the catabolic status and unraveling the regulation of IGF-1 activity by IGFBP-1b.


Subject(s)
Oncorhynchus , Salmonidae , Animals , Salmonidae/metabolism , Insulin-Like Growth Factor I/metabolism , Ligands , Insulin-Like Growth Factor Binding Proteins , Salmon/metabolism , Oncorhynchus/metabolism
7.
Environ Toxicol Chem ; 42(8): 1730-1742, 2023 08.
Article in English | MEDLINE | ID: mdl-37132612

ABSTRACT

The pituitary gland is a central regulator of reproduction, producing two gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), which regulate gonadal development, sex steroid synthesis, and gamete maturation. The present study sought to optimize an in vitro test system using pituitary cells isolated from previtellogenic female coho salmon and rainbow trout, focusing on fshb and lhb subunit gene expression. Initially, we optimized culture conditions for duration and benefits of culturing with and without addition of endogenous sex steroids (17ß-estradiol [E2] or 11-ketotestosterone) or gonadotropin-releasing hormone (GnRH). The results suggest that culturing with and without E2 was valuable because it could mimic the (+) feedback effects on Lh that are observed from in vivo studies. After optimizing assay conditions, a suite of 12 contaminants and other hormones was evaluated for their effects on fshb and lhb gene expression. Each chemical was tested at four to five different concentrations up to solubility limitations in cell culture media. The results indicate that more chemicals alter lhb synthesis than fshb. The more potent chemicals were estrogens (E2 and 17α-ethynylestradiol) and the aromatizable androgen testosterone, which induced lhb. The estrogen antagonists 4-OH-tamoxifen and prochloraz decreased the E2-stimulated expression of lhb. Among several selective serotonin reuptake inhibitors tested, the sertraline metabolite norsertraline was notable for both increasing fshb synthesis and decreasing the E2 stimulation of lhb. These results indicate that diverse types of chemicals can alter gonadotropin production in fish. Furthermore, we have shown that pituitary cell culture is useful for screening chemicals with potential endocrine-disrupting activity and can support the development of quantitative adverse outcome pathways in fish. Environ Toxicol Chem 2023;42:1730-1742. © 2023 SETAC.


Subject(s)
Salmonidae , Animals , Female , Salmonidae/metabolism , Pituitary Gland/metabolism , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/pharmacology , Estradiol/metabolism , Reproduction , Steroids/metabolism
8.
Mar Biotechnol (NY) ; 24(6): 1125-1137, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36329353

ABSTRACT

Astaxanthin (Ast) has been shown to be beneficial for the antioxidant capacity, immune system, and stress tolerance of fish. This study was conducted to investigate the effects of dietary supplementation of Ast on the antioxidant capacity and intestinal microbiota of tsinling lenok trout. We formulated four diets with 0 (CT), 50 (A50), 100 (A100), and 150 (A150) mg/kg Ast. The results showed that Ast increased total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px), lysozyme (LZM), and catalase (CAT) activities. Malondialdehyde (MDA) content was lower in A150 and A100 than in CT (P < 0.05). Furthermore, the activities of acid phosphatase (ACP) were higher in A100 and A150 than in CT (P < 0.05). We harvested the midgut and applied next-generation sequencing of 16S rDNA. Compared to the control group, the Ast group had a greater abundance of Halomonas. Functional analysis showed that polycyclic aromatic hydrocarbon degradation was significantly higher with Ast, while novobiocin biosynthesis and C5-branched dibasic acid metabolism were significantly lower with Ast. In conclusion, Ast could enhance the antioxidant capacity, non-specific immunity, and intestinal health of tsinling lenok trout.


Subject(s)
Gastrointestinal Microbiome , Salmonidae , Animals , Antioxidants/metabolism , Trout/metabolism , Salmonidae/genetics , Salmonidae/metabolism , Dietary Supplements/analysis , Animal Feed/analysis
9.
Sci Rep ; 12(1): 313, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013399

ABSTRACT

As a powerful and attractive method for detecting gene expression, qRT-PCR has been broadly used in aquaculture research. Understanding the biology of taimen (Hucho taimen) has drawn increasing interest because of its ecological and economic value. Stable reference genes are required for the reliable quantification of gene expression, but such genes have not yet been optimized for taimen. In this study, the stability levels of 10 commonly used candidate reference genes were evaluated using geNorm, NormFinder, BestKeeper, and RefFinder. The expression levels of the 10 genes were detected using 240 samples from 48 experimental groups consisting of 40 individuals treated under four heat-stress conditions (18, 20, 22, and 24 °C) for 24 h and 26 °C for 4, 24, 48, and 72 h. Six tissues (blood, heart, brain, gill, skin, and liver) were collected from each individual. Ribosomal protein S29 (RPS29) and ribosomal protein L19 (RPL19) were the most stable genes among all of the samples, whereas 28S ribosomal RNA (28S rRNA), attachment region binding protein (ARBP), and 18S ribosomal RNA (18S rRNA) were the least stable. These results were verified by an expression analysis of taimen heat-stress genes (heat shock protein 60, hsp60, and heat shock protein 70, hsp70). In conclusion, RPS29 and RPL19 are the optimal reference genes for qRT-PCR analyses of taimen, irrespective of the tissue and experimental conditions. These results allow the reliable study of gene expression in taimen.


Subject(s)
Chaperonin 60/genetics , Fish Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Response , Hot Temperature/adverse effects , Real-Time Polymerase Chain Reaction/standards , Salmonidae/genetics , Animals , Aquaculture , Chaperonin 60/metabolism , Fish Proteins/metabolism , Gene Expression Regulation , HSP70 Heat-Shock Proteins/metabolism , Reference Standards , Salmonidae/metabolism
10.
J Therm Biol ; 100: 103036, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34503783

ABSTRACT

We examined the impact of repeated thermal stress on the heat shock response (HSR) of thermally sensitive lake whitefish (Coregonus clupeaformis) embryos. Our treatments were designed to mimic temperature fluctuations in the vicinity of industrial thermal effluents. Embryos were either maintained at control temperatures (3 oC) or exposed to a repeated thermal stress (TS) of 3 or 6 oC above control temperature every 3 or 6 days throughout embryonic development. At 82 days post-fertilisation, repeated TS treatments were stopped and embryos received either a high level TS of 12, 15, or 18 oC above ambient temperature for 1 or 4 h, or no additional TS. These treatments were carried out after a 6 h recovery from the last repeated TS. Embryos in the no repeated TS group responded, as expected, with increases in hsp70 mRNA in response to 12, 15 and 18 oC high-level TS. However, exposure to repeated TS of 3 or 6 °C every 6 days also resulted in a significant upregulation of hsp70 mRNA relative to the controls. Importantly, these repeated TS events and the associated elevations in hsp70 attenuated the upregulation of hsp70 in response to a 1 h, high-level TS of 12 oC above ambient, but not to either longer (4 h) or higher (15 or 18 oC) TS events. Conversely, hsp90α mRNA levels were not consistently elevated in the no repeated TS groups exposed to high-level TS. In some instances, hsp90α levels appeared to decrease in embryos exposed to repeated TS followed by a high-level TS. The observed attenuation of the HSR in lake whitefish embryos demonstrates that embryos of this species have plasticity in their HSR and repeated TS may protect against high-level TS, but the response differs based on repeated TS treatment, high-level TS temperature and duration, and the gene of interest.


Subject(s)
Heat-Shock Response , Salmonidae/metabolism , Animals , Fish Proteins/genetics , Fish Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Salmonidae/embryology
11.
Food Chem ; 361: 130100, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34044215

ABSTRACT

The purpose of this study was to investigate the structural properties of µ-calpain induced by hydroxyl radical oxidation and its effect on the degradation of myofibrillar protein (MP) from the dorsal muscles of Coregonus peled. The carbonyl and sulfhydryl content of µ-calpain changed significantly after oxidation. The content of α-helix in the secondary structure decreased from 0.825 to 0.232 and the changes in intrinsic fluorescence and ultraviolet (UV) absorption spectra indicated that oxidation could cause the expansion and aggregation of µ-calpain molecules. Changes in µ-calpain structure could improve the activity of µ-calpain, reaching the highest value at 0.5 mM H2O2. The highest µ-calpain activity facilitate the degradation of unoxidized MP, while the degradation of oxidized MP was facilitated at the 1 mM H2O2. Thus, our results provide a scientific basis for the interaction mechanism among hydroxyl radical oxidation, µ-calpain, and MP degradation.


Subject(s)
Calpain/metabolism , Muscle Proteins/metabolism , Myofibrils/metabolism , Proteolysis , Salmonidae/metabolism , Animals , Calpain/chemistry , Hydrogen Peroxide/metabolism , Oxidation-Reduction
12.
J Fish Biol ; 98(3): 895-897, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33244754

ABSTRACT

An easy method to measure the uptake rate of the persistent dye alizarin red S (ARS) during marking of whitefish eggs was established and used to measure the ARS content in three different whitefish species during and at the end of the marking procedure. Those values show that only 6-10% of the ARS in the marking solution will be absorbed by the eggs (0.0061-0.0119 mg per egg). Additional analyses 6, 15 and 36 months after marking showed ARS levels below the response level (<6.9 µg kg-1 ).


Subject(s)
Animal Identification Systems/methods , Anthraquinones/metabolism , Ovum/metabolism , Salmonidae/metabolism , Animals , Chemistry Techniques, Analytical
13.
Gen Comp Endocrinol ; 299: 113606, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32890480

ABSTRACT

Salmonids have four subtypes of insulin-like growth factor binding protein (IGFBP)-1, termed -1a1, -1a2, -1b1 and 1b2, owing to teleost- and a lineage-specific whole-genome duplications. We have previously produced recombinant proteins of masu salmon IGFBP-1a1 and -1b2 and conducted functional analysis. To further characterize salmonid-specific IGFBP-1s, we cloned cDNAs encoding mature proteins of IGFBP-1a2 and -1b1 from the liver of masu salmon (Oncorhynchus masou). IGFBP-1a2 and -1b1 shared a 56% amino acid sequence homology whereas their homologies with their counterparts (i.e. -1a1 and -1b2) were 77% and 82%, respectively. We next expressed recombinant masu salmon (rs) IGFBP-1a2 and -1b1 with fusion partners thioredoxin (Trx) and a His-tag using the pET-32a(+) vector system in Escherichia coli. Trx.His.rsIGFBP-1s were detected in the insoluble faction, solubilized in a buffer containing urea, and isolated by Ni-affinity chromatography. They were refolded by dialysis and cleaved from the fusion partners by enterokinase. rsIGFBP-1a2 and -1b1 were purified by reversed-phase high performance liquid chromatography. Purified rsIGFBP-1a2 and -1b1 had the ability to bind digoxigenin-labeled human IGF-I on ligand blotting. We then examined the effects of rsIGFBP-1a1, -1a2, -1b1 and -1b2 in combination with human IGF-I on growth hormone (GH) release from cultured pituitary cells of masu salmon. IGF-I alone reduced GH release while the addition of rsIGFBP-1a1, -1b1 or -1b2, but not rsIGFBP-1a2, diminished the suppressive effect of IGF-I. Addition of rsIGFBP-1s without IGF-I had no effect on GH release. These results show that rsIGFBP-1b1, along with rsIGFBP-1a1 and -1b2, inhibits IGF-I action on the pituitary in masu salmon. The lack of the effect by rsIGFBP-1a2 suggests that salmon IGFBP-1 subtypes underwent subfunction partitioning and have different degrees of IGF-inhibitory action.


Subject(s)
Human Growth Hormone/metabolism , Insulin-Like Growth Factor Binding Protein 1/metabolism , Insulin-Like Growth Factor I/metabolism , Pituitary Gland/metabolism , Recombinant Proteins/metabolism , Animals , Humans , Insulin-Like Growth Factor Binding Protein 1/genetics , Protein Isoforms , Recombinant Proteins/genetics , Salmonidae/metabolism , Sequence Homology, Amino Acid
14.
Aquat Toxicol ; 226: 105563, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32673887

ABSTRACT

Climate warming and nitrate pollution are pervasive aquatic stressors that endanger the persistence of fishes prevailing in anthropogenically disturbed habitats. Individually, elevated nitrate and temperature can influence fish energy homeostasis by increasing maintenance costs and impairing oxygen transport capacity. However, it remains unknown how fish respond to simultaneous exposure to elevated temperature and nitrate pollution. Hence, we examined the combined effects of nitrate and elevated temperatures on aerobic scope (AS, maximum-standard metabolic rates) and cardiorespiratory attributes (haemoglobin HB, haematocrit HCT, relative ventricle mass RVM, and somatic spleen index SSI) in a freshwater salmonid, Thymallus thymallus. A 3 × 2 factorial design was used, where fish were exposed to one of three ecologically relevant levels of nitrate (0, 50, or 200 mg NO3- l-1) and one of two temperatures (18 °C or 22 °C) for 6 weeks. Elevated temperature increased AS by 36 % and the improvement was stronger when coupled with nitrate exposure, indicating a positive synergistic interaction. HB was reduced by nitrate exposure, while HCT was independent of nitrate pollution and temperature. Stressor exposure induced remodeling of key elements of the cardiorespiratory system. RVM was 39 % higher in fish exposed to 22 °C compared to 18 °C but was independent of nitrate exposure. SSI was independent of temperature but was 85 % and 57 % higher in fish exposed to 50 and 200 mg NO3- l-1, respectively. Taken together, these results highlight that simultaneous exposure to elevated temperatures and nitrate pollution offers cross-tolerance benefits, which may be underscored by cardiorespiratory remodeling.


Subject(s)
Energy Metabolism/drug effects , Fresh Water/chemistry , Hot Temperature , Nitrates/toxicity , Salmonidae/metabolism , Water Pollutants, Chemical/toxicity , Acclimatization/drug effects , Animals , Ecosystem , Eutrophication , Hematocrit , Oxygen Consumption/drug effects , Salmonidae/blood
15.
Environ Toxicol Chem ; 39(9): 1712-1723, 2020 09.
Article in English | MEDLINE | ID: mdl-32503079

ABSTRACT

The Lake Huron ecosystem is unique among the Laurentian Great Lakes (USA/Canada) in that its surface area encompasses 3 distinct basins. This ecosystem recently experienced significant ecological restructuring characterized by changes in primary production, species dominance and abundances, and top predator energy dynamics. However, much of the evidence for this restructuring has been largely derived from biomonitoring data obtained from long-term sampling of the lake's Main Basin. We examined polychlorinated biphenyl (PCB) concentrations and the stable isotopes of carbon (δ13 C) and nitrogen (δ15 N) in rainbow smelt (Osmerus mordax), bloater (Coregonus hoyi), and round goby (Neogobius melanostomus) to determine spatial variability in these environmental markers as indicators of the ubiquity of trophic restructuring throughout Lake Huron. Stable isotopes indicated that North Channel fish occupied trophic positions between 0.5 and 1.0 lower relative to Main Basin and Georgian Bay conspecifics, respectively. Sum PCB concentrations for 41 congeners were highest for fish from the Main Basin (27.5 ± 3.0 ng g-1 wet wt) and Georgian Bay (26.3 ± 3.4 ng g-1 wet wt) relative to North Channel (13.6 ± 1.2 ng g-1 wet wt) fish. Discriminant functions analysis demonstrated basin-specific PCB congener profiles with individual species also having distinct profiles dependent on their basin of collection. These bioaccumulation patterns among Lake Huron forage fish mirror those reported for lake trout in this lake and indicate that the degree of food-web ecological restructuring in Lake Huron is not equivalent across the basins. Specifically, basin-specific PCB congener profiles demonstrated that differences among Lake Huron secondary and top predator consumer species are likely dictated by cross-basin differences in zooplankton community ecology and trophodynamics that can regulate the efficiencies of prey energy transfer and PCB congener bioaccumulation patterns in aquatic food webs. Environ Toxicol Chem 2020;39:1712-1723. © 2020 SETAC.


Subject(s)
Bioaccumulation , Environmental Monitoring , Fishes/metabolism , Lakes/chemistry , Water Pollutants, Chemical/metabolism , Animals , Canada , Discriminant Analysis , Geography , Isotope Labeling , Lipids/chemistry , Polychlorinated Biphenyls/metabolism , Salmonidae/metabolism , Trout/metabolism
16.
Biomolecules ; 10(3)2020 03 08.
Article in English | MEDLINE | ID: mdl-32182700

ABSTRACT

Long-chain omega-3 polyunsaturated fatty acids (LC-PUFA) essential for human nutrition are mostly obtained from wild-caught fish. To sustain the LC-PUFA supply from natural populations, one needs to know how environmental and intrinsic factors affect fish fatty acid (FA) profiles and contents. We studied seven Salmoniformes species from two arctic lakes. We aimed to estimate differences in the FA composition of total lipids and two major lipid classes, polar lipids (PL) and triacylglycerols (TAG), among the species and to evaluate LC-PUFA contents corresponding to PL and TAG in muscles. Fatty acid profiles of PL and TAG in all species were characterized by the prevalence of omega-3 LC-PUFA and C16-C18 monoenoic FA, respectively. Fish with similar feeding spectra were identified similarly in multivariate analyses of total lipids, TAG and PL, due to differences in levels of mostly the same FA. Thus, the suitability of both TAG and total lipids for the identification of the feeding spectra of fish was confirmed. All species had similar content of LC-PUFA esterified as PL, 1.9-3.5 mg g-1, while the content of the TAG form strongly varied, from 0.9 to 9.8 mg g-1. The LC-PUFA-rich fish species accumulated these valuable compounds predominately in the TAG form.


Subject(s)
Fatty Acids, Omega-3/metabolism , Salmonidae/metabolism , Animals , Arctic Regions , Lakes , Siberia , Triglycerides/metabolism
17.
Mar Pollut Bull ; 153: 110945, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32056853

ABSTRACT

We report on concentrations of polybrominated diphenylethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyldichloroethylene (p,p'-DDE) and hexachlorobenzene (HCB) measured in the adipose fins of returning adult Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) to the river Tees in the Northeast of England. Overall, higher concentrations of these contaminants were found in sea trout samples, where detected congeners reflected the more widely used commercial formulations, in particular for the PBDEs. Our results suggest that these fish could be bioaccumulating persistent organic pollutants via diet during their migratory routes (North Sea and the Norwegian Sea) and, in addition, some level of re-mobilisation of these compounds could still be occurring in the UK eastern coastal areas. The use of adipose fin of returning salmonids could be further developed as a non-lethal approach to assess whether persistent contaminants are being accumulated during the juvenile to adult phase of salmonids originating from UK rivers.


Subject(s)
Environmental Monitoring , Polychlorinated Biphenyls , Rivers/chemistry , Salmonidae/metabolism , Water Pollutants, Chemical/metabolism , Animals , England , North Sea , Norway , United Kingdom
18.
Ecotoxicol Environ Saf ; 191: 110205, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31954215

ABSTRACT

The present study analysed the response of whitefish (Coregonus lavaretus L.) to reduced toxicity after the long-term contamination of subarctic Lake Imandra. High concentrations of Ni, Al, and Sr in fish organs and tissues were accompanied by nephrocalcinosis, scoliosis, and myopathy during the period of intense contamination. After reduction of the toxic impact on the lake, the accumulation of Cu, Al, Sr, Cr, Pb, and Hg in the kidney, which is the target organ for toxicity, was two-fold less and that of Cd was 10-fold less in whitefish from the contaminated part of the lake compared with those in whitefish from the non-contaminated parts of the lake. The ecological success of whitefish from the contaminated part of the lake was associated with the limited accumulation of metals in organs and tissues and a more favourable physiological state compared with whitefish from non-contaminated parts of the lake. Redistribution models were constructed for essential and non-essential metals in the fish liver and kidney depending on the physiological state of fish. The results revealed changes in Fe and Zn metabolism: an increase in Fe and a decrease in Zn accumulation in the liver with increasing stage of liver disease and decreasing blood haemoglobin concentration. Furthermore, under the sub-toxic (except for Cu) conditions of Lake Imandra, the strategy of adaptive fish response is to preserve and maintain acid-base regulation system.


Subject(s)
Lakes/chemistry , Metals/metabolism , Salmonidae/metabolism , Water Pollutants, Chemical/metabolism , Animals , Bioaccumulation , Kidney/metabolism , Liver/metabolism , Metals/toxicity , Water Pollutants, Chemical/toxicity
19.
J Neuroendocrinol ; 31(11): e12804, 2019 11.
Article in English | MEDLINE | ID: mdl-31630448

ABSTRACT

Colour vision relies on retinal photoreceptors that express a different predominant visual pigment protein (opsin). In several vertebrates, the primary opsin expressed by a photoreceptor can change throughout ontogeny, although the molecular factors that influence such regulation are poorly understood. One of these factors is thyroid hormone which, together with its receptors, modulates opsin expression in the retinas of multiple vertebrates including rodents and salmonid fishes. In the latter, thyroid hormone induces a switch in opsin expression from SWS1 (ultraviolet light sensitive) to SWS2 (short wavelength or blue light sensitive) in the single cone photoreceptors of the retina. The actions of other hormones on opsin expression have not been investigated. In the present study, we used a transgenic strain of coho salmon (Oncorhynchus kitsutch) with enhanced levels of circulating growth hormone compared to that of wild siblings to assess the effects of this hormone on the SWS1 to SWS2 opsin switch. Transgenic fish showed a developmentally accelerated opsin switch compared to size-matched controls as assessed by immunohistological and in situ hybridisation labelling of photoreceptors and by quantification of transcripts using quantitative polymerase chain reaction. This accelerated switch led to a different spectral sensitivity maximum, under a middle to long wavelength adapting background, from ultraviolet (λmax  ~ 380 nm) in controls to short wavelengths (λmax  ~ 430 nm) in transgenics, demonstrating altered colour vision. The effects of growth hormone over-expression were independent of circulating levels of thyroid hormone (triiodothyronine), the hormone typically associated with opsin switches in vertebrates.


Subject(s)
Growth Hormone/physiology , Oncorhynchus kisutch , Opsins/genetics , Retina/metabolism , Animals , Animals, Genetically Modified , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Growth Hormone/blood , Growth Hormone/genetics , Growth Hormone/pharmacology , Light , Oncorhynchus kisutch/genetics , Oncorhynchus kisutch/metabolism , Opsins/metabolism , Retina/drug effects , Retinal Cone Photoreceptor Cells/drug effects , Retinal Cone Photoreceptor Cells/metabolism , Rod Opsins/genetics , Rod Opsins/metabolism , Salmonidae/genetics , Salmonidae/metabolism , Thyroid Hormones/blood
20.
Proteomics ; 19(24): e1800429, 2019 12.
Article in English | MEDLINE | ID: mdl-31578773

ABSTRACT

Lake trout are used as bioindicators for toxics exposure in the Great Lakes ecosystem. Here the first lake trout (Salvelinus namaycush) liver proteomics study is performed and searched against specific databases: (NCBI and UniProtKB) Salvelinus, Salmonidae, Actinopterygii, and Oncorhynchus mykiss, and the more distant relative, Danio rerio. In the biological replicate 1 (BR1), technical replicate 1 (TR1), (BR1TR1), a large number of lake trout liver proteins are not in the Salvelinus protein database, suggesting that lake trout liver proteins have homology to some proteins from the Salmonidae family and Actinopterygii class, and to Oncorhynchus mykiss and Danio rerio, two more highly studied fish. In the NCBI search, 4194 proteins are identified: 3069 proteins in Actinopterygii, 1617 in Salmonidae, 68 in Salvelinus, 568 in Oncorhynchus mykiss, and 946 in Danio rerio protein databases. Similar results are observed in the UniProtKB searches of BR1RT1, as well as in a technical replicate (BR1TR2), and then in a second biological replicate experiment, with two technical replicates (BR2TR1 and BR2TR2). This study opens the possibility of identifying evolutionary relationships (i.e., adaptive mutations) between various groups (i.e., zebrafish, rainbow trout, Salmonidae, Salvelinus and lake trout) through evolutionary proteomics. Data are available via the PRIDE Q2 (PXD011924).


Subject(s)
Evolution, Molecular , Fish Proteins/metabolism , Liver/metabolism , Proteome/analysis , Proteomics/methods , Salmonidae/metabolism , Animals , Salmonidae/classification , Salmonidae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...