Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 16667, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33028892

ABSTRACT

Plasmodium vivax gene regulation remains difficult to study due to the lack of a robust in vitro culture method, low parasite densities in peripheral circulation and asynchronous parasite development. We adapted an RNA-seq protocol "DAFT-seq" to sequence the transcriptome of four P. vivax field isolates that were cultured for a short period ex vivo before using a density gradient for schizont enrichment. Transcription was detected from 78% of the PvP01 reference genome, despite being schizont-enriched samples. This extensive data was used to define thousands of 5' and 3' untranslated regions, some of which overlapped with neighbouring transcripts, and to improve the gene models of 352 genes, including identifying 20 novel gene transcripts. This dataset has also significantly increased the known amount of heterogeneity between P. vivax schizont transcriptomes from individual patients. The majority of genes found to be differentially expressed between the isolates lack Plasmodium falciparum homologs and are predicted to be involved in host-parasite interactions, with an enrichment in reticulocyte binding proteins, merozoite surface proteins and exported proteins with unknown function. An improved understanding of the diversity within P. vivax transcriptomes will be essential for the prioritisation of novel vaccine targets.


Subject(s)
Gene Expression Regulation , Host-Parasite Interactions/genetics , Plasmodium vivax/genetics , Schizonts/genetics , Transcriptome , Humans , Malaria, Vivax/parasitology , Merozoites/genetics , Plasmodium vivax/isolation & purification , Schizonts/isolation & purification
2.
Anal Chem ; 91(3): 2216-2223, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30601655

ABSTRACT

Despite global efforts aimed at its elimination, malaria is still a significant health concern in many countries across the world. The disease is caused by blood-borne parasites, Plasmodium species, and is transmitted by female Anopheles mosquitoes and presents with generic febrile symptoms that are challenging to diagnose clinically. To adequately tackle this issue, an effective detection method is required for screening potential malaria patients for infection. To this day, the gold standard for malaria detection remains basic light microscopy of Giemsa-stained patient blood smears to first enable detection and manual counting to determine the parasite density by a microscopist. While effective at detecting parasites, this method requires both significant time and skilled personnel. As an alternate approach, we propose a new malaria detection method that we call third-harmonic generation image scanning cytometry (THGISC) based on the combination of third-harmonic generation imaging, high-speed motorized scanning, and automated software processing. Third-harmonic generation (THG) is a nonlinear optical process in which the frequency of incident photons is tripled within the sample material. We have previously demonstrated that hemozoin, a metabolic byproduct of the malaria parasite, presents a significant THG signal. We now present a practical approach that uses the selectivity of this contrast mechanism to perform label-free image scanning cytometry of patient blood smears for automated malaria detection. In this work, we applied this technique to lab-cultured parasites and parasites in whole blood obtained from malaria patients. We also compared its effectiveness to parasite counts obtained by classical methods. The ability to easily and rapidly determine parasitemia by THG offers potential not only for the easy confirmation of malaria diagnoses following symptoms, but also the tracking of treatment progress in existing patients, potentially allowing physicians to adjust medication and dosage for each individual.


Subject(s)
Image Cytometry/methods , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Erythrocytes/chemistry , Hemeproteins/chemistry , Hemoglobins/chemistry , Humans , Image Processing, Computer-Assisted , Proof of Concept Study , Schizonts/isolation & purification , Software , Trophozoites/isolation & purification
3.
BMC Genomics ; 19(1): 894, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30526479

ABSTRACT

BACKGROUND: Malaria parasites are genetically polymorphic and phenotypically plastic. In studying transcriptome variation among parasites from different infections, it is challenging to overcome potentially confounding technical and biological variation between samples. We investigate variation in the major human parasite Plasmodium falciparum, generating RNA-seq data on multiple independent replicate sample preparations of merozoite-containing intra-erythrocytic schizonts from a panel of clinical isolates and from long-term laboratory-adapted clones, with a goal of robustly identifying differentially expressed genes. RESULTS: Analysis of biological sample replicates shows that increased numbers improve the true discovery rate of differentially expressed genes, and that six independent replicates of each parasite line allowed identification of most differences that could be detected with larger numbers. For highly expressed genes, focusing on the top quartile at schizont stages, there was more power to detect differences. Comparing cultured clinical isolates and laboratory-adapted clones, genes more highly expressed in the laboratory-adapted clones include those encoding an AP2 transcription factor (PF3D7_0420300), a ubiquitin-binding protein and two putative methyl transferases. In contrast, higher expression in clinical isolates was seen for the merozoite surface protein gene dblmsp2, proposed to be a marker of schizonts forming merozoites committed to sexual differentiation. Variable expression was extremely strongly, but not exclusively, associated with genes known to be targeted by Heterochromatin Protein 1. Clinical isolates show variable expression of several known merozoite invasion ligands, as well as other genes for which new RT-qPCR assays validate the quantitation and allow characterisation in samples with more limited material. Expression levels of these genes vary among schizont preparations of different clinical isolates in the first ex vivo cycle in patient erythrocytes, but mean levels are similar to those in continuously cultured clinical isolates. CONCLUSIONS: Analysis of multiple biological sample replicates greatly improves identification of genes variably expressed between different cultured parasite lines. Clinical isolates recently established in culture show differences from long-term adapted clones in transcript levels of particular genes, and are suitable for analyses requiring biological replicates to understand parasite phenotypes and variable expression likely to be relevant in nature.


Subject(s)
Malaria, Falciparum/parasitology , Parasites/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Schizonts/genetics , Transcriptome/genetics , Adolescent , Animals , Child , Child, Preschool , Gene Expression Profiling , Humans , Parasites/isolation & purification , RNA, Messenger/genetics , RNA, Messenger/metabolism , Schizonts/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...