Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 255
Filter
1.
Animal Model Exp Med ; 7(2): 106-113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38720238

ABSTRACT

BACKGROUND: Androgenic alopecia (AGA) is the most common type of hair loss in men, and there are many studies on the treatment of hair loss by platelet-rich plasma (PRP). The human scalp contains a huge microbiome, but its role in the process of hair loss remains unclear, and the relationship between PRP and the microbiome needs further study. Therefore, the purpose of this study was to investigate the effect of PRP treatment on scalp microbiota composition. METHODS: We performed PRP treatment on 14 patients with AGA, observed their clinical efficacy, and collected scalp swab samples before and after treatment. The scalp microflora of AGA patients before and after treatment was characterized by amplifying the V3-V4 region of the 16 s RNA gene and sequencing for bacterial identification. RESULTS: The results showed that PRP was effective in the treatment of AGA patients, and the hair growth increased significantly. The results of relative abundance analysis of microbiota showed that after treatment, g_Cutibacterium increased and g_Staphylococcus decreased, which played a stable role in scalp microbiota. In addition, g_Lawsonella decreased, indicating that the scalp oil production decreased after treatment. CONCLUSIONS: The findings suggest that PRP may play a role in treating AGA through scalp microbiome rebalancing.


Subject(s)
Alopecia , Microbiota , Platelet-Rich Plasma , Scalp , Humans , Alopecia/therapy , Alopecia/microbiology , Male , Adult , Scalp/microbiology , Middle Aged , Young Adult
2.
Int J Cosmet Sci ; 46(3): 333-347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38196163

ABSTRACT

OBJECTIVE: To characterize the scalp microbial composition, function, and connection to dandruff severity using a metagenomics approach and to understand the impact of a Piroctone Olamine containing anti-dandruff shampoo on the scalp microbiome. METHODS: Shotgun metagenomics was used to characterize the composition of the scalp microbiomes from 94 subjects with and without clinically defined dandruff. Furthermore, the microbiome of the scalps of 100 dandruff sufferers before and after 3 weeks of treatment with either control or anti-dandruff shampoo containing 0.5% Piroctone Olamine (PO) was characterized and compared to identify microorganisms associated with the dandruff condition and the associated pathways and processes that may contribute to PO's effect on scalp microbiome. RESULTS: A higher relative abundance of Malassezia restricta and Staphylococcus capitis and a lower abundance of Cutibacterium acnes were associated with the dandruff scalps relative to the no-dandruff scalps. A 3-week PO shampoo treatment reduced the relative abundance of Malassezia species and Staphylococcus capitis and increased the relative abundance of Cutibacterium acnes. This change to the scalp microbiome composition is consistent with a return to a healthy no-dandruff microbiome and improved clinical signs and symptoms as measured by adherent scalp flaking score (ASFS) compared with the control shampoo. Functional genomics analysis showed that the PO shampoo treatment reduced oxidative stress-associated genes and decreased the abundance of protease, urease, and lipase genes. These changes correlated positively to improvements in dandruff severity. PO treatment favourably shifted scalp microbiomes in dandruff subjects toward the no-dandruff state. CONCLUSION: Our results suggest that part of the aetiology of dandruff can be attributed to dysbiosis of the scalp microbiome. PO treatment can restore a healthier microbiome, reducing oxidative stress and promoting better scalp health.


OBJECTIF: Caractériser la composition microbienne du cuir chevelu, sa fonction et son lien avec la sévérité des pellicules à l'aide d'une approche métagénomique. Comprendre l'impact d'un shampooing antipelliculaire à base de piroctone olamine sur le microbiome du cuir chevelu. MÉTHODES: La métagénomique shotgun a été utilisée pour caractériser la composition des microbiomes du cuir chevelu de 94 sujets avec et sans pellicules définies cliniquement. Par ailleurs, le microbiome des cuirs chevelus de 100 personnes ayant des pellicules avant et après trois semaines de traitement par un shampooing témoin ou un shampooing antipelliculaire contenant 0,5 % de piroctone olamine (PO) a été caractérisé et comparé pour identifier les micro­organismes associés à l'état pelliculaire, et les voies et processus associés pouvant contribuer à l'effet de la PO sur le microbiome du cuir chevelu. RÉSULTATS: Une abondance relative plus élevée de Malassezia restricta et de Staphylococcus capitis, et une abondance plus faible de Cutibacterium acnes étaient associées aux cuirs chevelus avec des pellicules par rapport aux cuirs chevelus sans pellicules. Un traitement avec un shampooing contenant de la PO de 3 semaines a réduit l'abondance relative des espèces Malassezia et Staphylococcus capitis, et a augmenté l'abondance relative de Cutibacterium acnes. Cette modification de la composition du microbiome du cuir chevelu est cohérente avec un retour à un microbiome sain sans pellicules, et une amélioration des signes et symptômes cliniques mesurés par le score de desquamation du cuir chevelu adhérent (Adherent Scalp Flaking Score, ASFS) par rapport au shampooing témoin. L'analyse génomique fonctionnelle a montré que le traitement avec un shampooing contenant de la PO réduisait les gènes associés au stress oxydatif et diminuait l'abondance des gènes de la protéase, de l'uréase et de la lipase. Ces modifications étaient corrélées positivement à des améliorations de la sévérité des pellicules. Le traitement avec la PO a favorisé l'évolution des microbiomes du cuir chevelu des sujets ayant des pellicules vers un état sans pellicules. CONCLUSION: Nos résultats suggèrent qu'une partie de l'étiologie des pellicules peut être attribuée à la dysbiose du microbiome du cuir chevelu. Le traitement avec la PO peut rétablir un microbiome plus sain, en réduisant le stress oxydatif et en favorisant une meilleure santé du cuir chevelu.


Subject(s)
Dandruff , Hair Preparations , Microbiota , Scalp , Humans , Microbiota/drug effects , Scalp/microbiology , Dandruff/microbiology , Dandruff/drug therapy , Female , Male , Middle Aged , Adult , Drug Combinations , Ethanolamines , Pyridones
3.
Int J Cosmet Sci ; 46(1): 62-70, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37664975

ABSTRACT

OBJECTIVE: The human scalp is characterized by a moderately diverse microbial community, comprising prokaryotic (bacteria) and eukaryotic (fungi) members. Although the details are far from being fully understood, the human scalp microbiota is implicated in several scalp disorders, in particular dandruff formation. Hence, the protection of an intact and diverse scalp microbiota can be regarded as a quality criterion for hair and scalp care formulations. In this study, we investigated the influence of two commercially available, non-antimicrobial shampoo formulations on the structure of the scalp microbiota. METHODS: Scalp microbiota samples, obtained by swab sampling from two cohorts of probands (n = 25, each), were analysed before and after daily use of two different shampoo formulations for 2 weeks, respectively. A polyphasic approach was used, comprising quantitative cultivation of bacteria and fungi on selective media as well as sequencing of PCR-amplified 16S rRNA and 18S rRNA genes, respectively. RESULTS: All analyses revealed a microbiota composition typical for the human scalp. While in particular fungal germ numbers increased significantly during the treatments, overall bacterial and fungal community composition was not affected, based on alpha- and beta-diversity measures. However, we observed an increase in structural bacterial diversity with the age of the probands. CONCLUSIONS: Over an application period of 2 weeks, the investigated shampoo induced quantitative but no qualitative changes in the scalp microbial community structure of the investigated probands, suggesting no adverse but rather preserving or even stimulating effects of the underlying formulations on the scalp microbiota. Further investigation will have to clarify if this is also true for longer application periods and if the formulations might affect community functionality, for example microbial gene expression, rather than community composition.


OBJECTIF: Le cuir chevelu humain se caractérise par une communauté microbienne modérément diversifiée, comprenant des membres procaryotes (bactéries) et eucaryotes (champignons). Bien que l'on soit loin de comprendre totalement les détails, le microbiote du cuir chevelu humain est impliqué dans différents troubles du cuir chevelu, en particulier la formation de pellicules. La protection du microbiote du cuir chevelu intact et diversifié peut être considérée comme un critère de qualité pour les formulations de soins pour les cheveux et le cuir chevelu. Dans cette étude, nous avons examiné l'influence de deux formulations de shampooing non antimicrobien disponibles dans le commerce sur la structure du microbiote du cuir chevelu. MÉTHODES: Des échantillons de microbiote du cuir chevelu, obtenus par écouvillonnage dans deux cohortes de proposants (n = 25 dans chaque cohorte), ont été analysés respectivement avant et après l'utilisation quotidienne de deux formulations de shampooing pendant deux semaines. Une approche en plusieurs phases a été utilisée, dont une culture quantitative de bactéries et de champignons sur des milieux sélectifs et un séquençage respectivement des gènes de l'ARN ribosomique 16S et de l'ARN ribosomique 18S amplifiés par PCR. RÉSULTATS: Toutes les analyses ont révélé une composition du microbiote typique pour le cuir chevelu humain. Bien que le nombre de germes fongiques en particulier ait augmenté significativement pendant les traitements, la composition globale des communautés bactériennes et fongiques n'a pas été affectée, d'après les mesures de diversité alpha et bêta. Cependant, nous avons observé une augmentation de la diversité bactérienne structurelle avec l'âge des proposants. CONCLUSIONS: Sur une période d'utilisation de deux semaines, le shampooing étudié a induit des modifications quantitatives, mais pas qualitatives, de la structure des communautés microbiennes du cuir chevelu des proposants étudiés, ce qui suggère qu'il n'y a pas d'effets indésirables, mais qu'il y a des effets de préservation, voire de stimulation, des formulations sous-jacentes sur le microbiote du cuir chevelu. Des recherches supplémentaires devront clarifier si cela s'avère également pour des périodes d'utilisation plus longues et si les formulations peuvent affecter la fonctionnalité des communautés, par exemple, l'expression des gènes microbiens, plutôt que la composition des communautés.


Subject(s)
Dandruff , Microbiota , Humans , Scalp/microbiology , RNA, Ribosomal, 16S/genetics , Dandruff/microbiology , Hair , Bacteria
4.
Biomolecules ; 13(4)2023 04 20.
Article in English | MEDLINE | ID: mdl-37189446

ABSTRACT

Plant-derived secondary metabolites (polyphenols/terpenes/alkaloids) and microbial exometabolites/membrane components of fermented tropical fruits are known as highly bioavailable biomolecules causing skin and hair improvement effects (wound healing, anti-inflammatory, antioxidant, antidiabetic, antiacne, skin/hair microbiota balancing, hair growth-promoting, and hair loss-inhibiting). Caffein is considered as a hair growth promoter. A randomized placebo- and caffein-controlled clinical trial on the efficacy of fermented papaya (FP) plus fermented mangosteen (FM) towards human hair quality and loss was conducted. Shampoo and lotion hair care products containing FP, FM, and caffein as active agents were developed and applied to 154 subjects of both sexes with clinically confirmed androgenic or diffuse alopecia for 3 months. Their clinical efficacy was assessed subjectively by questionnaires filled in by dermatologists/trichologists, and by the objective trichomicroscopical calculations. Hair and scalp skin quality was determined by microbiota pattern and ATP, SH-groups, protein, and malonyl dialdehyde quantification. Comparative clinical data showed that the experimental hair care cosmetics significantly inhibited hair loss, increased hair density/thickness, and improved hair follicle structure versus placebo and caffein controls. The cosmetics with FP and FM substantially normalized the microbiota pattern and increased ATP content in hair follicle, while inhibiting lipid peroxidation in the scalp skin, and SH-group formation in the hair shaft.


Subject(s)
Alopecia , Microbiota , Scalp , Female , Humans , Male , Adenosine Triphosphate , Fruit/chemistry , Hair , Scalp/microbiology , Alopecia/therapy , Fermentation
5.
BMC Microbiol ; 23(1): 121, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37120517

ABSTRACT

BACKGROUND: The equilibrium of the scalp microbiome is important for maintaining healthy scalp conditions, including sebum secretion, dandruff, and hair growth. Many different strategies to improve scalp health have been reported; however, the effect of postbiotics, such as heat-killed probiotics, on scalp health remains unclear. We examined the beneficial effects of heat-killed probiotics consisting of Lacticaseibacillus paracasei, GMNL-653, on scalp health. RESULTS: Heat-killed GMNL-653 could co-aggregate with scalp commensal fungi, Malassezia furfur, in vitro, and the GMNL-653-derived lipoteichoic acid inhibited the biofilm formation of M. furfur on Hs68 fibroblast cells. The mRNA of hair follicle growth factors, including insulin-like growth factor-1 receptor (IGF-1R), vascular endothelial growth factor, IGF-1, and keratinocyte growth factor was up-regulated in skin-related human cell lines Hs68 and HaCaT after treatment with heat-killed GMNL-653. For clinical observations, we recruited 22 volunteer participants to use the shampoo containing the heat-killed GMNL-653 for 5 months and subsequently measured their scalp conditions, including sebum secretion, dandruff formation, and hair growth. We applied polymerase chain reaction (PCR) to detect the scalp microbiota of M. restricta, M. globosa, Cutibacterium acnes, and Staphylococcus epidermidis. A decrease in dandruff and oil secretion and an increase in hair growth in the human scalp were observed after the use of heat-killed GMNL-653-containing shampoo. The increased abundance of M. globosa and the decreased abundance of M. restricta and C. acnes were also observed. We further found that accumulated L. paracasei abundance was positively correlated with M. globosa abundance and negatively correlated with C. acnes abundance. S. epidermidis and C. acnes abundance was negatively correlated with M. globosa abundance and positively correlated with M. restricta. Meanwhile, M. globosa and M. restricta abundances were negatively associated with each other. C. acnes and S. epidermidis abundances were statistically positively correlated with sebum secretion and dandruff, respectively, in our shampoo clinical trial. CONCLUSION: Our study provides a new strategy for human scalp health care using the heat-killed probiotics GMNL-653-containing shampoo. The mechanism may be correlated with the microbiota shift.


Subject(s)
Dandruff , Lacticaseibacillus paracasei , Microbiota , Humans , Scalp/microbiology , Dandruff/therapy , Dandruff/microbiology , Lacticaseibacillus , Hot Temperature , Vascular Endothelial Growth Factor A
6.
Rev Med Suisse ; 19(820): 618-623, 2023 Mar 29.
Article in French | MEDLINE | ID: mdl-36988169

ABSTRACT

Tinea capitis is a superficial dermatophytic infection of the scalp. This common dermatosis occurs predominantly in children. The clinical manifestation of the disease is heterogeneous, and vary widely depending on the pathogenic fungal agent. Direct mycological examination and cultures are mandatory for an accurate diagnosis and species identification. Treatment should be both local and systemic, and ideally is tailored to the dermatophytic species identified by the laboratory diagnostic work up. Secondary prophylaxis through supplementary measures is crucial to avoid epidemic outbreak and patient reinfection.


Tinea capitis (ou teigne du cuir chevelu) est une infection fongique superficielle du cuir chevelu par un dermatophyte. Cette dermatose est fréquente et prédomine en population pédiatrique. Le tableau clinique est hétérogène et varie beaucoup en fonction de l'espèce de dermatophyte associée. L'examen mycologique direct et des cultures doivent être effectués pour un diagnostic précis et une identification de l'espèce. Le traitement devrait être à la fois local et systémique, et adapté au diagnostic de l'espèce dermatophyte identifiée en laboratoire de mycologie. La prophylaxie secondaire, par des mesures associées, est déterminante pour limiter l'émergence de foyers épidémiques ou la réinfection du patient.


Subject(s)
Epidemics , Tinea Capitis , Child , Humans , Tinea Capitis/diagnosis , Tinea Capitis/epidemiology , Tinea Capitis/drug therapy , Scalp/microbiology , Scalp/pathology , Disease Outbreaks
7.
BMC Genomics ; 23(1): 312, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35439925

ABSTRACT

BACKGROUND: Dandruff is a chronic, recurring, and common scalp problem that is caused by several etiopathogeneses with complex mechanisms. Management of this condition is typically achieved via antifungal therapies. However, the precise roles played by microbiota in the development of the condition have not been elucidated. Despite their omnipresence on human scalp little is known about the co-occurrence/co-exclusion network of cutaneous microbiota. RESULTS: We characterized the scalp and hair surface bacterial and fungal communities of 95 dandruff-afflicted and healthy individuals residing in China. The degree distributions of co-occurrence/co-exclusion network in fungi-bacteria and bacteria-bacteria were higher in the healthy group (P < 0.0001), whereas the betweenness values are higher in the dandruff group (P < 0.01). Meanwhile, the co-occurrence/co-exclusion network among fungi-fungi and fungi-bacteria showed that compared to the healthy group, the dandruff group had more positive links (P < 0.0001). In addition, we observed that Malassezia slooffiae, Malassezia japonica and Malassezia furfur, were more abundant in the dandruff group than in the healthy group. These microbiota were co-exclusion by either multiple bacterial genera or Malassezia sp. in healthy group. The lactic acid bacteria on the scalp and hair surface, especially the genera Lactobacillus and Lactococcus, exhibit a negative correlation with multiple bacterial genera on the scalp and hair surface. Lactobacillus plantarum and Pediococcus lactis isolated on the healthy human scalp can inhibit the growth of Staphylococcus epidermidis in vitro. CONCLUSIONS: We showed that microbial networks on scalp and hair surface with dandruff were less integrated than their healthy counterparts, with lower node degree and more positive and stronger links which were deemed to be unstable and may be more susceptible to environmental fluctuations. Lactobacillus bacteria have extensive interactions with other bacteria or fungi in the scalp and hair surface micro-ecological network and can be used as targets for improving scalp health.


Subject(s)
Dandruff , Microbiota , Bacteria , Dandruff/microbiology , Fungi/genetics , Humans , Microbiota/genetics , Scalp/microbiology
8.
J Cosmet Dermatol ; 21(8): 3423-3430, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34792270

ABSTRACT

BACKGROUND: Scalp seborrheic dermatitis (SD) is a chronic inflammatory dermatosis associated with sebum imbalance and proliferation of Malassezia species. Various antifungal shampoos are commonly used for scalp SD. AIMS: Glycyrrhetinic acid is known to have antioxidative, anti-inflammatory, and anti-allergic effects. This study was designed to evaluate the effectiveness of a new-formula shampoo that contains glycyrrhetinic acid for the treatment of scalp SD. PATIENTS/METHODS: Thirty-four patients were enrolled and treated with the 6% glycyrrhetinic acid complex shampoo. Efficacy was assessed clinically with Dermatology Life Quality Index (DLQI) and Adherent Scalp Flaking Score (ASFS) by the same dermatologist at baseline, week 2, and week 5. Among the 24 subjects with the most significant clinical improvement, four common microorganisms from scalp samples were analyzed by quantitative polymerase chain reaction (qPCR) at baseline, and week 5. RESULTS: The DLQI and ASFS at week 2 and week 5 improved significantly relative to baseline. The bacteria profiles showed a significant increase of Cutibacterium acnes and a decrease of Staphylococcus epidermidis at week 5. The fungi profiles showed significant decreases of both Malassezia restricta and Malassezia globosa. The ratio of C. acne to S. epidermidis increased significantly from 0.93 at baseline to 1.55 at week 5. The ratio of M. restricta to M. globosa decreased from 5.02 at baseline to 1.00 at week 5. CONCLUSIONS: The effectiveness of this new regimen was objectively demonstrated at the clinical and microbiological levels. This new formula may alleviate the bacterial and fungal dysbiosis in scalp SD.


Subject(s)
Dandruff , Dermatitis, Seborrheic , Glycyrrhetinic Acid , Malassezia , Scalp Dermatoses , Bacteria , Dandruff/drug therapy , Dermatitis, Seborrheic/drug therapy , Dermatitis, Seborrheic/microbiology , Glycyrrhetinic Acid/therapeutic use , Humans , Pilot Projects , Scalp/microbiology , Scalp Dermatoses/microbiology
10.
Sci Rep ; 11(1): 17711, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489514

ABSTRACT

In this study, we performed 16S rRNA amplicon sequencing analysis of scalp hair shaft from 109 volunteers, who were surveyed using a questionnaire about daily scalp hair care, and employed multiple statistical analyses to elucidate the factors that contribute to the formation of bacterial community structures on scalp hair shaft. Scalp hair microbiota were found to be specific for each individual. Their microbiota were clearly divided into two clusters. Genus level richness of Pseudomonas (Ps) and Cutibacterium (Cu) contributed to the clusters. The clusters around Pseudomonas and Cutibacterium were named Ps-type and Cu-type, respectively. The host gender influenced the bacterial cell numbers of the major genera that included Cutibacterium, Lawsonella, Moraxella, and Staphylococcus on scalp hair shaft. In addition to host intrinsic factors, extrinsic factors such as hair styling and colouring affected the bacterial cell numbers of the major genera. These factors and chemical treatments, such as bleaching and perming, also affected the Ps-type to Cu-type ratios. These results suggest that bacterial community structures on scalp hair shaft are influenced by both intrinsic and extrinsic factors.


Subject(s)
Hair/microbiology , Microbiota/genetics , Scalp/microbiology , Adult , Female , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Young Adult
11.
Sci Rep ; 11(1): 7220, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790324

ABSTRACT

Dandruff is a recurrent chronic scalp disorder, affecting majority of the population worldwide. Recently a metagenomic study of the Indian scalp microbiome described an imperative role of bacterial commensals in providing essential vitamins and amino acids to the scalp. Coconut oil and its formulations are commonly applied on the scalp in several parts of the world to maintain scalp health. Thus, in this study we examined the effect of topical application of coconut oil on the scalp microbiome (bacterial and fungal) at the taxonomic and functional levels and their correlation with scalp physiological parameters. A 16-weeks-long time-course study was performed including 12-weeks of treatment and 4-weeks of relapse phase on a cohort of 140 (70 healthy and 70 dandruff) Indian women, resulting in ~ 900 metagenomic samples. After the treatment phase, an increase in the abundance of Cutibacterium acnes and Malassezia globosa in dandruff scalp was observed, which were negatively correlated to dandruff parameters. At the functional level, an enrichment of healthy scalp-related bacterial pathways, such as biotin metabolism and decrease in the fungal pathogenesis pathways was observed. The study provides novel insights on the effect of coconut oil in maintaining a healthy scalp and in modulating the scalp microbiome.


Subject(s)
Coconut Oil/administration & dosage , Dandruff , Microbiota/drug effects , Scalp/microbiology , Administration, Topical , Adult , Dandruff/drug therapy , Dandruff/microbiology , Female , Humans , Longitudinal Studies , Middle Aged
12.
Int J Cosmet Sci ; 43(2): 235-245, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33469935

ABSTRACT

OBJECTIVE: A 3D reconstructed human epidermis (RHE) model colonized with specific microbial strains was developed to model the complex interactions between strains of the human scalp hair. METHODS: Reconstructed human epidermis was colonized with Cutibacterium acnes and Malassezia restricta for 72 h. The epidermal model was characterized in terms of morphology, using immune-labelling targeting biomarkers for barrier structure, proliferation, differentiation and anti-microbial defence. The barrier function was assessed by transepithelial electrical eesistance (TEER) measurements. In order to study the microorganisms on the epidermal model, viable counts and phenotype ultrastructure analysis were performed by scanning electron microscopy (SEM). RESULTS: The RHE colonized with C. acnes did not lead to severe modifications of the physiological barrier integrity and viability, though it shows aggregates. M. restricta formed large aggregates by a close interaction with the RHE, thus causing both a strong decrease in barrier function and structure degradation and an increased human beta defensin 2 (HBD2) expression. The co-colonized model resulted in barrier depletion, but the overall damage was less severe, respecting the single colonization with M. restricta. The developed 'scalp model' allowed to identify morphological modifications leading to uncontrolled epidermal renewal. CONCLUSION: This study shows a pre-clinical model that recapitulates the interactions that can occur between site-specific microbial strains and keratinocytes in dandruff condition. The model can be applied to assess ingredients and products' mechanism of action.


OBJECTIF: Un modèle d'épiderme humain reconstruit a été colonisé par des souches microbiennes spécifiques du cuir chevelu pour étudier les interactions complexes entre les microorganismes et l'épiderme. MÉTHODES: Les épidermes humains reconstruits ont été colonisés par Cutibacterium acnes et Malassezia restricta pendant 72 h, puis caractérisés morphologiquement et par immunomarquages pour suivre les marqueurs de la différenciation kératinocytaire pour la fonction barrière, de prolifération et de défense antimicrobienne. La fonction barrière a également été évaluée par des mesures de résistance électrique transépithéliale (TEER). Afin d'étudier les microorganismes sur le modèle épidermique, des numérations des microorganismes viables et une analyse de l'ultrastructure phénotypique par microscopie électronique à balayage ont été effectuées. RÉSULTATS: Les modèles colonisés par C. acnes n'ont pas conduit à des modifications conséquentes de l'intégrité et de la viabilité de la barrière physiologique, bien que cette souche forme des agrégats. M. restricta a formé de gros agrégats par une interaction étroite avec l'épiderme, provoquant ainsi à la fois une forte diminution de la fonction barrière, une dégradation de la structure et une augmentation de l'expression de la bêta-défensine 2 humaine. Les modèles co-colonisés ont montré une altération de la fonction barrière, mais les dommages globaux étaient moins drastiques que lors de la simple colonisation par M. restricta. Ce « modèle de cuir chevelu ¼ développé a permis d'identifier des modifications morphologiques conduisant à un renouvellement épidermique incontrôle. CONCLUSION: Cette étude propose un modèle préclinique qui mime les interactions qui peuvent se produire entre les souches microbiennes spécifiques de ce site anatomique et les kératinocytes du scalp en condition pelliculaire. De plus, ce modèle peut être utiliser pour screener ingrédients et produits formulés et ainsi accéder à leurs mécanismes d'action.


Subject(s)
Malassezia/isolation & purification , Microbiota , Propionibacteriaceae/isolation & purification , Scalp/microbiology
13.
J Mycol Med ; 31(1): 101104, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33388670

ABSTRACT

Tineabarbae is a rare form of dermatophytosis that affects hair follicles of the beard and moustache. Dermoscopy could prove useful to identify parasitism of hair of the beard, just as it has proven useful in the diagnosis of Tineacapitis. We present the first fully documented case series of T. barbae with clinical, dermoscopic and mycological features.


Subject(s)
Dermoscopy/methods , Facial Dermatoses/diagnosis , Microscopy/methods , Tinea/diagnosis , Adult , Dermoscopy/standards , Diagnosis, Differential , Face , Facial Dermatoses/microbiology , Hair/microbiology , Humans , Male , Microscopy/standards , Middle Aged , Scalp/microbiology , Tinea/microbiology
14.
Med Mycol ; 59(2): 210-213, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-32785575

ABSTRACT

Malassezia restricta and Malassezia globosa are lipid dependent commensal yeasts associated with dandruff. Antifungal actives such as zinc pyrithione are commonly used in antidandruff shampoos, although their efficacy is not clearly demonstrated. In this study, we assessed the efficacy of antifungal treatments on scalp Malassezia via a combination of culturomic and genomic detection methods. Zinc pyrithione inhibited Malassezia growth at low minimum inhibitory concentrations (MICs). In a longitudinal pilot study, quantitative polymerase chain reaction (qPCR) analysis showed a decrease in M. restricta on the scalp after zinc pyrithione treatment. These findings validate the antifungal efficacy of zinc pyrithione as a dandruff treatment. LAY ABSTRACT: Malassezia yeasts are associated with dandruff and seborrheic dermatitis. Zinc pyrithione is effective against Malassezia growth in vitro and when tested on human skin as a shampoo. These findings will be useful for investigating the role of Malassezia in skin microbiome intervention studies.


Subject(s)
Antifungal Agents/pharmacology , Malassezia/drug effects , Malassezia/growth & development , Organometallic Compounds/pharmacology , Pyridines/pharmacology , Scalp/drug effects , Skin/drug effects , Symbiosis/drug effects , Adult , Aged , Cohort Studies , Humans , Longitudinal Studies , Malassezia/classification , Malassezia/genetics , Microbial Sensitivity Tests , Middle Aged , Pilot Projects , Scalp/microbiology , Skin/microbiology , Soaps/chemistry , Soaps/pharmacology , Surveys and Questionnaires , Young Adult
15.
Bioprocess Biosyst Eng ; 44(5): 965-975, 2021 May.
Article in English | MEDLINE | ID: mdl-32219537

ABSTRACT

Seborrheic dermatitis (SD) is a common disease of the human scalp that causes physical damage and psychological problems for patients. Studies have indicated that dysbiosis of the scalp microbiome results in SD. However, the specific fungal and bacterial microbiome changes related to SD remain elusive. To further investigate the fungal and bacterial microbiome changes associated with SD, we recruited 57 SD patients and 53 healthy individuals and explored their scalp microbiomes using next generation sequencing and the QIIME and LEfSe bioinformatics tools. Skin pH, sebum secretion, hydration, and trans-epidermal water loss (TWEL) were also measured at the scalp. We found no statistically significant differences between the normal and lesion sites in SD patients with different subtypes of dandruff and erythema. However, the fungal and bacterial microbiome could differentiate SD patients from healthy controls. The presence of Malassezia and Aspergillus was both found to be potential fungal biomarkers for SD, while Staphylococcus and Pseudomonas were found to be potential bacterial biomarkers. The fungal and bacterial microbiome were divided into three clusters through co-abundance analysis and their correlations with host factors indicated the interactions and potential cooperation and resistance between microbe communities and host. Our research showed the skin microbe dysbiosis of SD and highlighted specific microorganisms that may serve as potential biomarkers of SD. The etiology of SD is multi-pathogenetic-dependent on the linkage of several microbes with host. Scalp microbiome homeostasis could be a promising new target in the risk assessment, prevention, and treatment of SD disease.


Subject(s)
Dermatitis, Seborrheic/microbiology , Malassezia , Microbiota , Scalp/microbiology , Staphylococcus , Adult , Female , Humans , Malassezia/classification , Malassezia/isolation & purification , Male , Middle Aged , Staphylococcus/classification , Staphylococcus/isolation & purification
16.
Sci Rep ; 10(1): 17779, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33082431

ABSTRACT

Malassezia is a genus of lipophilic yeasts residing on the skin of warm-blooded animals. The correlation between specific species and their involvement in skin diseases has been well researched. However, only very few studies have investigated the distribution of Malassezia spp. on the healthy skin of patients infected with human immunodeficiency virus (HIV). The purpose of this work was to analyze whether the composition of Malassezia spp. isolated from the skin of the HIV-infected patients differs from that of healthy individuals. The study included a total of 96 subjects, who were divided into two equally sized groups: HIV-seropositive and HIV-seronegative. The specimens were collected from the subjects by swabbing four anatomical sites (face, chest, back, and scalp). Species were identified using phenotype-based methods, and the identification of strains isolated from the HIV-seropositive patients was confirmed by PCR sequencing of the rDNA cluster. Malassezia spp. were isolated from 33 (69%) HIV-seropositive patients and 38 (79%) healthy volunteers. It was found that men were much more likely to have their heads colonized with Malassezia spp. than women. The most prevalent species on the skin of both HIV-seropositive and HIV-seronegative individuals were Malassezia sympodialis, M. globosa, and M. furfur, albeit at different proportions in the two populations. The diversity of Malassezia spp. was the highest on the face of the HIV-seropositive patients (Shannon-Weiner Index H = 1.35) and lowest on the back of the healthy volunteers (H = 0.16). The phenotype- and molecular-based identification methods were congruent at 94.9%. It was observed a tendency that the HIV-seropositive patients had higher CD4+ cell counts, indicating higher colonization with Malassezia spp.


Subject(s)
Dermatomycoses/microbiology , HIV Infections/microbiology , HIV-1/physiology , Malassezia/physiology , Scalp/microbiology , Skin/microbiology , Adult , Biodiversity , Dermatomycoses/epidemiology , Female , HIV Infections/epidemiology , HIV Seropositivity , Host Microbial Interactions , Humans , Male , Middle Aged , Prevalence , Sex Factors , Species Specificity
17.
Biosci Biotechnol Biochem ; 84(12): 2585-2596, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32993459

ABSTRACT

In this study, we investigated and compared characteristics of the bacterial community structures on hair (scalp hair) and scalp in 18 individuals. Significant differences were found between the sites, in terms of cell density, alpha and beta diversity, and relative abundance of the phyla, Firmicutes and Proteobacteria, whereas no difference was found in relative abundance of the phylum Actinobacteria. Bacteria of the genus Cutibacterium showed similar relative abundance at both sites, whereas those of genus Pseudomonas were highly abundant on hair, and those of genus Staphylococcus were significantly lesser in abundance on hair than on scalp. Statistical correlations between the sites were high for the individual relative abundance of five major operational taxonomic units (OTUs). This suggests that the bacterial community structure on hair is composed of hair-specific genus, Pseudomonas, and skin-derived genera, Cutibacterium and Staphylococcus, and is distinguishable from other human skin microbiomes.


Subject(s)
Bacteria , Hair/microbiology , Host Microbial Interactions , Scalp/microbiology , Adult , Biodiversity , Female , Humans , Male , Microbiota , Middle Aged , Young Adult
18.
J Investig Med ; 68(7): 1292-1294, 2020 10.
Article in English | MEDLINE | ID: mdl-32958525

ABSTRACT

Nowadays, the involvement of the microbiome in human health and many human diseases, including that strictly related to the scalphas been brought to the light. Indeed, more recently, authors highlighted the presence of a significant microbial shift both in nonscarring (Androgenetic alopecia and Alopecia areata) and scarring Alopecias. The advent of novel technologies together with the effort of many scientists in the microbiome field could provide in the nearest future a clearest framework about the strict relationship between human healthiness and symbiotic microorganism resident on different ecosystem of our body. In this view, the use of Omics approaches has to be considered as no longer negligible when studying the microbiome implication in human health and disease.


Subject(s)
Alopecia Areata/microbiology , Genomics , Microbiota , Gastrointestinal Microbiome , Humans , Scalp/microbiology , Scalp/pathology
19.
J Mycol Med ; 30(4): 101013, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32811733

ABSTRACT

We report an outbreak of Trichophyton soudanense causing tinea capitis and corporis in an orphanage in Myanmar. The thirty orphan children were suspected to have anthropophilic tinea but zoonotic tinea could not be excluded as all children were playing with stray dogs. Direct mycological examinations of hair and scalp samples showed filaments but culture assays remained sterile. We revealed T. soudanense as the infectious agent by PCR amplification of extracted fungal DNA and further sequencing of the PCR products. Children were successfully treated by terbinafine and reinfection was prevented by hygiene measures. This case report shed the light on T. soudanense infection on another continent than Africa and on the significant help of PCR identification.


Subject(s)
Arthrodermataceae/isolation & purification , Disease Outbreaks , Orphanages , Tinea Capitis/diagnosis , Tinea/diagnosis , Alopecia/diagnosis , Alopecia/epidemiology , Alopecia/microbiology , Animals , Child , Child, Orphaned , Dog Diseases/microbiology , Dog Diseases/transmission , Dogs , Female , Humans , Male , Myanmar/epidemiology , Scalp/microbiology , Tinea/epidemiology , Tinea/microbiology , Tinea Capitis/epidemiology , Tinea Capitis/microbiology , Zoonoses/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...