Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.198
Filter
1.
J Toxicol Sci ; 49(6): 249-259, 2024.
Article in English | MEDLINE | ID: mdl-38825484

ABSTRACT

The transcriptome profile is a representative phenotype-based descriptor of compounds, widely acknowledged for its ability to effectively capture compound effects. However, the presence of batch differences is inevitable. Despite the existence of sophisticated statistical methods, many of them presume a substantial sample size. How should we design a transcriptome analysis to obtain robust compound profiles, particularly in the context of small datasets frequently encountered in practical scenarios? This study addresses this question by investigating the normalization procedures for transcriptome profiles, focusing on the baseline distribution employed in deriving biological responses as profiles. Firstly, we investigated two large GeneChip datasets, comparing the impact of different normalization procedures. Through an evaluation of the similarity between response profiles of biological replicates within each dataset and the similarity between response profiles of the same compound across datasets, we revealed that the baseline distribution defined by all samples within each batch under batch-corrected condition is a good choice for large datasets. Subsequently, we conducted a simulation to explore the influence of the number of control samples on the robustness of response profiles across datasets. The results offer insights into determining the suitable quantity of control samples for diminutive datasets. It is crucial to acknowledge that these conclusions stem from constrained datasets. Nevertheless, we believe that this study enhances our understanding of how to effectively leverage transcriptome profiles of compounds and promotes the accumulation of essential knowledge for the practical application of such profiles.


Subject(s)
Gene Expression Profiling , Research Design , Transcriptome , Gene Expression Profiling/methods , Humans , Oligonucleotide Array Sequence Analysis , Sample Size , Animals
2.
BMC Med Res Methodol ; 24(1): 124, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831421

ABSTRACT

BACKGROUND: Multi-arm multi-stage (MAMS) randomised trial designs have been proposed to evaluate multiple research questions in the confirmatory setting. In designs with several interventions, such as the 8-arm 3-stage ROSSINI-2 trial for preventing surgical wound infection, there are likely to be strict limits on the number of individuals that can be recruited or the funds available to support the protocol. These limitations may mean that not all research treatments can continue to accrue the required sample size for the definitive analysis of the primary outcome measure at the final stage. In these cases, an additional treatment selection rule can be applied at the early stages of the trial to restrict the maximum number of research arms that can progress to the subsequent stage(s). This article provides guidelines on how to implement treatment selection within the MAMS framework. It explores the impact of treatment selection rules, interim lack-of-benefit stopping boundaries and the timing of treatment selection on the operating characteristics of the MAMS selection design. METHODS: We outline the steps to design a MAMS selection trial. Extensive simulation studies are used to explore the maximum/expected sample sizes, familywise type I error rate (FWER), and overall power of the design under both binding and non-binding interim stopping boundaries for lack-of-benefit. RESULTS: Pre-specification of a treatment selection rule reduces the maximum sample size by approximately 25% in our simulations. The familywise type I error rate of a MAMS selection design is smaller than that of the standard MAMS design with similar design specifications without the additional treatment selection rule. In designs with strict selection rules - for example, when only one research arm is selected from 7 arms - the final stage significance levels can be relaxed for the primary analyses to ensure that the overall type I error for the trial is not underspent. When conducting treatment selection from several treatment arms, it is important to select a large enough subset of research arms (that is, more than one research arm) at early stages to maintain the overall power at the pre-specified level. CONCLUSIONS: Multi-arm multi-stage selection designs gain efficiency over the standard MAMS design by reducing the overall sample size. Diligent pre-specification of the treatment selection rule, final stage significance level and interim stopping boundaries for lack-of-benefit are key to controlling the operating characteristics of a MAMS selection design. We provide guidance on these design features to ensure control of the operating characteristics.


Subject(s)
Randomized Controlled Trials as Topic , Research Design , Humans , Randomized Controlled Trials as Topic/methods , Sample Size , Patient Selection
3.
Croat Med J ; 65(2): 122-137, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38706238

ABSTRACT

AIM: To compare the effectiveness of artificial neural network (ANN) and traditional statistical analysis on identical data sets within the splenectomy-middle carotid artery occlusion (MCAO) mouse model. METHODS: Mice were divided into the splenectomized (SPLX) and sham-operated (SPLX-sham) group. A splenectomy was conducted 14 days before middle carotid artery occlusion (MCAO). Magnetic resonance imaging (MRI), bioluminescent imaging, neurological scoring (NS), and histological analysis, were conducted at two, four, seven, and 28 days after MCAO. Frequentist statistical analyses and ANN analysis employing a multi-layer perceptron architecture were performed to assess the probability of discriminating between SPLX and SPLX-sham mice. RESULTS: Repeated measures ANOVA showed no significant differences in body weight (F (5, 45)=0.696, P=0.629), NS (F (2.024, 18.218)=1.032, P=0.377) and brain infarct size on MRI between the SPLX and SPLX-sham groups post-MCAO (F (2, 24)=0.267, P=0.768). ANN analysis was employed to predict SPLX and SPL-sham classes. The highest accuracy in predicting SPLX class was observed when the model was trained on a data set containing all variables (0.7736±0.0234). For SPL-sham class, the highest accuracy was achieved when it was trained on a data set excluding the variable combination MR contralateral/animal mass/NS (0.9284±0.0366). CONCLUSION: This study validated the neuroprotective impact of splenectomy in an MCAO model using ANN for data analysis with a reduced animal sample size, demonstrating the potential for leveraging advanced statistical methods to minimize sample sizes in experimental biomedical research.


Subject(s)
Disease Models, Animal , Infarction, Middle Cerebral Artery , Magnetic Resonance Imaging , Neural Networks, Computer , Splenectomy , Animals , Mice , Splenectomy/methods , Infarction, Middle Cerebral Artery/surgery , Infarction, Middle Cerebral Artery/diagnostic imaging , Sample Size , Male
4.
BMC Med Res Methodol ; 24(1): 110, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714936

ABSTRACT

Bayesian statistics plays a pivotal role in advancing medical science by enabling healthcare companies, regulators, and stakeholders to assess the safety and efficacy of new treatments, interventions, and medical procedures. The Bayesian framework offers a unique advantage over the classical framework, especially when incorporating prior information into a new trial with quality external data, such as historical data or another source of co-data. In recent years, there has been a significant increase in regulatory submissions using Bayesian statistics due to its flexibility and ability to provide valuable insights for decision-making, addressing the modern complexity of clinical trials where frequentist trials are inadequate. For regulatory submissions, companies often need to consider the frequentist operating characteristics of the Bayesian analysis strategy, regardless of the design complexity. In particular, the focus is on the frequentist type I error rate and power for all realistic alternatives. This tutorial review aims to provide a comprehensive overview of the use of Bayesian statistics in sample size determination, control of type I error rate, multiplicity adjustments, external data borrowing, etc., in the regulatory environment of clinical trials. Fundamental concepts of Bayesian sample size determination and illustrative examples are provided to serve as a valuable resource for researchers, clinicians, and statisticians seeking to develop more complex and innovative designs.


Subject(s)
Bayes Theorem , Clinical Trials as Topic , Humans , Clinical Trials as Topic/methods , Clinical Trials as Topic/statistics & numerical data , Research Design/standards , Sample Size , Data Interpretation, Statistical , Models, Statistical
5.
Elife ; 122024 May 13.
Article in English | MEDLINE | ID: mdl-38739437

ABSTRACT

In several large-scale replication projects, statistically non-significant results in both the original and the replication study have been interpreted as a 'replication success.' Here, we discuss the logical problems with this approach: Non-significance in both studies does not ensure that the studies provide evidence for the absence of an effect and 'replication success' can virtually always be achieved if the sample sizes are small enough. In addition, the relevant error rates are not controlled. We show how methods, such as equivalence testing and Bayes factors, can be used to adequately quantify the evidence for the absence of an effect and how they can be applied in the replication setting. Using data from the Reproducibility Project: Cancer Biology, the Experimental Philosophy Replicability Project, and the Reproducibility Project: Psychology we illustrate that many original and replication studies with 'null results' are in fact inconclusive. We conclude that it is important to also replicate studies with statistically non-significant results, but that they should be designed, analyzed, and interpreted appropriately.


Subject(s)
Bayes Theorem , Reproducibility of Results , Humans , Research Design , Sample Size , Data Interpretation, Statistical
6.
Trials ; 25(1): 312, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725072

ABSTRACT

BACKGROUND: Clinical trials often involve some form of interim monitoring to determine futility before planned trial completion. While many options for interim monitoring exist (e.g., alpha-spending, conditional power), nonparametric based interim monitoring methods are also needed to account for more complex trial designs and analyses. The upstrap is one recently proposed nonparametric method that may be applied for interim monitoring. METHODS: Upstrapping is motivated by the case resampling bootstrap and involves repeatedly sampling with replacement from the interim data to simulate thousands of fully enrolled trials. The p-value is calculated for each upstrapped trial and the proportion of upstrapped trials for which the p-value criteria are met is compared with a pre-specified decision threshold. To evaluate the potential utility for upstrapping as a form of interim futility monitoring, we conducted a simulation study considering different sample sizes with several different proposed calibration strategies for the upstrap. We first compared trial rejection rates across a selection of threshold combinations to validate the upstrapping method. Then, we applied upstrapping methods to simulated clinical trial data, directly comparing their performance with more traditional alpha-spending and conditional power interim monitoring methods for futility. RESULTS: The method validation demonstrated that upstrapping is much more likely to find evidence of futility in the null scenario than the alternative across a variety of simulations settings. Our three proposed approaches for calibration of the upstrap had different strengths depending on the stopping rules used. Compared to O'Brien-Fleming group sequential methods, upstrapped approaches had type I error rates that differed by at most 1.7% and expected sample size was 2-22% lower in the null scenario, while in the alternative scenario power fluctuated between 15.7% lower and 0.2% higher and expected sample size was 0-15% lower. CONCLUSIONS: In this proof-of-concept simulation study, we evaluated the potential for upstrapping as a resampling-based method for futility monitoring in clinical trials. The trade-offs in expected sample size, power, and type I error rate control indicate that the upstrap can be calibrated to implement futility monitoring with varying degrees of aggressiveness and that performance similarities can be identified relative to considered alpha-spending and conditional power futility monitoring methods.


Subject(s)
Clinical Trials as Topic , Computer Simulation , Medical Futility , Research Design , Humans , Clinical Trials as Topic/methods , Sample Size , Data Interpretation, Statistical , Models, Statistical , Treatment Outcome
7.
Am J Physiol Heart Circ Physiol ; 326(6): H1420-H1423, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38700473

ABSTRACT

The use of both sexes or genders should be considered in experimental design, analysis, and reporting. Since there is no requirement to double the sample size or to have sufficient power to study sex differences, challenges for the statistical analysis can arise. In this article, we focus on the topics of statistical power and ways to increase this power. We also discuss the choice of an appropriate design and statistical method and include a separate section on equivalence tests needed to show the absence of a relevant difference.


Subject(s)
Research Design , Animals , Female , Humans , Male , Data Interpretation, Statistical , Models, Statistical , Sample Size , Sex Factors
8.
An Acad Bras Cienc ; 96(2): e20230991, 2024.
Article in English | MEDLINE | ID: mdl-38808878

ABSTRACT

At some moment in our lives, we are probably faced with the following question: How likely is it that you would recommend [company X] to a friend or colleague?. This question is related to the Net Promoter Score (NPS), a simple measure used by several companies as indicator of customer loyalty. Even though it is a well-known measure in the business world, studies that address the statistical properties or the sample size determination problem related to this measure are still scarce. We adopt a Bayesian approach to provide point and interval estimators for the NPS and discuss the determination of the sample size. Computational tools were implemented to use this methodology in practice. An illustrative example with data from financial services is also presented.


Subject(s)
Bayes Theorem , Sample Size , Humans , Consumer Behavior
9.
Biometrics ; 80(2)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38801258

ABSTRACT

In comparative studies, covariate balance and sequential allocation schemes have attracted growing academic interest. Although many theoretically justified adaptive randomization methods achieve the covariate balance, they often allocate patients in pairs or groups. To better meet the practical requirements where the clinicians cannot wait for other participants to assign the current patient for some economic or ethical reasons, we propose a method that randomizes patients individually and sequentially. The proposed method conceptually separates the covariate imbalance, measured by the newly proposed modified Mahalanobis distance, and the marginal imbalance, that is the sample size difference between the 2 groups, and it minimizes them with an explicit priority order. Compared with the existing sequential randomization methods, the proposed method achieves the best possible covariate balance while maintaining the marginal balance directly, offering us more control of the randomization process. We demonstrate the superior performance of the proposed method through a wide range of simulation studies and real data analysis, and also establish theoretical guarantees for the proposed method in terms of both the convergence of the imbalance measure and the subsequent treatment effect estimation.


Subject(s)
Computer Simulation , Randomized Controlled Trials as Topic , Humans , Randomized Controlled Trials as Topic/statistics & numerical data , Randomized Controlled Trials as Topic/methods , Biometry/methods , Models, Statistical , Data Interpretation, Statistical , Random Allocation , Sample Size , Algorithms
12.
Biometrics ; 80(2)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38804219

ABSTRACT

Sequential multiple assignment randomized trials (SMARTs) are the gold standard for estimating optimal dynamic treatment regimes (DTRs), but are costly and require a large sample size. We introduce the multi-stage augmented Q-learning estimator (MAQE) to improve efficiency of estimation of optimal DTRs by augmenting SMART data with observational data. Our motivating example comes from the Back Pain Consortium, where one of the overarching aims is to learn how to tailor treatments for chronic low back pain to individual patient phenotypes, knowledge which is lacking clinically. The Consortium-wide collaborative SMART and observational studies within the Consortium collect data on the same participant phenotypes, treatments, and outcomes at multiple time points, which can easily be integrated. Previously published single-stage augmentation methods for integration of trial and observational study (OS) data were adapted to estimate optimal DTRs from SMARTs using Q-learning. Simulation studies show the MAQE, which integrates phenotype, treatment, and outcome information from multiple studies over multiple time points, more accurately estimates the optimal DTR, and has a higher average value than a comparable Q-learning estimator without augmentation. We demonstrate this improvement is robust to a wide range of trial and OS sample sizes, addition of noise variables, and effect sizes.


Subject(s)
Computer Simulation , Low Back Pain , Observational Studies as Topic , Randomized Controlled Trials as Topic , Humans , Observational Studies as Topic/statistics & numerical data , Randomized Controlled Trials as Topic/statistics & numerical data , Low Back Pain/therapy , Sample Size , Treatment Outcome , Models, Statistical , Biometry/methods
13.
Viruses ; 16(5)2024 04 29.
Article in English | MEDLINE | ID: mdl-38793592

ABSTRACT

In quasispecies diversity studies, the comparison of two samples of varying sizes is a common necessity. However, the sensitivity of certain diversity indices to sample size variations poses a challenge. To address this issue, rarefaction emerges as a crucial tool, serving to normalize and create fairly comparable samples. This study emphasizes the imperative nature of sample size normalization in quasispecies diversity studies using next-generation sequencing (NGS) data. We present a thorough examination of resampling schemes using various simple hypothetical cases of quasispecies showing different quasispecies structures in the sense of haplotype genomic composition, offering a comprehensive understanding of their implications in general cases. Despite the big numbers implied in this sort of study, often involving coverages exceeding 100,000 reads per sample and amplicon, the rarefaction process for normalization should be performed with repeated resampling without replacement, especially when rare haplotypes constitute a significant fraction of interest. However, it is noteworthy that different diversity indices exhibit distinct sensitivities to sample size. Consequently, some diversity indicators may be compared directly without normalization, or instead may be resampled safely with replacement.


Subject(s)
Genetic Variation , Haplotypes , High-Throughput Nucleotide Sequencing , Quasispecies , Viruses , Quasispecies/genetics , High-Throughput Nucleotide Sequencing/methods , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Genome, Viral , Humans , Genomics/methods , Phylogeny , Sample Size
14.
Biom J ; 66(3): e2300240, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38637304

ABSTRACT

Rank methods are well-established tools for comparing two or multiple (independent) groups. Statistical planning methods for the computing the required sample size(s) to detect a specific alternative with predefined power are lacking. In the present paper, we develop numerical algorithms for sample size planning of pseudo-rank-based multiple contrast tests. We discuss the treatment effects and different ways to approximate variance parameters within the estimation scheme. We further compare pairwise with global rank methods in detail. Extensive simulation studies show that the sample size estimators are accurate. A real data example illustrates the application of the methods.


Subject(s)
Algorithms , Models, Statistical , Sample Size , Computer Simulation
15.
Biom J ; 66(3): e2300175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38637326

ABSTRACT

In screening large populations a diagnostic test is frequently used repeatedly. An example is screening for bowel cancer using the fecal occult blood test (FOBT) on several occasions such as at 3 or 6 days. The question that is addressed here is how often should we repeat a diagnostic test when screening for a specific medical condition. Sensitivity is often used as a performance measure of a diagnostic test and is considered here for the individual application of the diagnostic test as well as for the overall screening procedure. The latter can involve an increasingly large number of repeated applications, but how many are sufficient? We demonstrate the issues involved in answering this question using real data on bowel cancer at St Vincents Hospital in Sydney. As data are only available for those testing positive at least once, an appropriate modeling technique is developed on the basis of the zero-truncated binomial distribution which allows for population heterogeneity. The latter is modeled using discrete nonparametric maximum likelihood. If we wish to achieve an overall sensitivity of 90%, the FOBT should be repeated for 2 weeks instead of the 1 week that was used at the time of the survey. A simulation study also shows consistency in the sense that bias and standard deviation for the estimated sensitivity decrease with an increasing number of repeated occasions as well as with increasing sample size.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/diagnosis , Occult Blood , Sample Size , Diagnostic Tests, Routine , Mass Screening/methods
16.
PeerJ ; 12: e17128, 2024.
Article in English | MEDLINE | ID: mdl-38562994

ABSTRACT

Background: Interaction identification is important in epidemiological studies and can be detected by including a product term in the model. However, as Rothman noted, a product term in exponential models may be regarded as multiplicative rather than additive to better reflect biological interactions. Currently, the additive interaction is largely measured by the relative excess risk due to interaction (RERI), the attributable proportion due to interaction (AP), and the synergy index (S), and confidence intervals are developed via frequentist approaches. However, few studies have focused on the same issue from a Bayesian perspective. The present study aims to provide a Bayesian view of the estimation and credible intervals of the additive interaction measures. Methods: Bayesian logistic regression was employed, and estimates and credible intervals were calculated from posterior samples of the RERI, AP and S. Since Bayesian inference depends only on posterior samples, it is very easy to apply this method to preventive factors. The validity of the proposed method was verified by comparing the Bayesian method with the delta and bootstrap approaches in simulation studies with example data. Results: In all the simulation studies, the Bayesian estimates were very close to the corresponding true values. Due to the skewness of the interaction measures, compared with the confidence intervals of the delta method, the credible intervals of the Bayesian approach were more balanced and matched the nominal 95% level. Compared with the bootstrap method, the Bayesian method appeared to be a competitive alternative and fared better when small sample sizes were used. Conclusions: The proposed Bayesian method is a competitive alternative to other methods. This approach can assist epidemiologists in detecting additive-scale interactions.


Subject(s)
Bayes Theorem , Computer Simulation , Logistic Models , Epidemiologic Studies , Sample Size
17.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38581417

ABSTRACT

Untargeted metabolomics based on liquid chromatography-mass spectrometry technology is quickly gaining widespread application, given its ability to depict the global metabolic pattern in biological samples. However, the data are noisy and plagued by the lack of clear identity of data features measured from samples. Multiple potential matchings exist between data features and known metabolites, while the truth can only be one-to-one matches. Some existing methods attempt to reduce the matching uncertainty, but are far from being able to remove the uncertainty for most features. The existence of the uncertainty causes major difficulty in downstream functional analysis. To address these issues, we develop a novel approach for Bayesian Analysis of Untargeted Metabolomics data (BAUM) to integrate previously separate tasks into a single framework, including matching uncertainty inference, metabolite selection and functional analysis. By incorporating the knowledge graph between variables and using relatively simple assumptions, BAUM can analyze datasets with small sample sizes. By allowing different confidence levels of feature-metabolite matching, the method is applicable to datasets in which feature identities are partially known. Simulation studies demonstrate that, compared with other existing methods, BAUM achieves better accuracy in selecting important metabolites that tend to be functionally consistent and assigning confidence scores to feature-metabolite matches. We analyze a COVID-19 metabolomics dataset and a mouse brain metabolomics dataset using BAUM. Even with a very small sample size of 16 mice per group, BAUM is robust and stable. It finds pathways that conform to existing knowledge, as well as novel pathways that are biologically plausible.


Subject(s)
Metabolomics , Mice , Animals , Bayes Theorem , Sample Size , Uncertainty , Metabolomics/methods , Computer Simulation
19.
Biom J ; 66(3): e2300094, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581099

ABSTRACT

Conditional power (CP) serves as a widely utilized approach for futility monitoring in group sequential designs. However, adopting the CP methods may lead to inadequate control of the type II error rate at the desired level. In this study, we introduce a flexible beta spending function tailored to regulate the type II error rate while employing CP based on a predetermined standardized effect size for futility monitoring (a so-called CP-beta spending function). This function delineates the expenditure of type II error rate across the entirety of the trial. Unlike other existing beta spending functions, the CP-beta spending function seamlessly incorporates beta spending concept into the CP framework, facilitating precise stagewise control of the type II error rate during futility monitoring. In addition, the stopping boundaries derived from the CP-beta spending function can be calculated via integration akin to other traditional beta spending function methods. Furthermore, the proposed CP-beta spending function accommodates various thresholds on the CP-scale at different stages of the trial, ensuring its adaptability across different information time scenarios. These attributes render the CP-beta spending function competitive among other forms of beta spending functions, making it applicable to any trials in group sequential designs with straightforward implementation. Both simulation study and example from an acute ischemic stroke trial demonstrate that the proposed method accurately captures expected power, even when the initially determined sample size does not consider futility stopping, and exhibits a good performance in maintaining overall type I error rates for evident futility.


Subject(s)
Ischemic Stroke , Research Design , Humans , Sample Size , Computer Simulation , Medical Futility
20.
J Comp Eff Res ; 13(5): e230044, 2024 05.
Article in English | MEDLINE | ID: mdl-38567966

ABSTRACT

Aim: This simulation study is to assess the utility of physician's prescribing preference (PPP) as an instrumental variable for moderate and smaller sample sizes. Materials & methods: We designed a simulation study to imitate a comparative effectiveness research under different sample sizes. We compare the performance of instrumental variable (IV) and non-IV approaches using two-stage least squares (2SLS) and ordinary least squares (OLS) methods, respectively. Further, we test the performance of different forms of proxies for PPP as an IV. Results: The percent bias of 2SLS is around approximately 20%, while the percent bias of OLS is close to 60%. The sample size is not associated with the level of bias for the PPP IV approach. Conclusion: Irrespective of sample size, the PPP IV approach leads to less biased estimates of treatment effectiveness than OLS adjusting for known confounding only. Particularly for smaller sample sizes, we recommend constructing PPP from long prescribing histories to improve statistical power.


Subject(s)
Comparative Effectiveness Research , Computer Simulation , Practice Patterns, Physicians' , Humans , Comparative Effectiveness Research/methods , Sample Size , Practice Patterns, Physicians'/statistics & numerical data , Least-Squares Analysis , Bias
SELECTION OF CITATIONS
SEARCH DETAIL
...