Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
PLoS One ; 19(4): e0302403, 2024.
Article in English | MEDLINE | ID: mdl-38662754

ABSTRACT

With aging, men develop testosterone-deficiency syndrome (TDS). The development is closely associated with age-related mitochondrial dysfunction of Leydig cell and oxidative stress-induced reactive oxygen species (ROS). Testosterone-replacement therapy (TRT) is used to improve the symptoms of TDS. However, due to its various side effects, research on functional ingredients derived from natural products that do not have side effects is urgently needed. In this study, using the mitochondrial dysfunction TM3 (mouse Leydig) cells, in which testosterone biosynthesis is reduced by H2O2, we evaluated the effects of elderberry extract and monosaccharide-amino acid (fructose-leucine; FL) on mRNA and protein levels related to steroidogenesis-related enzymes steroidogenic acute regulatory protein (StAR), cytochrome P450 11A1(CYP11A1, cytochrome P450 17A1(CYP17A1), cytochrome P450 19A1(CYP19A1, aromatase), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), and 17ß-hydroxysteroid dehydrogenase(17ß-HSD). We analyzed elderberry extract and extract-derived FL for changes in ROS scavenging activity and testosterone secretion. Elderberry extract and FL significantly reduced H2O2-induced intracellular ROS levels, improved testosterone secretion, and increased the mRNA and protein expression levels of steroidogenesis-related enzymes (StAR, 3b-HSD, 17b-HSD, CYP11A1, CYp17A1). However, the conversion of testosterone to estradiol was inhibited by elderberry extract and extract-derived FL, which reduced the mRNA and protein expression of CYP19A1. In conclusion, elderberry extract and FL are predicted to have value as novel functional ingredients that may contribute to the prevention of TDS by ameliorating reduced steroidogenesis.


Subject(s)
Hydrogen Peroxide , Leydig Cells , Plant Extracts , Testosterone , Animals , Leydig Cells/metabolism , Leydig Cells/drug effects , Mice , Hydrogen Peroxide/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male , Cell Line , Amino Acids/metabolism , Monosaccharides , Sambucus/chemistry , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Phosphoproteins/metabolism , Phosphoproteins/genetics
2.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673938

ABSTRACT

Despite data showing that nutritional interventions high in antioxidant/anti-inflammatory properties (anthocyanin-rich foods, such as blueberries/elderberries) may decrease risk of memory loss and cognitive decline, evidence for such effects in mild cognitive impairment (MCI) is limited. This study examined preliminary effects of American elderberry (Sambucus nigra subsp. canadensis) juice on cognition and inflammatory markers in patients with MCI. In a randomized, double-blind, placebo-controlled trial, patients with MCI (n = 24, Mage = 76.33 ± 6.95) received American elderberry (n = 11) or placebo (n = 13) juice (5 mL orally 3 times a day) for 6 months. At baseline, 3 months, and 6 months, patients completed tasks measuring global cognition, verbal memory, language, visuospatial cognitive flexibility/problem solving, and memory. A subsample (n = 12, 7 elderberry/5 placebo) provided blood samples to measure serum inflammatory markers. Multilevel models examined effects of the condition (elderberry/placebo), time (baseline/3 months/6 months), and condition by time interactions on cognition/inflammation outcomes. Attrition rates for elderberry (18%) and placebo (15%) conditions were fairly low. The dosage compliance (elderberry-97%; placebo-97%) and completion of cognitive (elderberry-88%; placebo-87%) and blood-based (elderberry-100%; placebo-100%) assessments was high. Elderberry (not placebo) trended (p = 0.09) towards faster visuospatial problem solving performance from baseline to 6 months. For the elderberry condition, there were significant or significantly trending decreases over time across several markers of low-grade peripheral inflammation, including vasorin, prenylcysteine oxidase 1, and complement Factor D. Only one inflammatory marker showed an increase over time (alpha-2-macroglobin). In contrast, for the placebo, several inflammatory marker levels increased across time (L-lactate dehydrogenase B chain, complement Factor D), with one showing deceased levels over time (L-lactate dehydrogenase A chain). Daily elderberry juice consumption in patients with MCI is feasible and well tolerated and may provide some benefit to visuospatial cognitive flexibility. Preliminary findings suggest elderberry juice may reduce low-grade inflammation compared to a placebo-control. These promising findings support the need for larger, more definitive prospective studies with longer follow-ups to better understand mechanisms of action and the clinical utility of elderberries for potentially mitigating cognitive decline.


Subject(s)
Cognition , Cognitive Dysfunction , Fruit and Vegetable Juices , Inflammation , Sambucus , Humans , Male , Aged , Female , Cognition/drug effects , Inflammation/blood , Double-Blind Method , Sambucus/chemistry , Aged, 80 and over , Biomarkers/blood , Feasibility Studies , Sambucus nigra/chemistry
3.
Int J Biol Macromol ; 266(Pt 2): 130968, 2024 May.
Article in English | MEDLINE | ID: mdl-38521324

ABSTRACT

The investigation aims to determine the effect of enzymatic and alkali treatments on Sambucus ebulus L. stem fiber. For this purpose, Sambucus ebulus L. stem fibers were treated with alkali, cellulase, and pectinase enzymes. An image processing technique was developed and implemented to calculate the average thicknesses of Sambucus ebulus L. fibers. The thickness of alkali, cellulase and pectinase enzyme treated fibers was determined as 478.62 µm, 808.28 µm and 478.20 µm, respectively. Scanning electron microscopy analysis illustrated that enzymatic and alkali treatments lead to the breakage of fiber structure. Furthermore, enzymatic and alkali treatments induce variations in elemental ingredients. All treatments increased the crystallinity index of Sambucus ebulus L. fiber from 72 % (raw fiber) to 83 % (alkali treated), 75.2 % (cellulase enzyme treated) and 86.3 % (pectinase enzyme treated) due to the hydrolysis of hemicellulose. Fourier transform infrared analysis indicated that there are no significant differences in functional groups. Thermogravimetric analysis shows that enzymatic and alkali treatments improve final degradation temperature of the fiber. Mechanical behaviors of cellulase enzyme-treated fiber decrease compared to raw fiber, while pectinase enzyme and alkali treatment cause to improve mechanical properties. Tensile strength of samples was determined as 76.4 MPa (cellulase enzyme treated fiber), 210 MPa (pectinase enzyme treated fiber) and 240 MPa (alkali treated fiber). Young's modules of cellulase enzyme, pectinase enzyme and alkali treated fibers were predicted as 5.5 GPa, 13.1 GPa and 16.6 GPa. Elongation at break of samples was calculated as 5.5 % (cellulase enzyme treated fiber), 6.5 % (pectinase enzyme treated fiber) and 6 % (alkali treated fiber). The results suggest that enzymatic and alkali treatments can modify the functional and structural attributes of Sambucus ebulus L. fiber.


Subject(s)
Alkalies , Cellulase , Polygalacturonase , Sambucus , Cellulase/metabolism , Cellulase/chemistry , Polygalacturonase/chemistry , Polygalacturonase/metabolism , Sambucus/chemistry , Alkalies/chemistry , Hydrolysis , Chemical Phenomena , Polysaccharides/chemistry
4.
J Ethnopharmacol ; 326: 117940, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38401662

ABSTRACT

OBJECTIVE: Sambucus williamsii Hance, belonging to the Sambucus L. family (Viburnaceae), possesses medicinal properties in its roots, stems, leaves, flowers, and fruits. It is recognized for its ability to facilitate bone reunion, enhance blood circulation, remove stasis, and dispel wind and dampness. This traditional Chinese medicine holds significant potential for development and practical use. Hence, this paper offers an in-depth review of S. williamsii, covering traditional uses, processing guidelines, botany, phytochemistry, pharmacology, toxicology, and pharmacokinetics, aiming to serve as a reference for its further development and utilization. MATERIALS AND METHODS: Information for this study was gathered from various books, bibliographic databases, and literature sources such as Google Scholar, Web of Science, PubMed, Chinese National Knowledge Infrastructure, Baidu Scholar, VIP Database for Chinese Technical Periodicals, and Wanfang Data. RESULTS: Phytochemical investigations have identified approximately 238 compounds within the root bark, stem branches, leaves, and fruits of S. williamsii. These compounds encompass flavonoids, sugars, glycosides, terpenoids, phenylpropanoids, alkaloids, phenols, phenolic glycosides, and other chemical constituents, with phenylpropanoids being the most prevalent. S. williamsii exhibits a wide range of pharmacological effects, particularly in promoting osteogenesis and fracture healing. CONCLUSION: This comprehensive review delves into the traditional uses, processing guidelines, botany, phytochemistry, pharmacology, toxicology, and pharmacokinetics of S. williamsii. It provides valuable insights into this plant, which will prove beneficial for future research involving S. williamsii.


Subject(s)
Botany , Drugs, Chinese Herbal , Sambucus , Sambucus/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Medicine, Chinese Traditional , Phytochemicals/toxicity , Glycosides , Ethnopharmacology , Drugs, Chinese Herbal/pharmacology
5.
Molecules ; 29(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276576

ABSTRACT

A current alternative for sustainable development through green chemistry is the replacement of synthetic compounds with natural ones through the superior capitalization of natural resources, with numerous applications in different fields. The benefits of walnuts (Juglans regia L.) and elderberries (Sambucus nigra L.) have been known since ancient times, due to the presence of phytochemicals such as flavonoids, polyphenols, carotenoids, alkaloids, nitrogen-containing compounds, tannins, steroids, anthocyanins, etc. These active compounds have multiple biological activities for human health, including benefits that are antibacterial, antioxidant, anti-inflammatory, antidiabetic, hepatoprotective, antihypertensive, neuroprotective, etc. Like other medicinal plants, the walnut and the elderberry possess important phytosanitary properties (antibacterial, antifungal, and insecticidal) and their extracts can also be used as environmentally safe biopesticides, with the result that they constitute a viable and cheap alternative to environmentally harmful synthetic products. During recent years, walnut by-products and elderberries have attracted the attention of researchers, and investigations have focused on the species' valuable constituents and active properties. Comparing the information from the literature regarding the phytochemical profile and biological activities, it is highlighted that, apart from the predominant specific compounds, the walnut and the elderberry have common bioactive compounds, which come from six classes (phenols and derivatives, flavonoids, hydroxycinnamic acids, tannins, triterpenoids, and phytosteroids), and act on the same microorganisms. From this perspective, the aim of this review is to provide an overview of the bioactive compounds present in the different constitutive parts of walnut by-products and elderberries, which present a specific or common activity related to human health and the protection of agricultural crops in the context of sustainable development.


Subject(s)
Juglans , Sambucus , Humans , Juglans/chemistry , Sambucus/chemistry , Anthocyanins , Tannins , Flavonoids/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents
6.
Molecules ; 28(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049909

ABSTRACT

Elderberry is highly reputed for its health-improving effects. Multiple pieces of evidence indicate that the consumption of berries is linked to enhancing human health and preventing or delaying the onset of chronic medical conditions. Compared with other fruit, elderberry is a very rich source of anthocyanins (approximately 80% of the polyphenol content). These polyphenols are the principals that essentially contribute to the high antioxidant and anti-inflammatory capacities and the health benefits of elderberry fruit extract. These health effects include attenuation of cardiovascular, neurodegenerative, and inflammatory disorders, as well as anti-diabetic, anticancer, antiviral, and immuno-stimulatory effects. Sales of elderberry supplements skyrocketed to $320 million over the year 2020, according to an American Botanical Council (ABC) report, which is attributable to the purported immune-enhancing effects of elderberry. In the current review, the chemical composition of the polyphenolic content of the European elderberry (Sambucus nigra) and the American elderberry (Sambucus canadensis), as well as the analytical techniques employed to analyze, characterize, and ascertain the chemical consistency will be addressed. Further, the factors that influence the consistency of the polyphenolic chemical composition, and hence, the consistency of the health benefits of elderberry extracts will be presented. Additionally, adulteration and safety as factors contributing to consistency will be covered. The role of elderberry in enhancing human health alone with the pharmacological basis, the cellular pathways, and the molecular mechanisms underlying the observed health benefits of elderberry fruit extracts will be also reviewed.


Subject(s)
Sambucus , Humans , Sambucus/chemistry , Anthocyanins/chemistry , Plant Extracts/chemistry , Polyphenols/chemistry , Oxidative Stress , Inflammation/drug therapy , Fruit/chemistry
7.
Crit Rev Food Sci Nutr ; 63(22): 5937-5952, 2023.
Article in English | MEDLINE | ID: mdl-35021911

ABSTRACT

BACKGROUND: Elderberry (Sambucus nigra L.) has been used in traditional medicine and as a supplement in many beverages and meals. Elderberry is a good source of bioactive flavonoids like quercetin, kaempferol, and rutin, as well as other phenolic compounds. Extraction techniques significantly influence the efficiency of extraction of bioactive compounds. Green chemistry elements such as safety, environmental friendliness, run-down or at least minimal contaminants, efficiency, and economic criteria should all be addressed by an effective bioactive extraction process. Furthermore, micro/nanoencapsulation technologies are particularly effective for increasing bioavailability and bioactive component stability. SCOPE AND APPROACH: This review article comprehensively describes new developments in elderberry extraction and encapsulation. Elderberry is largely employed in the food and pharmaceutical industries due to its health-promoting and sensory characteristics. Elderberry has traditionally been used as a diaphoretic, antipyretic, diuretic, antidepressant, and antitumor agent in folk medicine. KEY FINDINGS AND CONCLUSIONS: Conventional extraction methods (e.g. maceration and Soxhelt extraction) as well as advanced green techniques (e.g. supercritical fluids, pulsed electric field, emulsion liquid extraction, microwave, and ultrasonic extraction) have been used to extract bioactives from elderberry. Over the other protective measures, encapsulation techniques are particularly recommended to protect the bioactive components found in elderberry. Microencapsulation (spray drying, freeze drying, extrusion, emulsion systems) and nanoencapsulation (nanoemulsions, solid lipid nanoparticles and nanodispersions, nanohydrogels, electrospinning, nano spray drying) approaches for elderberry bioactives have been examined in this regard.


Subject(s)
Sambucus , Sambucus/chemistry , Emulsions , Fruit/chemistry , Flavonoids/analysis , Phenols/analysis , Plant Extracts/chemistry
8.
J Sci Food Agric ; 103(4): 2023-2036, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36229866

ABSTRACT

BACKGROUND: The chemical composition, phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POD) activity of the three main Portuguese elderberry cultivars were determined for the first time through five stages of maturation, in different harvesting years, to gain a deeper understanding of the effect of climatic conditions and enzymatic activity involved in the synthesis and degradation of phenolic compounds on the final quality of elderberries. RESULTS: Simple sugar and anthocyanin content increased with maturation but total acidity and flavonoids content decreased, and cinnamic acids did not show a clear trend. Climatic conditions seem to have a decisive influence on the elderberry maturation, namely the total number of hot (>30 °C) days. The PAL, PPO, and POD activity can explain the differences observed in elderberry phenolic content. CONCLUSION: These results highlighted the influence of climatic conditions in each harvesting season on elderberry development and quality. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Sambucus , Sambucus/chemistry , Sambucus/metabolism , Sugars/analysis , Phenols/analysis , Antioxidants/analysis , Fruit/chemistry
9.
Food Chem ; 405(Pt A): 134766, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36368106

ABSTRACT

The influence of drying and extraction processes on the phytochemical composition and biopotential of elderberry is challenging for the food industry. For this reason in this research two drying techniques (lyophilization and natural convection) and three extraction techniques (ultrasound (UAE), microwave (MAE), and conventional (maceration (MAC)) was applied using two"green" solvents (water and 50 % ethanol). Results of the research showed that lyophilization was a better way of drying than natural convection, while MAE extraction was the most efficient technique for the isolation of secondary metabolites. The most abundant phenolic compounds established by LC-MS/MS analysis, were chlorogenic acid and rutin, identified in extracts of lyophilized elderberries. Elderberry extracts achieved great antioxidant (CUPRAC: 2.30-5.13 mg TE/mL) and enzyme inhibitor potential (α-amylase: 0.51-8.34 mg ACAE/mL). The results suggest that elderberry is a rich natural source of bioactive compounds and could be used for the future development of dietary supplements and functional foods.


Subject(s)
Sambucus , Sambucus/chemistry , Polyphenols/analysis , Chromatography, Liquid , Plant Extracts/chemistry , Tandem Mass Spectrometry , Antioxidants/chemistry , Technology
10.
Molecules ; 27(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36014290

ABSTRACT

Elderberries of wild-growing shrubs are most often used; however, various cultivated varieties of this shrub appear more and more often. The aim of this research was to compare the fruit composition of specific varieties with those grown wild in urban and ecologically clean conditions. Six varieties of elderberry grown on one experimental farm and two wild-growing samples from the city center and the landscape park were assessed. The content of vitamin C, antioxidant activity, sugar and organic acid content, triterpenes and carotenoids was marked in the tested fruits. The analyses show that there were significant differences in the content of the tested ingredients between the varieties tested, while the place of cultivation was of less importance. Apart from organic acids and triterpenes, fruits from wild-growing shrubs were more abundant in other compounds determined. The white variety of 'Albida' turned out to be the poorest in bioactive compounds.


Subject(s)
Sambucus , Triterpenes , Antioxidants/analysis , Fruit/chemistry , Phenols/analysis , Plant Extracts/chemistry , Sambucus/chemistry , Triterpenes/analysis
11.
Anticancer Agents Med Chem ; 22(7): 1386-1396, 2022.
Article in English | MEDLINE | ID: mdl-33845752

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) accounts for 15% of all breast cancer (BC) cases and is a severe type of BC. Since medicinal herbs containing biocompatible substances that are accepted by patient more than chemical therapeutics, they can be considered a safe option for treating BC. OBJECTIVE: This study evaluated the effect of Sambucus Ebulus (S. ebulus) extract on a model of TNBC. METHODS: S. ebulus extract was prepared using petroleum ether, ethyl acetate, and methanol. The petroleum ether extract was fractionated and analyzed using vacuum liquid chromatography and GC-MS, respectively. MDAMB- 231 and MCF-10A were used as TNBC and normal breast cells, respectively. Flowcytometry and MTT assays were performed to evaluate cell cycle, apoptosis, and viability of the cells. Gene expression analysis was performed using RT-qPCR. Nude mouse allograft tumor models were used, and pathological sections were evaluated. RESULTS: The findings indicated that S. ebulus extract remarkably decreased cell proliferation and viability. The extract had no toxicity to the normal breast cells but efficiently killed the cancer cells. Cell cycle- and apoptosisrelated gene expression showed that fraction 4 of S. ebulus extract significantly increased the expression of Bax, Bak, P53, and c-MYC. CONCLUSION: This study showed satisfactory results of the effect of S. ebulus extract on clearing BC cells both in vitro and in vivo. Thus, S. ebulus extract may be a safe herbal compound for eliminating BC cells without toxicity to host cells.


Subject(s)
Plants, Medicinal , Sambucus , Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Cell Proliferation , Humans , Mice , Plant Extracts/pharmacology , Sambucus/chemistry , Solvents , Triple Negative Breast Neoplasms/drug therapy
12.
Nutrients ; 13(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34960000

ABSTRACT

The aims of the study were to investigate the ability and effectiveness of an oral intake of a fixed combination of zinc, L-carnitine, elderberry extract, black currant and Eleutherococcus extract in controlling the symptoms of eyestrain in videoterminal (VDT) users and to record its effects on contrast sensitivity. A single-center, phase II, observational, case-control, 1-month study in VDT workers without dry eye disease was carried out. Demographics and number of actual hours at VDT/day were taken into account. All subjects underwent a complete ophthalmic examination, including assessment of contrast sensitivity, and completed the computer vision symptom scale questionnaire at baseline and one month later. A total of 30 Caucasian subjects adhered to the required inclusion criteria and completed the study; 15 subjects were treated (T) and 15 were controls (C). All clinical data at baseline were similar in both groups (p > 0.05): after one month, all subjects had stable visual acuity, refractive defect and intraocular pressure (IOP); screen exposure time was unchanged. Regarding symptoms, at randomization, the groups had a similar score: 33.1 ± 3.3 in T and 32.8 ± 5.6 in C. One month later, the computer vision symptom scale (CVSS) questionnaire score decreased by -14.1 ± 3, 1 (p = 0.000) and -2.3 ± 1.8 (p = 0.568), respectively. Regarding contrast sensitivity, in group C the values of spatial frequencies remained unchanged, while they improved in almost all the cycles per degree stimuli in the treated group. Oral intake of a fixed combination of zinc, L-carnitine, elderberry extract, black currant and eleutherococcus extract can significantly improve contrast sensitivity and symptoms in VDT workers with no signs of dry eye disease.


Subject(s)
Asthenopia/drug therapy , Carnitine/administration & dosage , Computer Terminals , Dry Eye Syndromes/drug therapy , Eleutherococcus/chemistry , Plant Extracts/administration & dosage , Ribes/chemistry , Sambucus/chemistry , Visual Acuity/drug effects , Zinc/administration & dosage , Administration, Oral , Adult , Asthenopia/etiology , Dry Eye Syndromes/etiology , Female , Humans , Male , Middle Aged , Plant Extracts/chemistry
13.
Molecules ; 26(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34576994

ABSTRACT

In this study, dark chocolates (DCh) containing zinc lactate (ZnL) were enriched with extracts from elderberries (EFrE), elderflowers (EFlE), and chokeberries (ChFrE) to improve their functional properties. Both dried plant extracts and chocolates were analyzed for antioxidant capacity (AC) using four different analytical methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric ion-reducing antioxidant capacity (CUPRAC), and ferric-reducing antioxidant power (FRAP), while total phenolic content (TPC) was determined by Folin-Ciocalteu (F-C) assay. An increase in antioxidant properties of fortified chocolates was found, and the bioaccessibility of their antioxidants was evaluated. The highest AC and TPC were found in ChFrE and chocolate with chokeberries (DCh + ChFrE) before and after simulated in vitro digestion. Bioaccessibility studies indicated that during the simulated digestion the AC of all chocolates reduced significantly, whereas insignificant differences in TPC results were observed between chemical and physiological extracts. Moreover, the influence of plant extracts on physicochemical parameters such as moisture content (MC), fat content (FC), and viscosity of chocolates was estimated. Furthermore, scanning electron microscopy with dispersive energy spectroscopy (SEM-EDS) was used to analyze surface properties and differences in the chemical composition of chocolates without and with additives.


Subject(s)
Antioxidants/chemistry , Cacao/chemistry , Chemical Phenomena , Chocolate/analysis , Plant Extracts/analysis , Plant Extracts/chemistry , Computer Simulation , Microscopy, Electron, Scanning , Phenols/analysis , Phenols/chemistry , Photinia/chemistry , Sambucus/chemistry , Spectrometry, X-Ray Emission
14.
Biomed Pharmacother ; 143: 112157, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34517282

ABSTRACT

The development of nanomedicines to modulate the mitochondrial function is a great scientific challenge since mitochondrial dysfunction is a pathological hallmark of many chronic diseases, including degenerative brain pathologies like Parkinson's and Alzheimer's diseases. To address this challenge, the mitochondriotropic features of the elderberry anthocyanin-enriched extract (Sambucus nigra) were combined with the self-assembling properties of the membrane polar lipids from Codium tomentosum in an innovative SC-Nanophytosomes formulation. Membrane polar lipids, obtained by a new procedure as chlorophyll-free extract, are characterized by 26% of non-phosphorus polar lipids and 74% of phospholipids (dominated by anionic lipids) containing a high degree of polyunsaturated fatty acids. The anthocyanin-enriched extract is dominated by a mixture of four cyanidin-glycosides, representing about 86% of their phenolic content. SC-Nanophytosomes engineered with 600 µM algae membrane polar lipids and 0.5 mg/L of the anthocyanin-enriched extract are nanosized vesicles (diameter =108.74 ± 24.74 nm) with a negative surface charge (Zeta potential = -46.93 ± 6.63 mV) that exhibit stability during storage at 4 ºC. In vitro assays with SH-SY5Y cells showed that SC-Nanophytosomes have the competence to target mitochondria, improving the mitochondrial respiratory chain complexes I and II and preserving the mitochondrial membrane potential in the presence of rotenone. Additionally, SC-Nanophytosomes protect SH-SY5Y cells against the toxicity induced by rotenone or glutamate. Green-fluorescent labeled SC-Nanophytosomes were used to reveal that they are mainly internalized by cells via caveola-mediated endocytosis, escape from endosome and reach the cytoplasm organelles, including mitochondria. Overall, data indicate that SC-Nanophytosomes have the potential to support a mitochondria-targeted therapy for neurodegenerative diseases.


Subject(s)
Anthocyanins/pharmacology , Chlorophyta , Drug Carriers , Lipids/chemistry , Mitochondria/drug effects , Nanoparticles , Neurons/drug effects , Neuroprotective Agents/pharmacology , Sambucus , Anthocyanins/chemistry , Anthocyanins/isolation & purification , Cell Line, Tumor , Chlorophyta/chemistry , Drug Compounding , Electron Transport Complex I/metabolism , Endocytosis , Fruit , Glutamic Acid/toxicity , Humans , Mitochondria/metabolism , Mitochondria/pathology , Nanotechnology , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Rotenone/toxicity , Sambucus/chemistry , Surface Properties
15.
Mol Nutr Food Res ; 65(17): e2100229, 2021 09.
Article in English | MEDLINE | ID: mdl-34212508

ABSTRACT

SCOPE: Glycosylation is a way to increase structure-stability of anthocyanins, yet compromises their bioactivity. The study investigates the antioxidant activity of purified cyanidin (Cy)-based anthocyanins and respective degradation products in Caco-2 clone C2BBe1 aiming to identify structure-activity relationships. RESULTS AND METHODS: Cyanidin 3-O-glucoside (Cy-3-glc) and cyanidin 3-O-sambubioside (Cy-3-sam) proved to be most potent regarding antioxidant properties and protection against hydrogen peroxide (H2 O2 )-induced reactive oxygen species (ROS)-levels measured with the dichloro-fluorescein (DCF) assay. Cyanidin 3-O-sambubioside-5-O-glucoside (Cy-3-sam-5-glc) and cyanidin 3-O-rutinoside (Cy-3-rut) were less efficient and not protective, reflecting potential differences in uptake and/or degradation. Following ranking in antioxidant efficiency is suggested: (concentrations ≤10 × 10-6  M) Cy-3-glc ≥ Cy-3-sam > Cy-3-sam-5-glc ≈ Cy-3-rut ≈ Cy; (concentrations ≥50 × 10-6  M) Cy-3-glc ≈ Cy-3-sam ≥ Cy > Cy-3-sam-5-glc ≈ Cy-3-rut. Cy and protocatechuic acid (PCA) reduced ROS-levels as potent as the mono- and di-glycoside, whereas phloroglucinol aldehyde (PGA) displayed pro-oxidant properties. None of the degradation products protected from oxidative stress. Gene transcription analysis of catalase (CAT), superoxide-dismutase (SOD), glutathione-peroxidase (GPx), heme-oxygenase-1 (HO-1), and glutamate-cysteine-ligase (γGCL) suggest no activation of nuclear factor erythroid 2-related factor 2 (Nrf2). CONCLUSION: More complex residues and numbers of sugar moieties appear to be counterproductive for antioxidant activity. Other mechanisms than Nrf2-activation should be considered for protective effects.


Subject(s)
Anthocyanins/chemistry , Anthocyanins/pharmacology , Antioxidants/pharmacology , Sambucus/chemistry , Structure-Activity Relationship , Anthocyanins/analysis , Antioxidants/chemistry , Caco-2 Cells , Cell Survival/drug effects , Enzymes/genetics , Enzymes/metabolism , Fruit and Vegetable Juices/analysis , Humans , Oxidative Stress/drug effects
16.
Molecules ; 26(9)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064428

ABSTRACT

Berry pomace, rich in polyphenols, especially anthocyanins, accumulates during the production of red juices. Pomace from chokeberry (Aronia melanocarpa Michx.), bilberry (Vaccinium myrtillus L.), and elderberry (Sambucus nigra L.) represent good sources of coloring foodstuffs. Pomace powders (PP) were prepared by milling the seedless fractions of the three dried berry pomaces (50 °C, 8 h). Techno-functional properties of the powders such as particle size distribution, bulk density, sedimentation velocity, and swelling capacity were determined to evaluate the powders for possible food applications. Total anthocyanin content was quantified by UHPLC-DAD before and during a storage experiment to monitor the degradation of anthocyanins in the PP and in a yogurt model application. The high content of phenolic compounds and the still intact cell structure ensured high stability of anthocyanins over 28 days of storage. In the model application, color saturation was stable over the whole storage time of 14 days. Regarding the techno-functional properties, only a few differences between the three PP were observed. The particle size of elderberry PP was larger, resulting in lowest bulk density (0.45 g/mL), high cold-water solubility (16.42%), and a swelling capacity of 10.16 mL/g dw. Sedimentation velocity of the three PP was fast (0.02 mL/min) due to cluster formation of the particles caused by electrostatic and hydrophobic properties. Compared to other high-intensity coloring foodstuffs, the use of PP, showing acceptable color stability with potential health-promoting effects, represents a wide applicability in different food applications and especially in products with a longer shelf-life.


Subject(s)
Food Coloring Agents/chemistry , Photinia/chemistry , Sambucus/chemistry , Vaccinium myrtillus/chemistry , Anthocyanins/analysis , Color , Humidity , Oils/chemistry , Particle Size , Phenols/analysis , Powders , Water/chemistry , Yogurt/analysis
17.
Bioprocess Biosyst Eng ; 44(9): 1957-1964, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33934243

ABSTRACT

The aim of this study was cost-effective and greener synthesis of barium carbonate (BaCO3 or witherite) nanoparticles with economic importance, and to evaluate their therapeutic potentials and biocompatibility with immune cells. Barium carbonate nanoparticles were biosynthesized using black elderberry extract in one step with non-toxic precursors and simple laboratory conditions; their morphologies and specific structures were analyzed using field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX). The therapeutic capabilities of these nanoparticles on the immune cells of murine macrophages J774 and promastigotes Leishmania tropica were evaluated. BaCO3 nanoparticles with IC50 = 46.6 µg/mL were more effective than negative control and glucantium (positive control) in reducing promastigotes (P < 0.01). Additionally, these nanoparticles with a high value of cytotoxicity concentration 50% (CC50) were less toxic to macrophage cells than glucantime; however, they were significantly different at high concentrations compared to the negative control.


Subject(s)
Antiprotozoal Agents , Barium , Carbonates , Leishmania tropica/growth & development , Macrophages , Materials Testing , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Barium/chemistry , Barium/pharmacology , Carbonates/chemistry , Carbonates/pharmacology , Cell Line , Macrophages/metabolism , Macrophages/parasitology , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Plant Extracts/chemistry , Sambucus/chemistry
18.
Molecules ; 26(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806603

ABSTRACT

Cyanogenic glycosides (CNGs) are naturally occurring plant molecules (nitrogenous plant secondary metabolites) which consist of an aglycone and a sugar moiety. Hydrogen cyanide (HCN) is released from these compounds following enzymatic hydrolysis causing potential toxicity issues. The presence of CNGs in American elderberry (AE) fruit, Sambucus nigra (subsp. canadensis), is uncertain. A sensitive, reproducible and robust LC-MS/MS method was developed and optimized for accurate identification and quantification of the intact glycoside. A complimentary picrate paper test method was modified to determine the total cyanogenic potential (TCP). TCP analysis was performed using a camera-phone and UV-Vis spectrophotometry. A method validation was conducted and the developed methods were successfully applied to the assessment of TCP and quantification of intact CNGs in different tissues of AE samples. Results showed no quantifiable trace of CNGs in commercial AE juice. Levels of CNGs found in various fruit tissues of AE cultivars studied ranged from between 0.12 and 6.38 µg/g. In pressed juice samples, the concentration range measured was 0.29-2.36 µg/mL and in seeds the levels were 0.12-2.38 µg/g. TCP was highest in the stems and green berries. Concentration levels in all tissues were generally low and at a level that poses no threat to consumers of fresh and processed AE products.


Subject(s)
Chromatography, Liquid/methods , Fruit/chemistry , Glycosides/analysis , Sambucus/chemistry , Tandem Mass Spectrometry/methods
19.
Molecules ; 26(8)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920663

ABSTRACT

Elderberries, sea buckthorn, and sloe berries are fruits of wild-grown bushes, valued in folk medicine for their health-promoting properties but still rarely applied in food. The aim of the present study was to produce probiotic yoghurts with a 10% addition of sweetened purees prepared from elderberries (EPY), sea buckthorn (SBPY), and sloe berries (SPY) and to assess their chemical composition, acidity, content of polyphenols and anthocyanins, ferric reducing antioxidant power (FRAP) and antiradical power (ARP), level of starter microbiota, concentration of acetaldehyde and diacetyl, syneresis, instrumentally measured color and texture parameters, and sensory acceptance. The results were compared to those obtained for plain probiotic yoghurt (PPY) and the changes tracked during 1 month of cold storage at 2 week intervals. The addition of elderberry and sloe berries significantly increased the antioxidant capacity of probiotic yoghurts, probably due to a high content of polyphenols, especially anthocyanins. However, anthocyanins were more stable in the EPY when compared to the SPY. All yoghurt treatments were characterized by good sensory quality and viability of starter microorganisms, including probiotic strains during cold storage. Elderberries promoted the evolution of diacetyl in yoghurts during storage and, together with sloe berries, produced increased syneresis and the greatest changes in color profile compared to PPY.


Subject(s)
Antioxidants/chemistry , Food Storage , Probiotics/chemistry , Prunus/chemistry , Yogurt , Fermentation , Food Handling , Fruit/chemistry , Hippophae/chemistry , Humans , Plant Extracts/chemistry , Polyphenols/chemistry , Sambucus/chemistry
20.
Biomed Pharmacother ; 137: 111372, 2021 May.
Article in English | MEDLINE | ID: mdl-33761598

ABSTRACT

Menopausal women are susceptible to have high risk of cardiovascular diseases, type II diabetes and osteoporosis due to the metabolic disorder caused by estrogen deficiency. Accumulating evidence supports that gut microbiota is a key regulator of metabolic diseases. Our previous metabolomics study interestingly demonstrated that the anti-osteoporotic effects of lignan-rich fraction (SWCA) from Sambucus wialliamsii Hance were related to the restoration of a series of lipid and glucose metabolites. This study aims to investigate how SWCA modulates lipid and glucose metabolism and the underlying mechanism. Our results show that oral administration of SWCA (140 mg/kg and 280 mg/kg) for 10 weeks alleviated dyslipidemia, improved liver functions, prevented glucose tolerance and insulin actions, attenuated system inflammation and improved intestinal barrier in OVX rats. It also induced a high abundance of Actinobacteria, and restored microbial composition. We are the first to report the protective effects of the lignan-rich fraction from S. williamsii on dyslipidemia and insulin resistance. Our findings provide strong evidence for the application of this lignan-rich fraction to treat menopausal lipid disorder and insulin resistance-related diseases.


Subject(s)
Dyslipidemias/drug therapy , Gastrointestinal Microbiome/drug effects , Hypolipidemic Agents/pharmacology , Insulin Resistance , Lignans/pharmacology , Sambucus/chemistry , Administration, Oral , Animals , Cytokines/metabolism , Female , Glucose/metabolism , Glucose Tolerance Test , Liver/drug effects , Ovariectomy , Plant Extracts/pharmacology , Plant Stems/chemistry , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...