Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.586
Filter
1.
Cells ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38920660

ABSTRACT

Skeletal muscle satellite cells, the resident stem cells in pig skeletal muscle, undergo proliferation and differentiation to enable muscle tissue repair. The proliferative and differentiative abilities of these cells gradually decrease during in vitro cultivation as the cell passage number increases. Despite extensive research, the precise molecular mechanisms that regulate this process are not fully understood. To bridge this knowledge gap, we conducted transcriptomic analysis of skeletal muscle satellite cells during in vitro cultivation to quantify passage number-dependent changes in the expression of genes associated with proliferation. Additionally, we explored the relationships between gene transcriptional activity and chromatin accessibility using transposase-accessible chromatin sequencing. This revealed the closure of numerous open chromatin regions, which were primarily located in intergenic regions, as the cell passage number increased. Integrated analysis of the transcriptomic and epigenomic data demonstrated a weak correlation between gene transcriptional activity and chromatin openness in expressed genic regions; although some genes (e.g., GNB4 and FGD5) showed consistent relationships between gene expression and chromatin openness, a substantial number of differentially expressed genes had no clear association with chromatin openness in expressed genic regions. The p53-p21-RB signaling pathway may play a critical regulatory role in cell proliferation processes. The combined transcriptomic and epigenomic approach taken here provided key insights into changes in gene expression and chromatin openness during in vitro cultivation of skeletal muscle satellite cells. These findings enhance our understanding of the intricate mechanisms underlying the decline in cellular proliferation capacity in cultured cells.


Subject(s)
Cell Proliferation , RNA-Seq , Satellite Cells, Skeletal Muscle , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Animals , Cell Proliferation/genetics , Cells, Cultured , Swine , Chromatin/metabolism , Transcriptome/genetics , Gene Expression Regulation , Chromatin Immunoprecipitation Sequencing
2.
BMC Genomics ; 25(1): 637, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926663

ABSTRACT

Dynamic metabolic reprogramming occurs at different stages of myogenesis and contributes to the fate determination of skeletal muscle satellite cells (MuSCs). Accumulating evidence suggests that mutations in myostatin (MSTN) have a vital role in regulating muscle energy metabolism. Here, we explored the metabolic reprogramming in MuSCs and myotube cells in MSTN and FGF5 dual-gene edited sheep models prepared previously, and also focused on the metabolic alterations during myogenic differentiation of MuSCs. Our study revealed that the pathways of nucleotide metabolism, pantothenate and CoA biosynthesis were weakened, while the unsaturated fatty acids biosynthesis were strengthened during myogenic differentiation of sheep MuSCs. The MSTN and FGF5 dual-gene editing mainly inhibited nucleotide metabolism and biosynthesis of unsaturated fatty acids in sheep MuSCs, reduced the number of lipid droplets in per satellite cell, and promoted the pentose phosphate pathway, and the interconversion of pentose and glucuronate. The MSTN and FGF5 dual-gene editing also resulted in the inhibition of nucleotide metabolism and TCA cycle pathway in differentiated myotube cells. The differential metabolites we identified can be characterized as biomarkers of different cellular states, and providing a new reference for MSTN and FGF5 dual-gene editing in regulation of muscle development. It may also provide a reference for the development of muscle regeneration drugs targeting biomarkers.


Subject(s)
Fibroblast Growth Factor 5 , Gene Editing , Muscle Development , Myostatin , Animals , Myostatin/genetics , Myostatin/metabolism , Muscle Development/genetics , Sheep , Fibroblast Growth Factor 5/genetics , Fibroblast Growth Factor 5/metabolism , Cell Differentiation , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology
3.
Skelet Muscle ; 14(1): 13, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867250

ABSTRACT

BACKGROUND: Adult muscle-resident myogenic stem cells, satellite cells (SCs), that play non-redundant role in muscle regeneration, are intrinsically impaired in Duchenne muscular dystrophy (DMD). Previously we revealed that dystrophic SCs express low level of anti-inflammatory and anti-oxidative heme oxygenase-1 (HO-1, HMOX1). Here we assess whether targeted induction of HMOX1 affect SC function and alleviates hallmark symptoms of DMD. METHODS: We generated double-transgenic mouse model (mdx;HMOX1Pax7Ind) that allows tamoxifen (TX)-inducible HMOX1 expression in Pax7 positive cells of dystrophic muscles. Mdx;HMOX1Pax7Ind and control mdx mice were subjected to 5-day TX injections (75 mg/kg b.w.) followed by acute exercise protocol with high-speed treadmill (12 m/min, 45 min) and downhill running to worsen skeletal muscle phenotype and reveal immediate effects of HO-1 on muscle pathology and SC function. RESULTS: HMOX1 induction caused a drop in SC pool in mdx;HMOX1Pax7Ind mice (vs. mdx counterparts), while not exaggerating the effect of physical exercise. Upon physical exercise, the proliferation of SCs and activated CD34- SC subpopulation, was impaired in mdx mice, an effect that was reversed in mdx;HMOX1Pax7Ind mice, however, both in vehicle- and TX-treated animals. This corresponded to the pattern of HO-1 expression in skeletal muscles. At the tissue level, necrotic events of selective skeletal muscles of mdx mice and associated increase in circulating levels of muscle damage markers were blunted in HO-1 transgenic animals which showed also anti-inflammatory cytokine profile (vs. mdx). CONCLUSIONS: Targeted expression of HMOX1 plays protective role in DMD and alleviates dystrophic muscle pathology.


Subject(s)
Heme Oxygenase-1 , Mice, Inbred mdx , Mice, Transgenic , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Satellite Cells, Skeletal Muscle , Animals , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Male , Mice, Inbred C57BL , Physical Conditioning, Animal , Membrane Proteins
4.
PLoS One ; 19(5): e0300850, 2024.
Article in English | MEDLINE | ID: mdl-38718005

ABSTRACT

Essential for muscle fiber formation and hypertrophy, muscle stem cells, also called satellite cells, reside beneath the basal lamina of the muscle fiber. Satellite cells have been commonly identified by the expression of the Paired box 7 (Pax7) due to its specificity and the availability of antibodies in tetrapods. In fish, the identification of satellite cells remains difficult due to the lack of specific antibodies in most species. Based on the development of a highly sensitive in situ hybridization (RNAScope®) for pax7, we showed that pax7+ cells were detected in the undifferentiated myogenic epithelium corresponding to the dermomyotome at day 14 post-fertilization in rainbow trout. Then, from day 24, pax7+ cells gradually migrated into the deep myotome and were localized along the muscle fibers and reach their niche in satellite position of the fibres after hatching. Our results showed that 18 days after muscle injury, a large number of pax7+ cells accumulated at the wound site compared to the uninjured area. During the in vitro differentiation of satellite cells, the percentage of pax7+ cells decreased from 44% to 18% on day 7, and some differentiated cells still expressed pax7. Taken together, these results show the dynamic expression of pax7 genes and the follow-up of these muscle stem cells during the different situations of muscle fiber formation in trout.


Subject(s)
Oncorhynchus mykiss , PAX7 Transcription Factor , Regeneration , Satellite Cells, Skeletal Muscle , Animals , Cell Differentiation , Gene Expression Regulation, Developmental , Muscle Development/genetics , Oncorhynchus mykiss/metabolism , Oncorhynchus mykiss/genetics , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Regeneration/genetics , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology
5.
Article in English | MEDLINE | ID: mdl-38776751

ABSTRACT

Previous research has shown that leucine (Leu) can stimulate and enhance the proliferation of equine skeletal muscle satellite cells (SCs). The gene expression profile associated with Leu-induced proliferation of equine SCs has also been documented. However, the specific role of Leu in regulating the expression of slow-twitch muscle fibers (slow-MyHC) and mitochondrial function in equine SCs, as well as the underlying mechanism, remains unclear. During this investigation, equine SCs underwent culturing in differentiation medium and were subjected to varying concentrations of Leu (0 mM, 0.5 mM, 1 mM, 2 mM, 5 mM, and 10 mM) over a span of 3 days. AMP-activated protein kinase (AMPK) inhibitor Compound C and mammalian target of rapamycin complex (mTOR) inhibitor Rapamycin were utilized to explore its underlying mechanism. Here we showed that the expression of slow-MyHC at 2 mM Leu level was significantly higher than the concentration levels of 0 mM,0.5 mM and 10 mM (P <0.01), and there was no significant difference compared to other groups (P > 0.05); the basal respiration, maximum respiration, standby respiration and the expression of slow-MyHC, PGC-1α, Cytc, ND1, TFAM, and COX1 were significantly increased with Leu supplementation (P < 0.01). We also found that Leu up-regulated the expression of key proteins on AMPK and mTOR signaling pathways, including LKB1, p-LKB1, AMPK, p-AMPK, S6, p-S6, 4EBP1, p-4EBP1, mTOR and p-mTOR (P < 0.05 or P < 0.01). Notably, when we treated the equine SCs with the AMPK inhibitor Compound C and the mTOR inhibitor Rapamycin, we observed a reduction in the beneficial effects of Leu on the expression of genes related to slow-MyHC and signaling pathway-related gene expressions. This study provides novel evidence that Leu promotes slow-MyHC expression and enhances mitochondrial function in equine SCs through the AMPK/mTOR signaling pathways, shedding light on the underlying mechanisms involved in these processes for the first time.


Subject(s)
AMP-Activated Protein Kinases , Energy Metabolism , Leucine , Muscle Fibers, Slow-Twitch , Satellite Cells, Skeletal Muscle , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Leucine/pharmacology , TOR Serine-Threonine Kinases/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/drug effects , Signal Transduction/drug effects , Horses , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Energy Metabolism/drug effects , Muscle Fibers, Slow-Twitch/metabolism , Muscle Fibers, Slow-Twitch/drug effects , Cells, Cultured
6.
BMC Genomics ; 25(1): 530, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816813

ABSTRACT

BACKGROUND: Skeletal muscle development and fat deposition have important effects on meat quality. The study of regulating skeletal muscle development and fat deposition is of great significance in improving the quality of carcass and meat. In the present study, whole transcriptome sequencing (including RNA-Seq and miRNA-Seq) was performed on the longissimus dorsi muscle (LDM) of Jinfen White pigs at 1, 90, and 180 days of age. RESULTS: The results showed that a total of 245 differentially expressed miRNAs were screened in any two comparisons, which may be involved in the regulation of myogenesis. Among them, compared with 1-day-old group, miR-22-5p was significantly up-regulated in 90-day-old group and 180-day-old group. Functional studies demonstrated that miR-22-5p inhibited the proliferation and differentiation of porcine skeletal muscle satellite cells (PSCs). Pearson correlation coefficient analysis showed that long non-coding RNA (lncRNA) LOC106505926 and CXXC5 gene had strong negative correlations with miR-22-5p. The LOC106505926 and CXXC5 were proven to promote the proliferation and differentiation of PSCs, as opposed to miR-22-5p. In terms of mechanism, LOC106505926 functions as a molecular sponge of miR-22-5p to modulate the expression of CXXC5, thereby inhibits the differentiation of PSCs. In addition, LOC106505926 regulates the differentiation of porcine preadipocytes through direct binding with FASN. CONCLUSIONS: Collectively, our results highlight the multifaceted regulatory role of LOC106505926 in controlling skeletal muscle and adipose tissue development in pigs and provide new targets for improving the quality of livestock products by regulating skeletal muscle development and fat deposition.


Subject(s)
Cell Differentiation , Lipogenesis , MicroRNAs , Muscle Development , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , Muscle Development/genetics , Swine , MicroRNAs/genetics , MicroRNAs/metabolism , Lipogenesis/genetics , Cell Differentiation/genetics , Cell Proliferation , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Cells, Cultured
7.
Redox Biol ; 73: 103213, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815331

ABSTRACT

Cysteine, the rate-controlling amino acid in cellular glutathione synthesis is imported as cystine, by the cystine/glutamate antiporter, xCT, and subsequently reduced to cysteine. As glutathione redox is important in muscle regeneration in aging, we hypothesized that xCT exerts upstream control over skeletal muscle glutathione redox, metabolism and regeneration. Bioinformatic analyses of publicly available datasets revealed that expression levels of xCT and GSH-related genes are inversely correlated with myogenic differentiation genes. Muscle satellite cells (MuSCs) isolated from Slc7a11sut/sut mice, which harbour a mutation in the Slc7a11 gene encoding xCT, required media supplementation with 2-mercaptoethanol to support cell proliferation but not myotube differentiation, despite persistently lower GSH. Slc7a11sut/sut primary myotubes were larger compared to WT myotubes, and also exhibited higher glucose uptake and cellular oxidative capacities. Immunostaining of myogenic markers (Pax7, MyoD, and myogenin) in cardiotoxin-damaged tibialis anterior muscle fibres revealed greater MuSC activation and commitment to differentiation in Slc7a11sut/sut muscle compared to WT mice, culminating in larger myofiber cross-sectional areas at 21 days post-injury. Slc7a11sut/sut mice subjected to a 5-week exercise training protocol demonstrated enhanced insulin tolerance compared to WT mice, but blunted muscle mitochondrial biogenesis and respiration in response to exercise training. Our results demonstrate that the absence of xCT inhibits cell proliferation but promotes myotube differentiation by regulating cellular metabolism and glutathione redox. Altogether, these results support the notion that myogenesis is a redox-regulated process and may help inform novel therapeutic approaches for muscle wasting and dysfunction in aging and disease.


Subject(s)
Amino Acid Transport System y+ , Cell Differentiation , Energy Metabolism , Glutathione , Muscle, Skeletal , Oxidation-Reduction , Animals , Mice , Glutathione/metabolism , Muscle, Skeletal/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Muscle Development , Satellite Cells, Skeletal Muscle/metabolism , Muscle Fibers, Skeletal/metabolism , Cystine/metabolism
8.
Food Res Int ; 186: 114396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729738

ABSTRACT

Cell culture meat is based on the scaled-up expansion of seed cells. The biological differences between seed cells from large yellow croakers in the two-dimensional (2D) and three-dimensional (3D) culture systems have not been explored. Here, satellite cells (SCs) from large yellow croakers (Larimichthys crocea) were grown on cell climbing slices, hydrogels, and microcarriers for five days to analyze the biological differences of SCs on different cell scaffolds. The results exhibited that SCs had different cell morphologies in 2D and 3D cultures. Cell adhesion receptors (Itgb1andsdc4) and adhesion spot markervclof the 3D cultures were markedly expressed. Furthermore, myogenic decision markers (Pax7andmyod) were significantly enhanced. However, the expression of myogenic differentiation marker (desmin) was significantly increased in the microcarrier group. Combined with the transcriptome data, this suggests that cell adhesion of SCs in 3D culture was related to the integrin signaling pathway. In contrast, the slight spontaneous differentiation of SCs on microcarriers was associated with rapid cell proliferation. This study is the first to report the biological differences between SCs in 2D and 3D cultures, providing new perspectives for the rapid expansion of cell culture meat-seeded cells and the development of customized scaffolds.


Subject(s)
Cell Adhesion , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Hydrogels , Satellite Cells, Skeletal Muscle , Tissue Scaffolds , Animals , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Cell Culture Techniques, Three Dimensional/methods , Cells, Cultured , Desmin/metabolism , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Muscle Development
9.
Proc Natl Acad Sci U S A ; 121(21): e2317495121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753506

ABSTRACT

Myogenic regeneration relies on the proliferation and differentiation of satellite cells. TECRL (trans-2,3-enoyl-CoA reductase like) is an endoplasmic reticulum protein only expressed in cardiac and skeletal muscle. However, its role in myogenesis remains unknown. We show that TECRL expression is increased in response to injury. Satellite cell-specific deletion of TECRL enhances muscle repair by increasing the expression of EGR2 through the activation of the ERK1/2 signaling pathway, which in turn promotes the expression of PAX7. We further show that TECRL deletion led to the upregulation of the histone acetyltransferase general control nonderepressible 5, which enhances the transcription of EGR2 through acetylation. Importantly, we showed that AAV9-mediated TECRL silencing improved muscle repair in mice. These findings shed light on myogenic regeneration and muscle repair.


Subject(s)
Early Growth Response Protein 2 , Muscle Development , Muscle, Skeletal , Regeneration , Animals , Mice , Muscle, Skeletal/metabolism , Early Growth Response Protein 2/metabolism , Early Growth Response Protein 2/genetics , Muscle Development/genetics , Regeneration/genetics , Up-Regulation , Satellite Cells, Skeletal Muscle/metabolism , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , MAP Kinase Signaling System , Mice, Knockout , Cell Differentiation
10.
Genomics ; 116(3): 110851, 2024 May.
Article in English | MEDLINE | ID: mdl-38692440

ABSTRACT

Skeletal muscle satellite cells (SMSCs) play an important role in regulating muscle growth and regeneration. Chromatin accessibility allows physical interactions that synergistically regulate gene expression through enhancers, promoters, insulators, and chromatin binding factors. However, the chromatin accessibility altas and its regulatory role in ovine myoblast differentiation is still unclear. Therefore, ATAC-seq and RNA-seq analysis were performed on ovine SMSCs at the proliferation stage (SCG) and differentiation stage (SCD). 17,460 DARs (differential accessibility regions) and 3732 DEGs (differentially expressed genes) were identified. Based on joint analysis of ATAC-seq and RNA-seq, we revealed that PI3K-Akt, TGF-ß and other signaling pathways regulated SMSCs differentiation. We identified two novel candidate genes, FZD5 and MAP2K6, which may affect the proliferation and differentiation of SMSCs. Our data identify potential cis regulatory elements of ovine SMSCs. This study can provide a reference for exploring the mechanisms of the differentiation and regeneration of SMSCs in the future.


Subject(s)
Cell Differentiation , Muscle Development , Satellite Cells, Skeletal Muscle , Animals , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Sheep/genetics , Muscle Development/genetics , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , RNA-Seq , Signal Transduction , Cells, Cultured , Chromatin Immunoprecipitation Sequencing , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Cell Proliferation
11.
Biomolecules ; 14(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38672432

ABSTRACT

Sarcopenia has a complex pathophysiology that encompasses metabolic dysregulation and muscle ultrastructural changes. Among the drivers of intracellular and ultrastructural changes of muscle fibers in sarcopenia, mitochondria and their quality control pathways play relevant roles. Mononucleated muscle stem cells/satellite cells (MSCs) have been attributed a critical role in muscle repair after an injury. The involvement of mitochondria in supporting MSC-directed muscle repair is unclear. There is evidence that a reduction in mitochondrial biogenesis blunts muscle repair, thus indicating that the delivery of functional mitochondria to injured muscles can be harnessed to limit muscle fibrosis and enhance restoration of muscle function. Injection of autologous respiration-competent mitochondria from uninjured sites to damaged tissue has been shown to reduce infarct size and enhance cell survival in preclinical models of ischemia-reperfusion. Furthermore, the incorporation of donor mitochondria into MSCs enhances lung and cardiac tissue repair. This strategy has also been tested for regeneration purposes in traumatic muscle injuries. Indeed, the systemic delivery of mitochondria promotes muscle regeneration and restores muscle mass and function while reducing fibrosis during recovery after an injury. In this review, we discuss the contribution of altered MSC function to sarcopenia and illustrate the prospect of harnessing mitochondrial delivery and restoration of MSCs as a therapeutic strategy against age-related sarcopenia.


Subject(s)
Sarcopenia , Satellite Cells, Skeletal Muscle , Signal Transduction , Sarcopenia/metabolism , Sarcopenia/therapy , Sarcopenia/pathology , Humans , Satellite Cells, Skeletal Muscle/metabolism , Animals , Mitochondria/metabolism , Aging/metabolism , Regeneration , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology
12.
Am J Physiol Cell Physiol ; 326(4): C1193-C1202, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38581669

ABSTRACT

Satellite cells (SCs) and fibroadipogenic progenitors (FAPs) are progenitor populations found in muscle that form new myofibers postinjury. Muscle development, regeneration, and tissue-engineering experiments require robust progenitor populations, yet their isolation and expansion are difficult given their scarcity in muscle, limited muscle biopsy sizes in humans, and lack of methodological detail in the literature. Here, we investigated whether a dispase and collagenase type 1 and 2 cocktail could allow dual isolation of SCs and FAPs, enabling significantly increased yield from human skeletal muscle. Postdissociation, we found that single cells could be sorted into CD56 + CD31-CD45- (SC) and CD56-CD31-CD45- (FAP) cell populations, expanded in culture, and characterized for lineage-specific marker expression and differentiation capacity; we obtained ∼10% SCs and ∼40% FAPs, with yields twofold better than what is reported in current literature. SCs were PAX7+ and retained CD56 expression and myogenic fusion potential after multiple passages, expanding up to 1012 cells. Conversely, FAPs expressed CD140a and differentiated into either fibroblasts or adipocytes upon induction. This study demonstrates robust isolation of both SCs and FAPs from the same muscle sample with SC recovery more than two times higher than previously reported, which could enable translational studies for muscle injuries.NEW & NOTEWORTHY We demonstrated that a dispase/collagenase cocktail allows for simultaneous isolation of SCs and FAPs with 2× higher SC yield compared with other studies. We provide a thorough characterization of SC and FAP in vitro expansion that other studies have not reported. Following our dissociation, SCs and FAPs were able to expand by up to 1012 cells before reaching senescence and maintained differentiation capacity in vitro demonstrating their efficacy for clinical translation for muscle injury.


Subject(s)
Endopeptidases , Muscle, Skeletal , Satellite Cells, Skeletal Muscle , Humans , Muscle, Skeletal/metabolism , Cell Differentiation/physiology , Satellite Cells, Skeletal Muscle/metabolism , Fibroblasts/metabolism
13.
Curr Top Dev Biol ; 158: 15-51, 2024.
Article in English | MEDLINE | ID: mdl-38670703

ABSTRACT

Skeletal muscle is a highly represented tissue in mammals and is composed of fibers that are extremely adaptable and capable of regeneration. This characteristic of muscle fibers is made possible by a cell type called satellite cells. Adjacent to the fibers, satellite cells are found in a quiescent state and located between the muscle fibers membrane and the basal lamina. These cells are required for the growth and regeneration of skeletal muscle through myogenesis. This process is known to be tightly sequenced from the activation to the differentiation/fusion of myofibers. However, for the past fifteen years, researchers have been interested in examining satellite cell heterogeneity and have identified different subpopulations displaying distinct characteristics based on localization, quiescence state, stemness capacity, cell-cycle progression or gene expression. A small subset of satellite cells appears to represent multipotent long-term self-renewing muscle stem cells (MuSC). All these distinctions led us to the hypothesis that the characteristics of myogenesis might not be linear and therefore may be more permissive based on the evidence that satellite cells are a heterogeneous population. In this review, we discuss the different subpopulations that exist within the satellite cell pool to highlight the heterogeneity and to gain further understanding of the myogenesis progress. Finally, we discuss the long term self-renewing MuSC subpopulation that is capable of dividing asymmetrically and discuss the molecular mechanisms regulating MuSC polarization during health and disease.


Subject(s)
Muscle Development , Muscle, Skeletal , Satellite Cells, Skeletal Muscle , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/physiology , Satellite Cells, Skeletal Muscle/metabolism , Animals , Humans , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Cell Differentiation , Regeneration/physiology
14.
Curr Top Dev Biol ; 158: 123-150, 2024.
Article in English | MEDLINE | ID: mdl-38670702

ABSTRACT

Preserving the potency of stem cells in adult tissues is very demanding and relies on the concerted action of various cellular and non-cellular elements in a precise stoichiometry. This balanced microenvironment is found in specific anatomical "pockets" within the tissue, known as the stem cell niche. In this review, we explore the interplay between stem cells and their niches, with a primary focus on skeletal muscle stem cells and the extracellular matrix (ECM). Quiescent muscle stem cells, known as satellite cells are active producers of a diverse array of ECM molecules, encompassing major constituents like collagens, laminins, and integrins, some of which are explored in this review. The conventional perception of ECM as merely a structural scaffold is evolving. Collagens can directly interact as ligands with receptors on satellite cells, while other ECM proteins have the capacity to sequester growth factors and regulate their release, especially relevant during satellite cell turnover in homeostasis or activation upon injury. Additionally, we explore an evolutionary perspective on the ECM across a range of multicellular organisms and discuss a model wherein satellite cells are self-sustained by generating their own niche. Considering the prevalence of ECM proteins in the connective tissue of various organs it is not surprising that mutations in ECM genes have pathological implications, including in muscle, where they can lead to myopathies. However, the particular role of certain disease-related ECM proteins in stem cell maintenance highlights the potential contribution of stem cell deregulation to the progression of these disorders.


Subject(s)
Extracellular Matrix , Satellite Cells, Skeletal Muscle , Stem Cell Niche , Humans , Extracellular Matrix/metabolism , Animals , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics
15.
Curr Top Dev Biol ; 158: 179-201, 2024.
Article in English | MEDLINE | ID: mdl-38670705

ABSTRACT

The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.


Subject(s)
Cellular Microenvironment , Extracellular Matrix , Muscle, Skeletal , Satellite Cells, Skeletal Muscle , Humans , Animals , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/physiology , Satellite Cells, Skeletal Muscle/metabolism , Extracellular Matrix/metabolism , Muscle, Skeletal/physiology , Muscle, Skeletal/cytology , Adaptation, Physiological , Stem Cell Niche/physiology , Regeneration/physiology , Muscular Diseases/pathology , Muscular Diseases/physiopathology , Stem Cells/cytology , Stem Cells/physiology
16.
Curr Top Dev Biol ; 158: 221-238, 2024.
Article in English | MEDLINE | ID: mdl-38670707

ABSTRACT

The skeletal muscle is well known for its remarkable ability to regenerate after injuries. The regeneration is a complex and dynamic process that involves muscle stem cells (also called muscle satellite cells, MuSCs), fibro-adipogenic progenitors (FAPs), immune cells, and other muscle-resident cell populations. The MuSCs are the myogenic cell populaiton that contribute nuclei directly to the regenerated myofibers, while the other cell types collaboratively establish a microenvironment that facilitates myogenesis of MuSCs. The myogenic process includes activation, proliferation and differentiationof MuSCs, and subsequent fusion their descendent mononuclear myocytes into multinuclear myotubes. While the contributions of FAPs and immune cells to this microenvironment have been well studied, the influence of MuSCs on other cell types remains poorly understood. This review explores recent evidence supporting the potential role of MuSCs as immunomodulators during muscle regeneration, either through cytokine production or ligand-receptor interactions.


Subject(s)
Muscle, Skeletal , Regeneration , Regeneration/physiology , Animals , Humans , Muscle, Skeletal/physiology , Muscle, Skeletal/cytology , Muscle Development , Stem Cells/cytology , Stem Cells/metabolism , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/physiology , Cell Differentiation , Immunologic Factors/pharmacology , Immunologic Factors/metabolism , Immunomodulation
17.
Curr Top Dev Biol ; 158: 1-14, 2024.
Article in English | MEDLINE | ID: mdl-38670701

ABSTRACT

Embryonic skeletal muscle growth is contingent upon a population of somite derived satellite cells, however, the contribution of these cells to early postnatal skeletal muscle growth remains relatively high. As prepubertal postnatal development proceeds, the activity and contribution of satellite cells to skeletal muscle growth diminishes. Eventually, at around puberty, a population of satellite cells escapes terminal commitment, continues to express the paired box transcription factor Pax7, and reside in a quiescent state orbiting the myofiber periphery adjacent to the basal lamina. After adolescence, some satellite cell contributions to muscle maintenance and adaptation occur, however, their necessity is reduced relative to embryonic, early postnatal, and prepubertal growth.


Subject(s)
Muscle Development , Muscle, Skeletal , Satellite Cells, Skeletal Muscle , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/physiology , Animals , Muscle, Skeletal/growth & development , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Humans , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Cell Differentiation
18.
Curr Top Dev Biol ; 158: 307-339, 2024.
Article in English | MEDLINE | ID: mdl-38670711

ABSTRACT

Recent research has highlighted an important role for the molecular circadian machinery in the regulation of tissue-specific function and stress responses. Indeed, disruption of circadian function, which is pervasive in modern society, is linked to accelerated aging, obesity, and type 2 diabetes. Furthermore, evidence supporting the importance of the circadian clock within both the mature muscle tissue and satellite cells to regulate the maintenance of muscle mass and repair capacity in response injury has recently emerged. Here, we review the discovery of circadian clocks within the satellite cell (a.k.a. adult muscle stem cell) and how they act to regulate metabolism, epigenetics, and myogenesis during both healthy and diseased states.


Subject(s)
Circadian Rhythm , Regeneration , Satellite Cells, Skeletal Muscle , Satellite Cells, Skeletal Muscle/physiology , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Animals , Regeneration/physiology , Humans , Circadian Rhythm/physiology , Muscle, Skeletal/physiology , Muscle Development , Circadian Clocks/physiology , Epigenesis, Genetic
19.
Curr Top Dev Biol ; 158: 375-406, 2024.
Article in English | MEDLINE | ID: mdl-38670713

ABSTRACT

The proper functioning of skeletal muscles is essential throughout life. A crucial crosstalk between the environment and several cellular mechanisms allows striated muscles to perform successfully. Notably, the skeletal muscle tissue reacts to an injury producing a completely functioning tissue. The muscle's robust regenerative capacity relies on the fine coordination between muscle stem cells (MuSCs or "satellite cells") and their specific microenvironment that dictates stem cells' activation, differentiation, and self-renewal. Critical for the muscle stem cell pool is a fine regulation of chromatin organization and gene expression. Acquiring a lineage-specific 3D genome architecture constitutes a crucial modulator of muscle stem cell function during development, in the adult stage, in physiological and pathological conditions. The context-dependent relationship between genome structure, such as accessibility and chromatin compartmentalization, and their functional effects will be analysed considering the improved 3D epigenome knowledge, underlining the intimate liaison between environmental encounters and epigenetics.


Subject(s)
Chromatin , Chromatin/metabolism , Chromatin/genetics , Animals , Humans , Muscle, Skeletal/cytology , Muscle, Skeletal/growth & development , Cell Differentiation , Stem Cells/cytology , Stem Cells/metabolism , Epigenesis, Genetic , Muscle Development , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/physiology
20.
Curr Top Dev Biol ; 158: 253-277, 2024.
Article in English | MEDLINE | ID: mdl-38670709

ABSTRACT

Satellite cells, named for their satellite position around the sarcolemma of the myofibre, are responsible for skeletal muscle regeneration. Satellite cells normally reside in a quiescent state, but rapidly activate the myogenic program and the cell cycle in response to injury. Translational control of gene expression has emerged as an important regulator of satellite cell activity. Quiescent satellite cells maintain low levels of protein synthesis and selectively translate specific mRNAs to conserve limited energy. Activated satellite cells rapidly restore global protein synthesis to meet the demands of proliferating myogenic progenitors that participate in muscle repair. We propose a model by which translational control enables rapid protein level changes in response to injury-induced environmental shifts, serving as both a brake mechanism during quiescence and an accelerator for injury response. In this Chapter, we navigate the processing, translation and metabolism of newly transcribed mRNAs. We review the modifications of mRNA that occur during mRNA processing in the nucleus of satellite cells, and illustrate how these modifications impact the translation and stability of mRNAs. In the cytoplasm, we review how pathways work in concert to regulate protein synthesis globally, while trans acting microRNAs and RNA binding proteins modify specific mRNA translation within a context of tightly regulated protein synthesis. While navigating translational control of gene expression in satellite cells, this chapter reveals that despite significant progress, the field remains nascent in the broader scope of translational control in cell biology. We propose that future investigations will benefit from incorporating emerging global analyses to study translational control of gene expression in rare satellite cells, and we pose unanswered questions that warrant future exploration.


Subject(s)
Gene Expression Regulation , Protein Biosynthesis , Satellite Cells, Skeletal Muscle , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Animals , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...