Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.708
Filter
1.
J Tradit Chin Med ; 44(3): 448-457, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767628

ABSTRACT

OBJECTIVE: Exploring the effect of Optimized New Shengmai powder (, ONSMP) on myocardial fibrosis in heart failure (HF) based on rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway. METHODS: Randomized 70 Sprague-Dawley rats into sham (n = 10) and operation (n = 60) groups, then established the HF rat by ligating the left anterior descending branch of the coronary artery. We randomly divided the operation group rats into the model, ONSMP [including low (L), medium (M), and high (H) dose], and enalapril groups. After the 4-week drug intervention, echocardiography examines the cardiac function and calculates the ratios of the whole/left heart to the rat's body weight. Finally, we observed the degree of myocardial fibrosis by pathological sections, determined myocardium collagen (COL) I and COL Ⅲ content by enzyme-linked immunosorbent assay, detected the mRNA levels of COL I, COL Ⅲ, α-smooth muscle actin (α-SMA), and c-Fos proto-oncogene (c-Fos) by universal real-time, and detected the protein expression of p-RAS, p-RAF, p-MEK1/2, p-ERK1/2, p-ETS-like-1 transcription factor (p-ELK1), p-c-Fos, α-SMA, COL I, and COL Ⅲ by Western blot. RESULTS: ONSMP can effectively improve HF rat's cardiac function, decrease cardiac organ coefficient, COL volume fraction, and COL I/Ⅲ content, down-regulate the mRNA of COL I/Ⅲ, α-SMA and c-Fos, and the protein of p-RAS, p-RAF, p-MEK1/ 2, p-ERK1/2, p-ELK1, c-Fos, COL Ⅰ/Ⅲ, and α-SMA. CONCLUSIONS: ONSMP can effectively reduce myocardial fibrosis in HF rats, and the mechanism may be related to the inhibition of the RAS/RAF/MEK/ERK signaling pathway.


Subject(s)
Drug Combinations , Drugs, Chinese Herbal , Fibrosis , Heart Failure , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/administration & dosage , Rats , Heart Failure/drug therapy , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Failure/etiology , Male , Fibrosis/drug therapy , Humans , Myocardium/metabolism , Myocardium/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Signal Transduction/drug effects , Sarcoma/drug therapy , Sarcoma/genetics , Sarcoma/metabolism
2.
Medicine (Baltimore) ; 103(20): e38173, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758862

ABSTRACT

Soft tissue sarcoma (STS) incidence, progression, and metastasis are tightly linked to the tumor microenvironment (TME). The modification patterns mediated by pyroptosis-related genes (PRGs) in STS are unknown regarding the immune cell infiltration landscape of TME, immunotherapy effect, and prognostic value. First, we downloaded STS samples from the Cancer Genome Atlas (TCGA) and gene-expression omnibus (GEO) databases. Based on 52 PRGs, 2 pyroptosis modification patterns were analyzed, and the associations of pyroptosis modification patterns with immune cell infiltration in the TME were elucidated systematically. To quantify PRG modification patterns in STS patients, we generated a pyroptosis scoring system using principal component analysis (PCA). We identified 2 distinct pyroptosis modification patterns in STS. Compared to PRG cluster A, the prognosis of cluster B was better. These 2 pyroptosis modification patterns corresponded to different characteristics of immune cell infiltration in the TME and biological behaviors. In the pyroptosis scoring system, a high pyroptosis score was connected to higher immune cell infiltration, stronger immune surveillance, immune-killing effects on tumor cells, and better clinical benefits. The results from 3 anti-PD1/PD-L1-treated immune cohorts demonstrated that higher pyroptosis scores are also closely connected to better immunotherapy results. We demonstrated that pyroptosis modification is essential to the STS microenvironment. Moreover, the pyroptosis score is a reliable and independent prognostic factor in STS patients, enabling a richer understanding of the STS microenvironment and the screening of immunotherapy candidates, predicting the immunotherapeutic effects for individual STS patients, and guiding the use of chemotherapy drugs.


Subject(s)
Immunotherapy , Pyroptosis , Sarcoma , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Pyroptosis/genetics , Sarcoma/genetics , Sarcoma/immunology , Sarcoma/therapy , Immunotherapy/methods , Prognosis , Gene Expression Regulation, Neoplastic
3.
Front Immunol ; 15: 1372692, 2024.
Article in English | MEDLINE | ID: mdl-38720884

ABSTRACT

Background: The tertiary lymphatic structure (TLS) is an important component of the tumor immune microenvironment and has important significance in patient prognosis and response to immune therapy. However, the underlying mechanism of TLS in soft tissue sarcoma remains unclear. Methods: A total of 256 RNAseq and 7 single-cell sequencing samples were collected from TCGA-SARC and GSE212527 cohorts. Based on published TLS-related gene sets, four TLS scores were established by GSVA algorithm. The immune cell infiltration was calculated via TIMER2.0 and "MCPcounter" algorithms. In addition, the univariate, LASSO, and multivariate-Cox analyses were used to select TLS-related and prognosis-significant hub genes. Single-cell sequencing dataset, clinical immunohistochemical, and cell experiments were utilized to validate the hub genes. Results: In this study, four TLS-related scores were identified, and the total-gene TLS score more accurately reflected the infiltration level of TLS in STS. We further established two hub genes (DUSP9 and TNFSF14) prognosis markers and risk scores associated with soft tissue sarcoma prognosis and immune therapy response. Flow cytometry analysis showed that the amount of CD3, CD8, CD19, and CD11c positive immune cell infiltration in the tumor tissue dedifferentiated liposarcoma patients was significantly higher than that of liposarcoma patients. Cytological experiments showed that soft tissue sarcoma cell lines overexpressing TNFSF14 could inhibit the proliferation and migration of sarcoma cells. Conclusion: This study systematically explored the TLS and related genes from the perspectives of bioinformatics, clinical features and cytology experiments. The total-gene TLS score, risk score and TNFSF14 hub gene may be useful biomarkers for predicting the prognosis and immunotherapy efficacy of soft tissue sarcoma.


Subject(s)
Biomarkers, Tumor , Immunotherapy , Sarcoma , Tumor Microenvironment , Humans , Sarcoma/genetics , Sarcoma/therapy , Sarcoma/immunology , Sarcoma/diagnosis , Biomarkers, Tumor/genetics , Prognosis , Immunotherapy/methods , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic , Female , Male , Tumor Necrosis Factor Ligand Superfamily Member 14/genetics , Gene Expression Profiling , Single-Cell Analysis
4.
Cell Mol Life Sci ; 81(1): 219, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758230

ABSTRACT

HMGA1 is a structural epigenetic chromatin factor that has been associated with tumor progression and drug resistance. Here, we reported the prognostic/predictive value of HMGA1 for trabectedin in advanced soft-tissue sarcoma (STS) and the effect of inhibiting HMGA1 or the mTOR downstream pathway in trabectedin activity. The prognostic/predictive value of HMGA1 expression was assessed in a cohort of 301 STS patients at mRNA (n = 133) and protein level (n = 272), by HTG EdgeSeq transcriptomics and immunohistochemistry, respectively. The effect of HMGA1 silencing on trabectedin activity and gene expression profiling was measured in leiomyosarcoma cells. The effect of combining mTOR inhibitors with trabectedin was assessed on cell viability in vitro studies, whereas in vivo studies tested the activity of this combination. HMGA1 mRNA and protein expression were significantly associated with worse progression-free survival of trabectedin and worse overall survival in STS. HMGA1 silencing sensitized leiomyosarcoma cells for trabectedin treatment, reducing the spheroid area and increasing cell death. The downregulation of HGMA1 significantly decreased the enrichment of some specific gene sets, including the PI3K/AKT/mTOR pathway. The inhibition of mTOR, sensitized leiomyosarcoma cultures for trabectedin treatment, increasing cell death. In in vivo studies, the combination of rapamycin with trabectedin downregulated HMGA1 expression and stabilized tumor growth of 3-methylcholantrene-induced sarcoma-like models. HMGA1 is an adverse prognostic factor for trabectedin treatment in advanced STS. HMGA1 silencing increases trabectedin efficacy, in part by modulating the mTOR signaling pathway. Trabectedin plus mTOR inhibitors are active in preclinical models of sarcoma, downregulating HMGA1 expression levels and stabilizing tumor growth.


Subject(s)
HMGA1a Protein , Sarcoma , Trabectedin , Trabectedin/pharmacology , Humans , Sarcoma/drug therapy , Sarcoma/pathology , Sarcoma/genetics , Sarcoma/metabolism , HMGA1a Protein/metabolism , HMGA1a Protein/genetics , Animals , Cell Line, Tumor , Mice , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , TOR Serine-Threonine Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Prognosis , Female , Leiomyosarcoma/drug therapy , Leiomyosarcoma/pathology , Leiomyosarcoma/genetics , Leiomyosarcoma/metabolism , Xenograft Model Antitumor Assays
5.
Commun Biol ; 7(1): 608, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769385

ABSTRACT

Diverse tumor metabolic phenotypes are influenced by the environment and genetic lesions. Whether these phenotypes extend to rhabdomyosarcoma (RMS) and how they might be leveraged to design new therapeutic approaches remains an open question. Thus, we utilized a Pax7Cre-ER-T2/+; NrasLSL-G12D/+; p53fl/fl (P7NP) murine model of sarcoma with mutations that most frequently occur in human embryonal RMS. To study metabolism, we infuse 13C-labeled glucose or glutamine into mice with sarcomas and show that sarcomas consume more glucose and glutamine than healthy muscle tissue. However, we reveal a marked shift from glucose consumption to glutamine metabolism after radiation therapy (RT). In addition, we show that inhibiting glutamine, either through genetic deletion of glutaminase (Gls1) or through pharmacological inhibition of glutaminase, leads to significant radiosensitization in vivo. This causes a significant increase in overall survival for mice with Gls1-deficient compared to Gls1-proficient sarcomas. Finally, Gls1-deficient sarcomas post-RT elevate levels of proteins involved in natural killer cell and interferon alpha/gamma responses, suggesting a possible role of innate immunity in the radiosensitization of Gls1-deficient sarcomas. Thus, our results indicate that glutamine contributes to radiation response in a mouse model of RMS.


Subject(s)
Glutaminase , Glutamine , Sarcoma , Animals , Glutamine/metabolism , Mice , Glutaminase/metabolism , Glutaminase/genetics , Glutaminase/antagonists & inhibitors , Sarcoma/metabolism , Sarcoma/radiotherapy , Sarcoma/genetics , Glucose/metabolism , Disease Models, Animal , Radiation Tolerance
6.
Am J Case Rep ; 25: e943271, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778503

ABSTRACT

BACKGROUND Soft tissue tumors have various subtypes, among which sarcomas exhibit high malignant potential and poor prognosis. Malignant epithelioid tumor with GLI1 alterations was originally found in myopericytoma with t(7;12) translocation. However, recent studies indicated that it is a distinct tumor type characterized by multiple nodular distributions of oval or round epithelioid cells with a rich capillary network and a lack of specific immunophenotype. There are only a few cases reported worldwide and the optimal treatment is still being explored. CASE REPORT We report the case of a 31-year-old patient who presented with severe anemia and a large soft tissue mass in the duodenum. The patient underwent surgical resection with a negative margin, and none of the 15 lymph nodes tested positive for the tumor. Postoperative pathology and FISH testing further confirmed the presence of GLI1 disruption and S-100 and SMA negativity. Genetic testing revealed the ACTB-GLI1 fusion. No specific medication was offered after the surgery. No tumor recurrence was found during the 23-month follow-up period. The patient's quality of life is currently satisfactory. CONCLUSIONS Soft tissue sarcomas characterized by GLI1 gene rearrangement have a relatively less aggressive and metastatic nature, with the solid mass spreading minimally even as it grows. Patients can benefit from surgical resection, resulting in a relatively long period of tumor-free survival.


Subject(s)
Duodenal Neoplasms , Gene Rearrangement , Sarcoma , Zinc Finger Protein GLI1 , Humans , Adult , Zinc Finger Protein GLI1/genetics , Sarcoma/genetics , Sarcoma/pathology , Sarcoma/surgery , Duodenal Neoplasms/genetics , Duodenal Neoplasms/surgery , Duodenal Neoplasms/pathology , Male
7.
JCO Precis Oncol ; 8: e2300713, 2024 May.
Article in English | MEDLINE | ID: mdl-38810175

ABSTRACT

PURPOSE: Our study aimed to explore real-world treatment scenarios for children and adolescents with neurotrophic tropomyosin receptor kinase (NTRK)-fused tumors, emphasizing access, responses, side effects, and outcomes. PATIENTS AND METHODS: Pooled clinical data from 17 pediatric cases (11 soft-tissue sarcomas, five brain tumors, and one neuroblastoma) treated with larotrectinib and radiologic images for 14 patients were centrally reviewed. Testing for gene fusions was prompted by poor response to treatment, tumor progression, or aggressiveness. RESULTS: Six different NTRK fusion subtypes were detected, and various payment sources for testing and medication were reported. Radiologic review revealed objective tumor responses (OR) in 11 of 14 patients: Complete responses: two; partial responses: nine; and stable disease: three cases. Grades 1 or 2 Common Terminology Criteria for Adverse Events adverse effects were reported in five patients. Regarding the entire cohort's clinical information, 15 of 17 patients remain alive (median observation time: 25 months): four with no evidence of disease and 11 alive with disease (10 without progression). One patient developed resistance to the NTRK inhibitor and died from disease progression while another patient died due to an unrelated cause. CONCLUSION: This real-world study confirms favorable agnostic tumor OR rates to larotrectinib in children with NTRK-fused tumors. Better coordination to facilitate access to medication remains a challenge, particularly in middle-income countries like Brazil.


Subject(s)
Protein Kinase Inhibitors , Pyrazoles , Humans , Child , Male , Female , Adolescent , Pyrazoles/therapeutic use , Child, Preschool , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Receptor, trkA/genetics , Receptor, trkA/antagonists & inhibitors , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Sarcoma/drug therapy , Sarcoma/genetics , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Infant , Receptor, trkB/genetics , Receptor, trkC/genetics , Clinical Trials as Topic
8.
Genes (Basel) ; 15(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38674359

ABSTRACT

Rare sarcomas present significant treatment challenges compared to more prevalent soft tissue sarcomas due to limited treatment options and a poor understanding of their biology. This study investigates a unique case of penile sarcoma, providing a comprehensive morphological and molecular analysis. Through the creation of experimental patient-derived models-including patient-derived xenograft (PDX), 3D, and monolayer primary cultures-we successfully replicated crucial molecular traits observed in the patient's tumor, such as smooth muscle actin and CD99 expression, along with specific mutations in genes like TSC2 and FGFR4. These models are helpful in assessing the potential for an in-depth exploration of this tumor's biology. This comprehensive approach holds promise in identifying potential therapeutic avenues for managing this exceedingly rare soft tissue sarcoma.


Subject(s)
Sarcoma , Humans , Male , Sarcoma/genetics , Sarcoma/pathology , Animals , Penile Neoplasms/genetics , Penile Neoplasms/pathology , Mice , Tuberous Sclerosis Complex 2 Protein/genetics , Mutation
9.
Mol Genet Genomic Med ; 12(4): e2423, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622850

ABSTRACT

BACKGROUND: Inflammatory myofibroblastic tumors (IMTs) are rare mesenchymal soft tissue sarcomas that often present diagnostic challenges due to their wide and varied morphology. A subset of IMTs have fusions involving ALK or ROS1. The role of next-generation sequencing (NGS) for classification of unselected sarcomas remains controversial. METHODS AND RESULTS: We report a case of a metastatic sarcoma in a 34-year-old female originally diagnosed as an unclassified spindle cell sarcoma with myofibroblastic differentiation and later reclassified as IMT after NGS revealed a TFG-ROS1 rearrangement. Histologically, the neoplasm had spindle cell morphology with a lobulated to focally infiltrative growth pattern with scant inflammatory cell infiltrate. Immunohistochemistry demonstrated focal desmin and variable smooth muscle actin staining but was negative for SOX10, S100, and CD34. Fluorescence in situ hybridization was negative for USP6 or ALK gene rearrangements. NGS revealed a TFG-ROS1 rearrangement and the patient was treated with crizotinib with clinical benefit. CONCLUSIONS: We discuss the role of NGS as well as its potential benefit in patients with unresectable, ALK-negative metastatic disease. Considering this case and previous literature, we support the use of NGS for patients requiring systemic treatment.


Subject(s)
Protein-Tyrosine Kinases , Sarcoma , Female , Humans , Adult , Protein-Tyrosine Kinases/genetics , Anaplastic Lymphoma Kinase/genetics , In Situ Hybridization, Fluorescence , Proto-Oncogene Proteins/genetics , Sarcoma/drug therapy , Sarcoma/genetics , Sarcoma/pathology , High-Throughput Nucleotide Sequencing , Ubiquitin Thiolesterase/genetics , Vesicular Transport Proteins/genetics
10.
Cell Death Dis ; 15(4): 241, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561375

ABSTRACT

Soft-tissue sarcomas (STS) emerges as formidable challenges in clinics due to the complex genetic heterogeneity, high rates of local recurrence and metastasis. Exploring specific targets and biomarkers would benefit the prognosis and treatment of STS. Here, we identified RCC1, a guanine-nucleotide exchange factor for Ran, as an oncogene and a potential intervention target in STS. Bioinformatics analysis indicated that RCC1 is highly expressed and correlated with poor prognosis in STS. Functional studies showed that RCC1 knockdown significantly inhibited the cell cycle transition, proliferation and migration of STS cells in vitro, and the growth of STS xenografts in mice. Mechanistically, we identified Skp2 as a downstream target of RCC1 in STS. Loss of RCC1 substantially diminished Skp2 abundance by compromising its protein stability, resulting in the upregulation of p27Kip1 and G1/S transition arrest. Specifically, RCC1 might facilitate the nucleo-cytoplasmic trafficking of Skp2 via direct interaction. As a result, the cytoplasmic retention of Skp2 would further protect it from ubiquitination and degradation. Notably, recovery of Skp2 expression largely reversed the phenotypes induced by RCC1 knockdown in STS cells. Collectively, this study unveils a novel RCC1-Skp2-p27Kip1 axis in STS oncogenesis, which holds promise for improving prognosis and treatment of this formidable malignancy.


Subject(s)
Sarcoma , Animals , Humans , Mice , Cell Cycle , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Nuclear Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Sarcoma/genetics , Sarcoma/pathology , Ubiquitination , Up-Regulation
12.
Arkh Patol ; 86(2): 37-41, 2024.
Article in Russian | MEDLINE | ID: mdl-38591905

ABSTRACT

Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion is an extremely rare tumor. Its clinical manifestation is unspecific and only molecular genetic method can proof this diagnosis. This paper describes an unusual clinical presentation of primary pulmonary myxoid sarcoma in a 68-year-old patient with involvement of both lungs.


Subject(s)
Lung Neoplasms , Sarcoma , Humans , Aged , Sarcoma/genetics , Sarcoma/diagnosis , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , Cyclic AMP Response Element-Binding Protein/genetics , RNA-Binding Protein EWS/genetics
13.
J Clin Invest ; 134(11)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652549

ABSTRACT

CD8+ T cell dysfunction impedes antitumor immunity in solid cancers, but the underlying mechanisms are diverse and poorly understood. Extracellular matrix (ECM) composition has been linked to impaired T cell migration and enhanced tumor progression; however, impacts of individual ECM molecules on T cell function in the tumor microenvironment (TME) are only beginning to be elucidated. Upstream regulators of aberrant ECM deposition and organization in solid tumors are equally ill-defined. Therefore, we investigated how ECM composition modulates CD8+ T cell function in undifferentiated pleomorphic sarcoma (UPS), an immunologically active desmoplastic tumor. Using an autochthonous murine model of UPS and data from multiple human patient cohorts, we discovered a multifaceted mechanism wherein the transcriptional coactivator YAP1 promotes collagen VI (COLVI) deposition in the UPS TME. In turn, COLVI induces CD8+ T cell dysfunction and immune evasion by remodeling fibrillar collagen and inhibiting T cell autophagic flux. Unexpectedly, collagen I (COLI) opposed COLVI in this setting, promoting CD8+ T cell function and acting as a tumor suppressor. Thus, CD8+ T cell responses in sarcoma depend on oncogene-mediated ECM composition and remodeling.


Subject(s)
CD8-Positive T-Lymphocytes , Extracellular Matrix , Sarcoma , Tumor Microenvironment , YAP-Signaling Proteins , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Animals , Tumor Microenvironment/immunology , Mice , YAP-Signaling Proteins/immunology , YAP-Signaling Proteins/genetics , Humans , Extracellular Matrix/immunology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Sarcoma/immunology , Sarcoma/pathology , Sarcoma/genetics , Sarcoma/metabolism , Collagen Type VI/genetics , Collagen Type VI/immunology , Collagen Type VI/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/immunology , Oncogenes , Neoplasm Proteins/immunology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type I/immunology
14.
Expert Rev Anticancer Ther ; 24(6): 407-421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38682679

ABSTRACT

INTRODUCTION: Soft tissue sarcomas (STS) are a rare and diverse group of tumors. Curative options are limited to localized disease, with surgery being the mainstay. Advanced stages are associated with a poor prognosis. Currently, the prognosis of the patient is based on histological classification and clinical characteristics, with only a few biomarkers having entered clinical practice. AREAS COVERED: This article covers extensive recent research that has established novel potential biomarkers based on genomics, proteomics, and clinical characteristics. Validating and incorporating these biomarkers into clinical practice can improve prognosis, prediction of recurrence, and treatment response. Relevant literature was collected from PubMed, Scopus, and clinicaltrials.gov databases (November 2023). EXPERT OPINION: Currently, defining prognostic markers in soft tissue sarcomas remains challenging. More studies are required, especially to personalize treatment through advanced genetic profiling and analysis using individual tumor and patient characteristics.


Subject(s)
Biomarkers, Tumor , Genomics , Proteomics , Sarcoma , Humans , Sarcoma/pathology , Sarcoma/genetics , Sarcoma/diagnosis , Sarcoma/therapy , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Genomics/methods , Neoplasm Recurrence, Local , Precision Medicine , Neoplasm Staging , Soft Tissue Neoplasms/pathology , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/diagnosis , Soft Tissue Neoplasms/therapy
15.
Clin Imaging ; 110: 110134, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631176

ABSTRACT

OBJECTIVE: To explore pre-treatment imaging findings of neurotrophic tyrosine receptor kinase (NTRK)-rearranged spindle cell neoplasm, an emerging group of molecularly defined soft tissue tumors and summarize the clinical course, including TRK inhibitor therapy response. MATERIALS AND METHODS: This retrospective study included 8 women and 4 men with NTRK-rearranged spindle cell neoplasm (median age, 35.5 years, range, 0-66). Available pre-treatment MRI, CT, PET, and US imaging were reviewed. Tumor histology and the patients' clinical course were reviewed. RESULTS: Primary tumors were located within the soft tissue, lungs, kidney, and breast with soft tissue being the most prevalent site (n = 6). Pre-treatment MRI (n = 4) revealed linear hypointense signal foci and contrast enhancement in all patients with hemorrhage in half of the tumors. A tail sign (n = 1) and fluid levels (n = 1) were less frequent. Ultrasound showed well-marginated hypoechoic masses with internal flow. Primary tumors were all non-calcified on CT (4/4). Metastases were FDG-avid (4/4). Among the 8 patients who developed metastasis, 7 developed pulmonary metastases. All four patients who received NTRK inhibitor therapy showed an initial decrease in tumor size or FDG uptake. CONCLUSION: NTRK-rearranged neoplasms may occur as enhancing masses with linear hypointense signal foci on MRI and FDG avid metastases on PET. Pulmonary metastases were frequent in our study. Initial treatment response is observed in most patients.


Subject(s)
Soft Tissue Neoplasms , Humans , Female , Male , Middle Aged , Adult , Retrospective Studies , Aged , Soft Tissue Neoplasms/diagnostic imaging , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Sarcoma/diagnostic imaging , Sarcoma/genetics , Sarcoma/pathology , Young Adult , Magnetic Resonance Imaging/methods , Adolescent , Receptor, trkA/genetics , Gene Rearrangement , Tomography, X-Ray Computed
16.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580088

ABSTRACT

Metabolic reprogramming is considered as a hallmark of cancer and is clinically exploited as a novel target for therapy. The E2F transcription factor-1 (E2F1) regulates various cellular processes, including proliferative and metabolic pathways, and acts, depending on the cellular and molecular context, as an oncogene or tumor suppressor. The latter is evident by the observation that E2f1-knockout mice develop spontaneous tumors, including uterine sarcomas. This dual role warrants a detailed investigation of how E2F1 loss impacts metabolic pathways related to cancer progression. Our data indicate that E2F1 binds to the promoter of several glutamine metabolism-related genes. Interestingly, the expression of genes in the glutamine metabolic pathway were increased in mouse embryonic fibroblasts (MEFs) lacking E2F1. In addition, we confirm that E2f1-/- MEFs are more efficient in metabolizing glutamine and producing glutamine-derived precursors for proliferation. Mechanistically, we observe a co-occupancy of E2F1 and MYC on glutamine metabolic promoters, increased MYC binding after E2F1 depletion and that silencing of MYC decreased the expression of glutamine-related genes in E2f1-/- MEFs. Analyses of transcriptomic profiles in 29 different human cancers identified uterine sarcoma that showed a negative correlation between E2F1 and glutamine metabolic genes. CRISPR/Cas9 knockout of E2F1 in the uterine sarcoma cell line SK-UT-1 confirmed elevated glutamine metabolic gene expression, increased proliferation and increased MYC binding to glutamine-related promoters upon E2F1 loss. Together, our data suggest a crucial role of E2F1 in energy metabolism and metabolic adaptation in uterine sarcoma cells.


Subject(s)
E2F1 Transcription Factor , Fibroblasts , Gene Expression Regulation, Neoplastic , Glutamine , Uterine Neoplasms , Animals , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Glutamine/metabolism , Mice , Female , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Fibroblasts/metabolism , Humans , Sarcoma/genetics , Sarcoma/metabolism , Sarcoma/pathology , Mice, Knockout , Cell Line, Tumor , Cell Proliferation , Promoter Regions, Genetic
17.
Diagn Pathol ; 19(1): 65, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678288

ABSTRACT

BACKGROUND: MEIS1::NCOA2 is a rare fusion gene that has been recently described in a subset of spindle cell rhabdomyosarcomas and multiple low-grade undifferentiated spindle cell sarcomas predominantly arising in the genitourinary and gynecologic tracts with no specific line of differentiation. We present the first documented case of this neoplasm arising as a lung primary tumor. CASE PRESENTATION: A 74-year-old woman with a 40-year smoking history presented with a 2.1 × 1.7 cm lung nodule discovered on computed tomography (CT) scan. A biopsy and subsequent lobe resection were performed, as well as an extensive metastatic work up, which revealed no additional masses. No specific line of differentiation was found by immunohistochemical staining, and an RNA-based fusion panel revealed a MEIS1::NCOA2 fusion, at which point a diagnosis of Low-Grade Undifferentiated Sarcoma with MEIS1::NCOA2-Rearrangement was rendered. CONCLUSIONS: This report represents the first diagnosis of this tumor primary to the lung, and provides additional insight into the origin and localization of these rare tumors.


Subject(s)
Lung Neoplasms , Myeloid Ecotropic Viral Integration Site 1 Protein , Nuclear Receptor Coactivator 2 , Sarcoma , Humans , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Female , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Aged , Sarcoma/genetics , Sarcoma/pathology , Nuclear Receptor Coactivator 2/genetics , Gene Rearrangement , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis
19.
AJNR Am J Neuroradiol ; 45(5): 626-631, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38637027

ABSTRACT

Primary intracranial sarcoma, DICER1-mutant, is a rare, recently described entity in the fifth edition of the WHO Classification of CNS Tumors. Given the entity's rarity and recent description, imaging data on primary intracranial sarcoma, DICER1-mutant, remains scarce. In this multicenter case series, we present detailed multimodality imaging features of primary intracranial sarcoma, DICER1-mutant, with emphasis on the appearance of the entity on MR imaging. In total, 8 patients were included. In all 8 patients, the lesion demonstrated blood products on T1WI. In 7 patients, susceptibility-weighted imaging was obtained and demonstrated blood products. Primary intracranial sarcoma, DICER1-mutant, is a CNS neoplasm that primarily affects pediatric and young adult patients. In the present case series, we explore potential imaging findings that are helpful in suggesting this diagnosis. In younger patients, the presence of a cortical lesion with intralesional blood products on SWI and T1-weighted MR imaging, with or without extra-axial blood products, should prompt the inclusion of this entity in the differential diagnosis.


Subject(s)
Brain Neoplasms , DEAD-box RNA Helicases , Magnetic Resonance Imaging , Mutation , Ribonuclease III , Sarcoma , Humans , Ribonuclease III/genetics , DEAD-box RNA Helicases/genetics , Male , Female , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Adolescent , Young Adult , Adult , Magnetic Resonance Imaging/methods , Sarcoma/genetics , Sarcoma/diagnostic imaging , Child , Child, Preschool
20.
Medicina (Kaunas) ; 60(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38674190

ABSTRACT

Sarcomas, particularly undifferentiated small round cell sarcomas of bone and soft tissue, pose significant diagnostic challenges due to their nonspecific morphology and the necessity for comprehensive molecular analyses. This paper discusses a rare case of round cell sarcoma exhibiting the EWSR1-CREM fusion, offering insights into the complexities of its diagnosis and management. The patient, a 15-year-old female with a history of Type 1 diabetes, presented with persistent right thigh tenderness and swelling. MRI revealed a large necrotic mass in the retroperitoneal region. Histological analysis showed a well-demarcated tumor with diverse cellular morphologies and distinct necrotic areas. Immunohistochemical (IHC) tests identified dot-like staining for Desmin and Vimentin but negative results for several markers, including Cytokeratin and CD45. Strong ALK positivity was noted. Next-generation sequencing with the Illumina TruSight™ Oncology 500 assay revealed the fusion gene EWSR1-CREM, along with benign and uncertain mutations in other genes. The tumor's morphology and immunoprofile, along with molecular findings, led to a diagnosis of round cell sarcoma with EWSR1-CREM fusion. This case adds to the spectrum of tumors associated with this fusion, often presenting diverse morphologies. The rarity of EWSR1-CREM fusion sarcomas poses a challenge in treatment, highlighted by the development of pulmonary metastases and disease progression after surgical excision in this patient despite the lack of an effective targeted therapy. In conclusion, this case emphasizes the need for a multidisciplinary diagnostic approach in complex sarcomas and highlights the importance of continued research on rare sarcomas, their genetic underpinnings, and potential therapeutic targets.


Subject(s)
Cyclic AMP Response Element Modulator , RNA-Binding Protein EWS , Sarcoma , Humans , Female , Sarcoma/genetics , Sarcoma/diagnosis , Sarcoma/surgery , RNA-Binding Protein EWS/genetics , Adolescent
SELECTION OF CITATIONS
SEARCH DETAIL
...