Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.319
Filter
1.
Eur Phys J E Soft Matter ; 47(6): 39, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831117

ABSTRACT

Small-Angle Scattering (SAS), encompassing both X-ray (SAXS) and Neutron (SANS) techniques, is a crucial tool for structural analysis at the nanoscale, particularly in the realm of biological macromolecules. This paper explores the intricacies of SAS, emphasizing its application in studying complex biological systems and the challenges associated with sample preparation and data analysis. We highlight the use of neutron-scattering properties of hydrogen isotopes and isotopic labeling in SANS for probing structures within multi-subunit complexes, employing techniques like contrast variation (CV) for detailed structural analysis. However, traditional SAS analysis methods, such as Guinier and Kratky plots, are limited by their partial use of available data and inability to operate without substantial a priori knowledge of the sample's chemical composition. To overcome these limitations, we introduce a novel approach integrating α -SAS, a computational method for simulating SANS with CV, with machine learning (ML). This approach enables the accurate prediction of scattering contrast in multicomponent macromolecular complexes, reducing the need for extensive sample preparation and computational resources. α -SAS, utilizing Monte Carlo methods, generates comprehensive datasets from which structural invariants can be extracted, enhancing our understanding of the macromolecular form factor in dilute systems. The paper demonstrates the effectiveness of this integrated approach through its application to two case studies: Janus particles, an artificial structure with a known SAS intensity and contrast, and a biological system involving RNA polymerase II in complex with Rtt103. These examples illustrate the method's capability to provide detailed structural insights, showcasing its potential as a powerful tool for advanced SAS analysis in structural biology.


Subject(s)
Machine Learning , Scattering, Small Angle , Macromolecular Substances/chemistry , Neutron Diffraction , X-Ray Diffraction , Monte Carlo Method
2.
Soft Matter ; 20(19): 3897-3900, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700293

ABSTRACT

Two protein interaction peaks are observed in pharmaceutically-relevant protein (serum albumin) : disaccharide 1 : 1 and 1 : 3 (w/w) freeze-dried systems for the first time. In samples with a higher disaccharide content, the protein-protein distances are longer for both populations, while the fraction of the protein population with a shorter protein-protein distance is lower. Both factors would favor better stability against aggregation for disaccharide-rich protein formulations. This study provides direct experimental support for a "dilution" hypothesis as a potential stabilization mechanism for freeze-dried protein formulations.


Subject(s)
Disaccharides , Freeze Drying , Scattering, Small Angle , X-Ray Diffraction , Disaccharides/chemistry , Neutron Diffraction , Animals
3.
Methods Mol Biol ; 2726: 377-399, 2024.
Article in English | MEDLINE | ID: mdl-38780739

ABSTRACT

Aside from the well-known role in protein synthesis, RNA can perform catalytic, regulatory, and other essential biological functions which are determined by its three-dimensional structure. In this regard, a great effort has been made during the past decade to develop computational tools for the prediction of the structure of RNAs from the knowledge of their sequence, incorporating experimental data to refine or guide the modeling process. Nevertheless, this task can become exceptionally challenging when dealing with long noncoding RNAs, constituted by more than 200 nucleotides, due to their large size and the specific interactions involved. In this chapter, we describe a multiscale approach to predict such structures, incorporating SAXS experimental data into a hierarchical procedure which couples two coarse-grained representations: Ernwin, a helix-based approach, which deals with the global arrangement of secondary structure elements, and SPQR, a nucleotide-centered coarse-grained model, which corrects and refines the structures predicted at the coarser level.We describe the methodology through its application on the Braveheart long noncoding RNA, starting from the SAXS and secondary structure data to propose a refined, all-atom structure.


Subject(s)
Nucleic Acid Conformation , RNA, Long Noncoding , Scattering, Small Angle , X-Ray Diffraction , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/genetics , X-Ray Diffraction/methods , Computational Biology/methods , Software , Models, Molecular , RNA/chemistry , RNA/genetics , Algorithms
4.
Food Res Int ; 186: 114380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729734

ABSTRACT

Pea albumins are found in the side stream during the isolation of pea proteins. They are soluble at acidic pH and have functional properties which differ from their globulin counterparts. In this study, we have investigated the aggregation and structural changes occurring to pea albumins under different environmental conditions, using a combination of size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALS) and small-angle X-ray scattering (SAXS). Albumins were extracted from a dry fractionated pea protein concentrate by precipitating the globulin fraction at acidic pH. The albumins were then studied at different pH (3, 4, 4.5, 7, 7.5, and 8) values. The effect of heating at 90 °C for 1, 3, and 5 min on their structural changes was investigated using SAXS. In addition, size exclusion of the albumins showed 4 distinct populations, depending on pH and heating conditions, with two large aggregates peaks (∼250 kDa): a dimer peak (∼24 kDa) containing predominantly pea albumin 2 (PA2), and a monomer peak of a molar mass of about 12 kDa (PA1). X-ray scattering intensities as a function of q were modeled as polydisperse spheres, and their aggregation was followed as a function of heating time. Albumins was most stable at pH 3, showing no aggregation during heat treatment. While albumins at pH 7.5 and 8 showed aggregation after heating, solutions at pH 4, 4.5, and 7 already contained aggregates even before heating. This work provides new knowledge on the overall structural development of albumins under different environmental conditions, improving our ability to employ these as future ingredients in foods.


Subject(s)
Hot Temperature , Pea Proteins , Pisum sativum , Scattering, Small Angle , X-Ray Diffraction , Hydrogen-Ion Concentration , Pisum sativum/chemistry , Pea Proteins/chemistry , Albumins/chemistry , Chromatography, Gel
5.
Nat Commun ; 15(1): 3888, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719828

ABSTRACT

PRPF40A plays an important role in the regulation of pre-mRNA splicing by mediating protein-protein interactions in the early steps of spliceosome assembly. By binding to proteins at the 5´ and 3´ splice sites, PRPF40A promotes spliceosome assembly by bridging the recognition of the splices. The PRPF40A WW domains are expected to recognize proline-rich sequences in SF1 and SF3A1 in the early spliceosome complexes E and A, respectively. Here, we combine NMR, SAXS and ITC to determine the structure of the PRPF40A tandem WW domains in solution and characterize the binding specificity and mechanism for proline-rich motifs recognition. Our structure of the PRPF40A WW tandem in complex with a high-affinity SF1 peptide reveals contributions of both WW domains, which also enables tryptophan sandwiching by two proline residues in the ligand. Unexpectedly, a proline-rich motif in the N-terminal region of PRPF40A mediates intramolecular interactions with the WW tandem. Using NMR, ITC, mutational analysis in vitro, and immunoprecipitation experiments in cells, we show that the intramolecular interaction acts as an autoinhibitory filter for proof-reading of high-affinity proline-rich motifs in bona fide PRPF40A binding partners. We propose that similar autoinhibitory mechanisms are present in most WW tandem-containing proteins to enhance binding selectivity and regulation of WW/proline-rich peptide interaction networks.


Subject(s)
Proline , Protein Binding , WW Domains , Humans , Amino Acid Motifs , Models, Molecular , Proline/metabolism , Proline/chemistry , RNA Splicing , RNA Splicing Factors/metabolism , RNA Splicing Factors/chemistry , RNA Splicing Factors/genetics , Scattering, Small Angle , Spliceosomes/metabolism , X-Ray Diffraction
6.
J Colloid Interface Sci ; 669: 844-855, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38749223

ABSTRACT

Lamellarity and shape are important factors in the formation of vesicles and determine their role in biological systems and pharmaceutical applications. Cardiolipin (CL) is a major lipid in many biological membranes and exerts a great influence on their structural organization due to its particular structure and physico-chemical properties. Here, we used small-angle X-ray and neutron scattering to study the effects of CL with different acyl chain lengths and saturations (CL14:0, CL18:1, CL18:2) on vesicle morphology and lamellarity in membrane models containing mixtures of phosphatidylcholine and phosphatidylethanolamine with different acyl chain lengths and saturations (C14:0 and C 18:1). Measurements were performed in the presence of Phosphate Buffer Saline (PBS), at 37°C, to better reflect physiological conditions, which resulted in strong effects on vesicle morphology, depending on the type and amount of CL used. The presence of small quantities of CL (from 2.5%) reduced inter-membrane correlations and increased perturbation of the membrane, an effect which is enhanced in the presence of matched shorter saturated acyl chains, and mainly unilamellar vesicles (ULV) are formed. In extruded vesicles, employed for SANS experiments, flattened vesicles are observed partly due to the hypertonic effect of PBS, but also influenced by the type of CL added. Our experimental data from SAXS and SANS revealed a strong dependence on CL content in shaping the membrane microstructure, with an apparent optimum in the PC:CL mixture in terms of promoting reduced correlations, preferred curvature and elongation. However, the use of PBS caused distinct differences from previously published studies in water in terms of vesicle shape, and highlights the need to investigate vesicle formation under physiological conditions in order to be able to draw conclusions about membrane formation in biological systems.


Subject(s)
Cardiolipins , Liposomes , Scattering, Small Angle , Cardiolipins/chemistry , Liposomes/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , X-Ray Diffraction , Particle Size , Neutron Diffraction
7.
Int J Biol Macromol ; 269(Pt 2): 131890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692534

ABSTRACT

The rheological and morphological characteristics of Ca-crosslinked alginate hydrogels with two different M/G ratios, α-L-guluronate (G)-rich and ß-D-mannuronate (M)-rich, each with one alginic acid concentration, were investigated. It was found that the stiffness and elasticity of alginate hydrogels are derived from the thickness and density of the fibril network structures. In aqueous alginate solution, ball-like aggregates of alginates are present. Time-resolved small-angle X-ray scattering and time-domain nuclear magnetic resonance measurements suggest that the disaggregation of alginate aggregates and loose fibrillation occur in the early stage of the sol-gel transition. After these induction stage, direct gelation is finally caused by the formation of the egg-box junction. G-rich alginate hydrogel has a higher stiffness and a thicker and denser fibril network structure than M-rich alginate hydrogel. The former also exhibits faster and more significant changes in physical properties during the sol-gel transition.


Subject(s)
Alginates , Hydrogels , Phase Transition , Rheology , Alginates/chemistry , Hydrogels/chemistry , Scattering, Small Angle , Hexuronic Acids
8.
J Inorg Biochem ; 257: 112579, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38703512

ABSTRACT

Human aromatase (CYP19A1), the cytochrome P450 enzyme responsible for conversion of androgens to estrogens, was incorporated into lipoprotein nanodiscs (NDs) and interrogated by small angle X-ray and neutron scattering (SAXS/SANS). CYP19A1 was associated with the surface and centered at the edge of the long axis of the ND membrane. In the absence of the N-terminal anchor, the amphipathic A'- and G'-helices were predominately buried in the lipid head groups, with the possibly that their hydrophobic side chains protrude into the hydrophobic, aliphatic tails. The prediction is like that for CYP3A4 based on SAXS employing a similar modeling approach. The orientation of CYP19A1 in a ND is consistent with our previous predictions based on molecular dynamics simulations and lends additional credibility to the notion that CYP19A1 captures substrates from the membrane.


Subject(s)
Aromatase , Scattering, Small Angle , Aromatase/metabolism , Aromatase/chemistry , Humans , Lipoproteins/chemistry , Lipoproteins/metabolism , X-Ray Diffraction , Nanostructures/chemistry , Molecular Dynamics Simulation
9.
J Colloid Interface Sci ; 669: 975-983, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38759596

ABSTRACT

HYPOTHESIS: Hydroxypropyl methylcellulose phthalate (HPMCP) is an enteric polymer that has been employed in drug delivery systems to delay the release of the encapsulated active pharmaceutical ingredients through its pH-responsive solubility change. This has been recently demonstrated as an effective means for delaying the drug release from gelatin/HPMCP hydrogels at gastric pH values. However, structural characteristics of HPMCP agglomeration in gelatin/HPMCP hydrogels is not well understood thus limiting further tailoring of their material properties. EXPERIMENTS: We investigated the multiscale structure of a gelatin/HPMCP hydrogel (1:1 by weight) between pH 2 and 6 at 37 °C, i.e. above the upper critical solution transition temperature of gelatin, using small-angle X-ray scattering and contrast-variation small-angle neutron scattering to understand the pH-responsive structure of HPMCP and the cross-correlation between gelatin and HPMCP. FINDINGS: Agglomeration of HPMCP between pH 2 and 4 was evidenced by the formation of mass fractal structures, with a fractal dimension ranging from 1.5 to 2.7, comprising primary particles with a radius of gyration ranging from 70 to 140 Å. Blending with gelatin influenced the fractal structure of HPMCP and the primary particle size. Gelatin and HPMCP exhibited negative cross-correlation in all probed length scales and pH values, which was attributed to volume-exclusion interaction in a double-network-like solution architecture.


Subject(s)
Gelatin , Methylcellulose , Particle Size , Scattering, Small Angle , Gelatin/chemistry , Hydrogen-Ion Concentration , Methylcellulose/chemistry , Methylcellulose/analogs & derivatives , Hydrogels/chemistry , Molecular Structure
10.
Nat Commun ; 15(1): 3105, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600130

ABSTRACT

Disordered protein sequences can exhibit different binding modes, ranging from well-ordered folding-upon-binding to highly dynamic fuzzy binding. The primary function of the intrinsically disordered region of the antitoxin HigA2 from Vibrio cholerae is to neutralize HigB2 toxin through ultra-high-affinity folding-upon-binding interaction. Here, we show that the same intrinsically disordered region can also mediate fuzzy interactions with its operator DNA and, through interplay with the folded helix-turn-helix domain, regulates transcription from the higBA2 operon. NMR, SAXS, ITC and in vivo experiments converge towards a consistent picture where a specific set of residues in the intrinsically disordered region mediate electrostatic and hydrophobic interactions while "hovering" over the DNA operator. Sensitivity of the intrinsically disordered region to scrambling the sequence, position-specific contacts and absence of redundant, multivalent interactions, point towards a more specific type of fuzzy binding. Our work demonstrates how a bacterial regulator achieves dual functionality by utilizing two distinct interaction modes within the same disordered sequence.


Subject(s)
Intrinsically Disordered Proteins , Vibrio cholerae , Transcription Factors/genetics , Transcription Factors/metabolism , Vibrio cholerae/metabolism , Scattering, Small Angle , Protein Binding , X-Ray Diffraction , DNA/metabolism , Intrinsically Disordered Proteins/metabolism
11.
Nat Commun ; 15(1): 3413, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649740

ABSTRACT

The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.


Subject(s)
Biomolecular Condensates , Molecular Dynamics Simulation , Scattering, Small Angle , Biomolecular Condensates/chemistry , Fluorescence Recovery After Photobleaching , Neutron Diffraction , Macromolecular Substances/chemistry , Proteins/chemistry
12.
J Phys Chem B ; 128(17): 4076-4086, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38642057

ABSTRACT

In aqueous binary solvents with fluorinated alcohols, 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), and aliphatic alcohols, ethanol (EtOH) and 2-propanol (2-PrOH), the denaturation of hen egg white lysozyme (HEWL) with increasing alcohol mole fraction xA has been investigated in a wide view from the molecular vibration to the secondary and ternary structures. Circular dichroism (CD) measurement showed that the secondary structure of α-helix content of HEWL increases on adding a small amount of the fluorinated alcohol to the aqueous solution, while the ß-sheet content decreases. On the contrary, the secondary structure does not significantly change by the addition of the aliphatic alcohols. Correspondingly, the infrared (IR) spectroscopic measurements revealed that the amide I band red-shifts on the addition of the fluorinated alcohol. However, the band remains unchanged in the aliphatic alcohol systems with increasing alcohol content. To observe the ternary structure of HEWL, small-angle neutron scattering (SANS) experiments with H/D substitution technique have been applied to the HEWL solutions. The SANS experiments were successful in revealing the details of how the geometry of the HEWL changes as a function of xA. The SANS profiles indicated the spherical structure of HEWL in all of the alcohol systems in the xA range examined. The mean radius of HEWL in the two fluorinated alcohol systems increases from ∼16 to ∼18 Å during the change in the secondary structure against the increase in the fluorinated alcohol content. On contrast, the radius does not significantly change in both aliphatic alcohol systems below xA = 0.3 but expands to ∼19 Å as the alcohol content is close to the limitation of the HEWL solubility. According to the present results, together with our knowledge of the alcohol cluster formation and the interaction of the trifluoromethyl (CF3) groups with the hydrophobic moieties of biomolecules, the effects of alcohols on the denaturation of the protein have been discussed on a molecular scale.


Subject(s)
Circular Dichroism , Muramidase , Protein Denaturation , Scattering, Small Angle , Muramidase/chemistry , Muramidase/metabolism , Animals , Neutron Diffraction , Spectrophotometry, Infrared , Chickens , Alcohols/chemistry
13.
Int J Pharm ; 657: 124147, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38657715

ABSTRACT

The present study investigated the feasibility of fabricating self-assembled liposomes, LeciPlex®, a phospholipid-based vesicular nanocarrier using cationic, anionic, and nonionic stabilizers. The phospholipid investigated was soy phosphatidylcholine and the nano-precipitation method based on solvent diffusion was applied as the fabrication technique of liposomes in this study. The effects of various formulation variables, such as lipid and stabilizer concentration, total solid concentration, and solvent type on the self-assembly of vesicles were studied for physical characterization including particle size analysis, differential scanning calorimetry, viscosity, optical transmittance, transmission electron microscopy, and small angle neutron scattering. All three LeciPlex® systems exhibited a direct relationship between particle size and phospholipid concentration. The two categoric variables, solvent, and stabilizer used to prepare LeciPlex® demonstrated a significant effect on particle size for all three LeciPlex® systems. Small angle neutron scattering, and optical transmittance confirmed the formation of micellar systems at a phospholipid: stabilizer ratio of 1:2 and vesicular systems at a ratio of 2:1 for the systems stabilized with anionic and nonionic surfactants. In contrast to this, the LeciPlex® formed with the cationic stabilizer Dioctadecyldimethylammonium bromide (DODAB), formed vesicles at both ratios. From these investigations, it was clear that the formulation space for LeciPlex® was diversified by the addition of cationic, anionic, and non-ionic stabilizers.


Subject(s)
Liposomes , Particle Size , Quaternary Ammonium Compounds , Liposomes/chemistry , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemistry , Viscosity , Solvents/chemistry , Phospholipids/chemistry , Chemistry, Pharmaceutical/methods , Phosphatidylcholines/chemistry , Calorimetry, Differential Scanning , Microscopy, Electron, Transmission , Drug Compounding/methods , Drug Carriers/chemistry , Scattering, Small Angle , Nanoparticles/chemistry
14.
Mol Pharm ; 21(5): 2250-2271, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38661388

ABSTRACT

Charges and their contribution to protein-protein interactions are essential for the key structural and dynamic properties of monoclonal antibody (mAb) solutions. In fact, they influence the apparent molecular weight, the static structure factor, the collective diffusion coefficient, or the relative viscosity, and their concentration dependence. Further, charges play an important role in the colloidal stability of mAbs. There exist standard experimental tools to characterize mAb net charges, such as the measurement of the electrophoretic mobility, the second virial coefficient, or the diffusion interaction parameter. However, the resulting values are difficult to directly relate to the actual overall net charge of the antibody and to theoretical predictions based on its known molecular structure. Here, we report the results of a systematic investigation of the solution properties of a charged IgG1 mAb as a function of concentration and ionic strength using a combination of electrophoretic measurements, static and dynamic light scattering, small-angle X-ray scattering, and tracer particle-based microrheology. We analyze and interpret the experimental results using established colloid theory and coarse-grained computer simulations. We discuss the potential and limits of colloidal models for the description of the interaction effects of charged mAbs, in particular pointing out the importance of incorporating shape and charge anisotropy when attempting to predict structural and dynamic solution properties at high concentrations.


Subject(s)
Antibodies, Monoclonal , Colloids , Immunoglobulin G , Colloids/chemistry , Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Viscosity , Solutions/chemistry , Osmolar Concentration , Scattering, Small Angle , Dynamic Light Scattering , Computer Simulation , X-Ray Diffraction/methods
15.
Adv Colloid Interface Sci ; 327: 103156, 2024 May.
Article in English | MEDLINE | ID: mdl-38643519

ABSTRACT

Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.


Subject(s)
Lipids , Nanoparticles , Neutron Diffraction , Scattering, Small Angle , Nanoparticles/chemistry , Lipids/chemistry , X-Ray Diffraction , Humans
16.
Langmuir ; 40(13): 6847-6861, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38501650

ABSTRACT

The use of an exogenous pulmonary surfactant (EPS) to deliver other relevant drugs to the lungs is a promising strategy for combined therapy. We evaluated the interaction of polymyxin B (PxB) with a clinically used EPS, the poractant alfa Curosurf (PSUR). The effect of PxB on the protein-free model system (MS) composed of four phospholipids (diC16:0PC/16:0-18:1PC/16:0-18:2PC/16:0-18:1PG) was examined in parallel to distinguish the specificity of the composition of PSUR. We used several experimental techniques (differential scanning calorimetry, small- and wide-angle X-ray scattering, small-angle neutron scattering, fluorescence spectroscopy, and electrophoretic light scattering) to characterize the binding of PxB to both EPS. Electrostatic interactions PxB-EPS are dominant. The results obtained support the concept of cationic PxB molecules lying on the surface of the PSUR bilayer, strengthening the multilamellar structure of PSUR as derived from SAXS and SANS. A protein-free MS mimics a natural EPS well but was found to be less resistant to penetration of PxB into the lipid bilayer. PxB does not affect the gel-to-fluid phase transition temperature, Tm, of PSUR, while Tm increased by ∼+ 2 °C in MS. The decrease of the thickness of the lipid bilayer (dL) of PSUR upon PxB binding is negligible. The hydrophobic tail of the PxB molecule does not penetrate the bilayer as derived from SANS data analysis and changes in lateral pressure monitored by excimer fluorescence at two depths of the hydrophobic region of the bilayer. Changes in dL of protein-free MS show a biphasic dependence on the adsorbed amount of PxB with a minimum close to the point of electroneutrality of the mixture. Our results do not discourage the concept of a combined treatment with PxB-enriched Curosurf. However, the amount of PxB must be carefully assessed (less than 5 wt % relative to the mass of the surfactant) to avoid inversion of the surface charge of the membrane.


Subject(s)
Polymyxin B , Pulmonary Surfactants , Polymyxin B/pharmacology , Polymyxin B/chemistry , Scattering, Small Angle , Lipid Bilayers , X-Ray Diffraction , Surface-Active Agents , Thermodynamics , Lung/metabolism
17.
ACS Nano ; 18(13): 9746-9764, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38514237

ABSTRACT

Lipid nanoparticles (LNPs) produced by antisolvent precipitation (ASP) are used in formulations for mRNA drug delivery. The mesoscopic structure of such complex multicomponent and polydisperse nanoparticulate systems is most relevant for their drug delivery properties, medical efficiency, shelf life, and possible side effects. However, the knowledge on the structural details of such formulations is very limited. Essentially no such information is publicly available for pharmaceutical dispersions approved by numerous medicine agencies for the use in humans and loaded with mRNA encoding a mimic of the spike protein of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) as, e.g., the Comirnaty formulation (BioNTech/Pfizer). Here, we present a simple preparation method to mimic the Comirnaty drug-free LNPs including a comparison of their structural properties with those of Comirnaty. Strong evidence for the liquid state of the LNPs in both systems is found in contrast to the designation of the LNPs as solid lipid nanoparticles by BioNTech. An exceptionally detailed and reliable structural model for the LNPs i.a. revealing their unexpected narrow size distribution will be presented based on a combined small-angle X-ray scattering and photon correlation spectroscopy (SAXS/PCS) evaluation method. The results from this experimental approach are supported by light microscopy, 1H NMR spectroscopy, Raman spectroscopy, cryogenic electron microscopy (cryoTEM), and simultaneous SAXS/SANS studies. The presented results do not provide direct insights on particle formation or dispersion stability but should contribute significantly to better understanding the LNP drug delivery process, enhancing their medical benefit, and reducing side effects.


Subject(s)
BNT162 Vaccine , Nanoparticles , Humans , Lipids/chemistry , RNA, Messenger/genetics , Scattering, Small Angle , X-Ray Diffraction , Liposomes , Nanoparticles/chemistry , RNA, Small Interfering/genetics
18.
Protein Sci ; 33(4): e4946, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501481

ABSTRACT

The two major challenges in synchrotron size-exclusion chromatography coupled in-line with small-angle x-ray scattering (SEC-SAXS) experiments are the overlapping peaks in the elution profile and the fouling of radiation-damaged materials on the walls of the sample cell. In recent years, many post-experimental analyses techniques have been developed and applied to extract scattering profiles from these problematic SEC-SAXS data. Here, we present three modes of data collection at the BioSAXS Beamline 4-2 of the Stanford Synchrotron Radiation Lightsource (SSRL BL4-2). The first mode, the High-Resolution mode, enables SEC-SAXS data collection with excellent sample separation and virtually no additional peak broadening from the UHPLC UV detector to the x-ray position by taking advantage of the low system dispersion of the UHPLC. The small bed volume of the analytical SEC column minimizes sample dilution in the column and facilitates data collection at higher sample concentrations with excellent sample economy equal to or even less than that of the conventional equilibrium SAXS method. Radiation damage problems during SEC-SAXS data collection are evaded by additional cleaning of the sample cell after buffer data collection and avoidance of unnecessary exposures through the use of the x-ray shutter control options, allowing sample data collection with a clean sample cell. Therefore, accurate background subtraction can be performed at a level equivalent to the conventional equilibrium SAXS method without requiring baseline correction, thereby leading to more reliable downstream structural analysis and quicker access to new science. The two other data collection modes, the High-Throughput mode and the Co-Flow mode, add agility to the planning and execution of experiments to efficiently achieve the user's scientific objectives at the SSRL BL4-2.


Subject(s)
Synchrotrons , X-Ray Diffraction , Scattering, Small Angle , Chromatography, Gel
19.
Nat Commun ; 15(1): 2362, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491006

ABSTRACT

The axon-initial-segment (AIS) of mature neurons contains microtubule (MT) fascicles (linear bundles) implicated as retrograde diffusion barriers in the retention of MT-associated protein (MAP) tau inside axons. Tau dysfunction and leakage outside of the axon is associated with neurodegeneration. We report on the structure of steady-state MT bundles in varying concentrations of Mg2+ or Ca2+ divalent cations in mixtures containing αß-tubulin, full-length tau, and GTP at 37 °C in a physiological buffer. A concentration-time kinetic phase diagram generated by synchrotron SAXS reveals a wide-spacing MT bundle phase (Bws), a transient intermediate MT bundle phase (Bint), and a tubulin ring phase. SAXS with TEM of plastic-embedded samples provides evidence of a viscoelastic intervening network (IN) of complexes of tubulin oligomers and tau stabilizing MT bundles. In this model, αß-tubulin oligomers in the IN are crosslinked by tau's MT binding repeats, which also link αß-tubulin oligomers to αß-tubulin within the MT lattice. The model challenges whether the cross-bridging of MTs is attributed entirely to MAPs. Tubulin-tau complexes in the IN or bound to isolated MTs are potential sites for enzymatic modification of tau, promoting nucleation and growth of tau fibrils in tauopathies.


Subject(s)
Tubulin , tau Proteins , Microtubules/metabolism , Scattering, Small Angle , tau Proteins/metabolism , Tubulin/metabolism , X-Ray Diffraction , Humans
20.
Phys Chem Chem Phys ; 26(14): 10998-11013, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526443

ABSTRACT

The presence of amyloid fibrils is a hallmark of several neurodegenerative diseases. Some amyloidogenic proteins, such as α-synuclein and amyloid ß, interact with lipids, and this interaction can strongly favour the formation of amyloid fibrils. In particular the primary nucleation step, i.e. the de novo formation of amyloid fibrils, has been shown to be accelerated by lipids. However, the exact mechanism of this acceleration is still mostly unclear. Here we use a range of scattering methods, such as dynamic light scattering (DLS) and small angle X-ray and neutron scattering (SAXS and SANS) to obtain structural information on the binding of α-synuclein to model membranes formed from negatively charged lipids and their co-assembly into amyloid fibrils. We find that the model membranes take an active role in the reaction. The binding of α synuclein to the model membranes immediately induces a major structural change in the lipid assembly, which leads to a break-up into small and mostly disc- or rod-like lipid-protein particles. This transition can be reversed by temperature changes or proteolytic protein removal. Incubation of the small lipid-α-synuclein particles for several hours, however, leads to amyloid fibril formation, whereby the lipids are incorporated into the amyloid fibrils.


Subject(s)
Amyloid beta-Peptides , alpha-Synuclein , alpha-Synuclein/chemistry , Scattering, Small Angle , X-Ray Diffraction , Amyloid/chemistry , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL
...