Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 338
Filter
1.
Vet Parasitol Reg Stud Reports ; 50: 101014, 2024 05.
Article in English | MEDLINE | ID: mdl-38644045

ABSTRACT

The present pilot research was focused on the detection of intestinal parasites in the ground squirrel populations in various regions of Slovakia. Only a very little information is currently available on the parasitic species composition of the European ground squirrel in Slovakia and across Europe. In the Slovak Republic, there are 70 locations where the ground squirrel populations are present. A total of 600 faecal samples of the European ground squirrels, collected from 36 locations all over Slovakia, were examined by applying the coprological method. The presence of the protozoan coccidian parasite of the Eimeria genus was confirmed in all of the analysed locations. The presence of eggs of four helminths were confirmed: Capillaria spp. (66.6% of locations); the Trichostrongylidae family (42.8% of locations); Hymenolepis spp. (11.9% of locations); and Citellina spp. (7.14% of locations). Dead individuals that were found in the analysed localities were subjected to necropsy and the tissues scraped off their small intestines were stained in order to confirm the presence of parasites. The post-mortem examination of the intestines and the sedimentation of the intestinal contents in a saline solution did not result in the confirmation of the presence of the eggs, adults or the larval stages of parasites. Spermophilus citellus is one of the strictly protected animal species in Slovakia. In recent years, numerous projects aimed at supporting and protecting ground squirrels have been implemented. The present pilot study on intestinal parasites and the subsequent cooperation with environmental activists will contribute to the support and stabilisation of the presence of these animals in our country.


Subject(s)
Endangered Species , Feces , Intestinal Diseases, Parasitic , Sciuridae , Animals , Sciuridae/parasitology , Slovakia/epidemiology , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Feces/parasitology , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Pilot Projects , Eimeria/isolation & purification , Eimeria/classification
2.
Ticks Tick Borne Dis ; 15(4): 102341, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593668

ABSTRACT

The nidicolous tick Ixodes laguri is a nest-dwelling parasite of small mammals that mainly infest rodents of the families Cricetidae, Gliridae, Muridae and Sciuridae. There is no proven vectorial role for I. laguri, although it is suggested that it is a vector of Francisella tularensis. In this study, a first map depicting the entire geographical distribution of I. laguri based on georeferenced locations is presented. For this purpose, a digital data set of 142 georeferenced locations from 16 countries was compiled. Particular attention is paid to the description of the westernmost record of I. laguri in the city of Vienna, Austria. There, I. laguri is specifically associated with its main hosts, the critically endangered European hamster (Cricetus cricetus) and the European ground squirrel (Spermophilus citellus). These two host species have also been mapped in the present paper to estimate the potential distribution of I. laguri in the Vienna metropolitan region. The range of I. laguri extends between 16-108∘ E and 38-54∘ N, i.e. from Vienna in the east of Austria to Ulaanbaatar, the capital of Mongolia. In contrast to tick species that are expanding their range and are also becoming more abundant as a result of global warming, I. laguri has become increasingly rare throughout its range. However, I. laguri is not threatened by climate change, but by anthropogenic influences on its hosts and their habitats, which are typically open grasslands and steppes. Rural habitats are threatened by the intensification of agriculture and semi-urban habitats are increasingly being destroyed by urban development.


Subject(s)
Animal Distribution , Ixodes , Tick Infestations , Animals , Austria , Ixodes/growth & development , Ixodes/physiology , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Endangered Species , Sciuridae/parasitology , Cricetinae , Rodent Diseases/parasitology , Rodent Diseases/epidemiology
3.
Parasit Vectors ; 17(1): 164, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555448

ABSTRACT

BACKGROUND: The immunocompetence handicap hypothesis suggests that males with a higher testosterone level should be better at developing male secondary traits, but at a cost of suppressed immune performance. As a result, we should expect that males with an increased testosterone level also possess a higher parasite load. However, previous empirical studies aimed to test this prediction have generated mixed results. Meanwhile, the effect of testosterone level on parasite load in female hosts remains poorly known. METHODS: In this study, we tested this prediction by manipulating testosterone level in Daurian ground squirrels (Spermophilus dauricus), a medium-sized rodent widely distributed in northeast Asia. S. dauricus is an important host of ticks and fleas and often viewed as a considerable reservoir of plague. Live-trapped S. dauricus were injected with either tea oil (control group) or testosterone (treatment group) and then released. A total of 10 days later, the rodents were recaptured and checked for ectoparasites. Fecal samples were also collected to measure testosterone level of each individual. RESULTS: We found that testosterone manipulation and sex of hosts interacted to affect tick load. At the end of the experiment, male squirrels subjected to testosterone implantation had an averagely higher tick load than males from the control group. However, this pattern was not found in females. Moreover, testosterone manipulation did not significantly affect flea load in S. dauricus. CONCLUSIONS: Our results only lent limited support for the immunocompetence handicap hypothesis, suggesting that the role of testosterone on regulating parasite load is relatively complex, and may largely depend on parasite type and gender of hosts.


Subject(s)
Flea Infestations , Rodent Diseases , Siphonaptera , Ticks , Animals , Female , Male , Sciuridae/parasitology , Flea Infestations/veterinary , Testosterone/physiology , Immunocompetence/physiology
4.
Folia Parasitol (Praha) ; 702023 Jul 31.
Article in English | MEDLINE | ID: mdl-37565460

ABSTRACT

Cryptosporidium Tyzzer, 1910 is one of the most common protistan parasites of vertebrates. The results of this study provide the first data on Cryptosporidium diversity in the European ground squirrel Spermophilus citellus (Linnaeus). A total of 128 faecal samples of European ground squirrels from 39 localities in the Czech Republic were analysed for the presence of Cryptosporidium spp. by microscopy and PCR/sequence analysis of small subunit ribosomal RNA (SSU) and the actin gene. While the microscopical examination did not reveal the presence of any Cryptosporidium oocysts, eight samples from six localities were PCR-positive. Phylogenetic analyses revealed the presence of five different Cryptosporidium spp. isolates. Four isolates, designated as Cryptosporidium sp. isolate Sc01-04, detected in wild populations and never recorded before, clustered closely to Cryptosporidium genotypes that have previously been found in North American ground squirrels' species. Cryptosporidium sciurinum Prediger, Jezková, Holubová, Sak, Konecný, Rost, McEvoy, Rajský et Kvác, 2021 was found in an animal sanctuary. Because C. sciurinum had previously been detected in Eurasian red squirrels Sciurus vulgaris Linnaeus at the same facility, it can be concluded that this Cryptosporidium was transmitted from tree squirrels to ground squirrels within the animal sanctuary. The results indicate that populations of European and North American ground squirrels are parasitised by different Cryptosporidium spp. At the same time, this is the first description of the occurrence of C. sciurinum in ground squirrels.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Animals , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Sciuridae/parasitology , Phylogeny , Feces/parasitology , North America
5.
Sci Total Environ ; 900: 165747, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37495139

ABSTRACT

Based on the Evolution of Increased Competitive Ability (EICA) hypothesis, a reduced investment in immunity, consequent to parasite loss, could partly explain the success of invasive alien species. We investigated variation in parasite load and immune responses of alien Eastern gray squirrels (Sciurus carolinensis) along the invasion wave of an expanding population. We first verified by fecal analyses that 1) parasite abundance decreased moving from the core towards the invasion front. Next, we used multiple measures of immunity to investigate whether, in response to the lower parasite pressure, individuals at the invasion front 2) dampened their costly inflammatory response, and 3) increased their investment in less expensive acquired immunity. We first explored variation in hematological variables related either to the inflammatory or the acquired response. On a subset of individuals, we carried out ex vivo cell cultures to analyse the basal expression of MHC class II genes and the expression of TNF-α genes in response to an immune challenge. Platelet counts and TNF-α expression suggested higher inflammation in individuals living at the invasion core, whereas parameters associated with an acquired response (lymphocyte counts and MHC II expression by spleen cells), conversely, were higher in squirrels at the front. Overall, our results suggest a shift between different immune strategies along the invasion wave, supporting a reduced investment in costly inflammatory responses and an increased investment in acquired immunity in individuals at the expanding edge of the range, which are subjected to high selective pressures for dispersal and reproduction.


Subject(s)
Introduced Species , Tumor Necrosis Factor-alpha , Humans , Animals , Sciuridae/genetics , Sciuridae/parasitology , Italy/epidemiology , Immunity
6.
Parasit Vectors ; 16(1): 235, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37454101

ABSTRACT

BACKGROUND: Cryptosporidium spp. are globally distributed parasites that infect epithelial cells in the microvillus border of the gastrointestinal tract of all classes of vertebrates. Cryptosporidium chipmunk genotype I is a common parasite in North American tree squirrels. It was introduced into Europe with eastern gray squirrels and poses an infection risk to native European squirrel species, for which infection is fatal. In this study, the biology and genetic variability of different isolates of chipmunk genotype I were investigated. METHODS: The genetic diversity of Cryptosporidium chipmunk genotype I was analyzed by PCR/sequencing of the SSU rRNA, actin, HSP70, COWP, TRAP-C1 and gp60 genes. The biology of chipmunk genotype I, including oocyst size, localization of the life cycle stages and pathology, was examined by light and electron microscopy and histology. Infectivity to Eurasian red squirrels and eastern gray squirrels was verified experimentally. RESULTS: Phylogenic analyses at studied genes revealed that chipmunk genotype I is genetically distinct from other Cryptosporidium spp. No detectable infection occurred in chickens and guinea pigs experimentally inoculated with chipmunk genotype I, while in laboratory mice, ferrets, gerbils, Eurasian red squirrels and eastern gray squirrels, oocyst shedding began between 4 and 11 days post infection. While infection in mice, gerbils, ferrets and eastern gray squirrels was asymptomatic or had mild clinical signs, Eurasian red squirrels developed severe cryptosporidiosis that resulted in host death. The rapid onset of clinical signs characterized by severe diarrhea, apathy, loss of appetite and subsequent death of the individual may explain the sporadic occurrence of this Cryptosporidium in field studies and its concurrent spread in the population of native European squirrels. Oocysts obtained from a naturally infected human, the original inoculum, were 5.64 × 5.37 µm and did not differ in size from oocysts obtained from experimentally infected hosts. Cryptosporidium chipmunk genotype I infection was localized exclusively in the cecum and anterior part of the colon. CONCLUSIONS: Based on these differences in genetics, host specificity and pathogenicity, we propose the name Cryptosporidium mortiferum n. sp. for this parasite previously known as Cryptosporidium chipmunk genotype I.


Subject(s)
Cryptosporidiidae , Cryptosporidiosis , Cryptosporidium , Humans , Animals , Mice , Guinea Pigs , Cryptosporidiosis/parasitology , Gerbillinae , Ferrets , Feces/parasitology , Chickens , Sciuridae/parasitology , Genotype , Oocysts , Phylogeny
7.
J Wildl Dis ; 59(1): 149-154, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36763340

ABSTRACT

The coccidian parasite Toxoplasma gondii is found worldwide infecting warm-blooded vertebrates. Felids are the definitive hosts; other species act as intermediate hosts. Squirrels (Sciuridae) generally have high population densities in cities and forage and cache food on the ground, where they may come into contact with T. gondii oocysts or be preyed upon by cats and other carnivores. This environment might make squirrels important intermediate hosts of T. gondii in cities, and infection rates could indicate environmental levels of oocysts in soil. We investigated whether urban squirrels would be more exposed to T. gondii infection than rural squirrels with samples collected from American red squirrels (Tamiasciurus hudsonicus), eastern grey squirrels (Sciurus carolinensis), northern flying squirrels (Glaucomys sabrinus), and least chipmunks (Tamias minimus) in and around Winnipeg, Manitoba, Canada. We tested 230 tissue samples from 46 squirrels for T. gondii DNA by quantitative PCR and 13 serum samples from grey squirrels for T. gondii antibodies by competitive ELISA. We found no evidence of infection in any squirrel, indicating that squirrels are probably not important intermediate hosts of T. gondii in cities and that consumption of oocysts in the soil in general may not be an important contributor to transmission in colder environments.


Subject(s)
Rodent Diseases , Toxoplasma , Toxoplasmosis, Animal , Animals , Sciuridae/parasitology , Manitoba , Canada , Soil , Rodent Diseases/epidemiology
8.
Parasitology ; 149(9): 1199-1218, 2022 08.
Article in English | MEDLINE | ID: mdl-35621015

ABSTRACT

Citellinema Hall, 1918 includes 6 valid species of gastrointestinal nematodes of sciurids. Two species occur in the Palearctic and 4 in the Nearctic, 3 of which occur minimally across Colorado, Idaho and Oregon and 1, Citellinema bifurcatum, has a wide distribution across North America. Members of the genus are didelphic, possess a cephalic vesicle, a terminal spine-like process in females and feature robust spicules, consisting of a proximal end fused and semicylindrical shaft connected to a lamina supported by 2 terminal filiform processes. Typically, the size of the spicules is used to differentiate species. As part of the Beringian Coevolution Project, specimens provisionally identified as C. bifurcatum were collected through intensive field sampling of mammals and associated parasites from across localities spanning the Holarctic. These specimens revealed considerable genetic variability at both mitochondrial and nuclear loci, supporting the identification of deeply divergent clades. Examination of these new specimens, along with the holotypes of C. bifurcatum and Citellinema quadrivittati indicates that Citellinema monacis (previously synonymized with C. bifurcatum) should be resurrected and 3 additional species described. We suggest that the apparent bifurcated nature of the spicule should be considered a generic diagnostic trait, while the proportional length of the lamina relative to that of the spicule is used as a specific character. We demonstrate the critical need for continued inventory of often poorly known assemblages of hosts and parasites, contributing to a growing baseline of archival specimens, collections and information that make explorations of faunal structure and diversity possible.


Subject(s)
Nematoda , Parasites , Trichostrongyloidea , Animals , Canada , Female , Marmota , North America , Sciuridae/parasitology
9.
Microbiol Spectr ; 9(3): e0099021, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34730381

ABSTRACT

Pallas's squirrel (Callosciurus erythraeus) was introduced in Japan in the 1930s and has since established itself in several areas across the country. Although wild Sciuridae populations have been demonstrated to be potential reservoirs for zoonotic enteric protozoa, epidemiological studies of such pathogens in Japan are scarce. Here, we examined 423 fecal samples from Pallas's squirrels captured in Kanagawa Prefecture, Japan, using PCR and DNA sequencing to determine the occurrence of Cryptosporidium spp., Enterocytozoon bieneusi, and Blastocystis. The overall prevalence of Cryptosporidium spp., E. bieneusi, and Blastocystis was 4.3% (18/423 samples), 13.0% (55/423 samples), and 44.0% (186/423 samples), respectively. The prevalence of Blastocystis and E. bieneusi was significantly higher in spring (60.1% and 17.4%, respectively) than in winter (27.6% and 8.6%, respectively [P < 0.01]). Sequence analysis of Cryptosporidium spp., targeting the partial small subunit ribosomal RNA gene (SSU rDNA), showed 100% identity (541/541 bp) to Cryptosporidium ubiquitum, and analysis of the gp60 gene showed 99.76% (833/835 bp) identity to C. ubiquitum subtype XIIh. The sequences of the ribosomal internal transcribed spacer region of E. bieneusi and the partial SSU rDNA of Blastocystis were identified as E. bieneusi genotype SCC-2 and Blastocystis subtype 4, respectively. This study confirmed the presence of C. ubiquitum, E. bieneusi, and Blastocystis in Pallas's squirrels in Kanagawa Prefecture. Because Pallas's squirrels inhabit urban areas, living close to humans, the species may serve as a potential source of infection in human populations. IMPORTANCE Pallas's squirrel is designated a "regulated organism" under the Invasive Alien Species Act in Japan, and municipal authorities are introducing control measures to reduce its populations. It has been suggested that wild mammals may play a role in contaminating the environment with zoonotic pathogens. The present study detected the enteric pathogens Cryptosporidium ubiquitum, Enterocytozoon bieneusi, and Blastocystis in the feces of Pallas's squirrels inhabiting Kanagawa Prefecture, Japan. These pathogens persist in the environment and contaminate soils and water, which may potentially infect humans. Because Pallas's squirrels in Kanagawa Prefecture are found in urban areas, where they are in close contact with human populations, continued monitoring of zoonotic diseases among squirrel populations will be important for evaluating the significance of wildlife in pathogen transmission.


Subject(s)
Blastocystis Infections/epidemiology , Blastocystis Infections/veterinary , Cryptosporidiosis/epidemiology , Microsporidiosis/epidemiology , Microsporidiosis/veterinary , Sciuridae/parasitology , Animals , Blastocystis/classification , Blastocystis/genetics , Blastocystis/isolation & purification , Cryptosporidium/classification , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Genes, Protozoan/genetics , Japan/epidemiology , Prevalence , RNA, Ribosomal/genetics , Ribosome Subunits, Small/genetics , Seasons
10.
Parasitol Res ; 120(8): 2989-2993, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34331136

ABSTRACT

Adeleorid apicomplexan parasites of the genus Hepatozoon Miller, 1908 are broadly distributed among the rodents. Broader molecular data on Hepatozoon from Palaearctic squirrels are necessary for evaluation of diversity and origin of Hepatozoon in Eurasian red squirrel Sciurus vulgaris populations, considering ongoing invasion by Gray squirrel S. carolinensis. Our report brings a set of molecular data from a population of S. vulgaris in the Czech Republic, non-invaded by any invasive squirrel species. Cadavers of 41 Eurasian red squirrels were examined using nested PCR targeting 18S rRNA gene; 30 animals tested positive for the presence of Hepatozoon spp. DNA in at least one tissue. Phylogenetic analysis of obtained sequence types revealed relatedness to sequences of Hepatozoon sp. from S. vulgaris from Spain and the Netherlands, forming a sister clade to Hepatozoon isolates from other European rodents. The fact that all available 18S rRNA gene sequences form a monophyletic clade is interpreted as a presence of a single Hepatozoon species in S. vulgaris in continental Europe, most probably Hepatozoon sciuri. The presented molecular data on the Hepatozoon from European squirrels provides a basis for future studies on possible exchange of Hepatozoon species between Eurasian red and gray squirrels.


Subject(s)
Eucoccidiida , Sciuridae/parasitology , Animals , Czech Republic , Eucoccidiida/classification , Eucoccidiida/isolation & purification , Phylogeny , RNA, Ribosomal, 18S/genetics
11.
J Wildl Dis ; 57(2): 434-438, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33631008

ABSTRACT

In western North America, sylvatic plague (a flea-borne disease) poses a significant risk to endangered black-footed ferrets (Mustela nigripes) and their primary prey, prairie dogs (Cynomys spp.). Pulicides (flea-killing agents) can be used to suppress fleas and thereby manage plague. In South Dakota, US, we tested edible "FipBit" pellets, each containing 0.84 mg fipronil, on free-living black-tailed prairie dogs (Cynomys ludivicianus). FipBits were applied along transects at 125 per ha and nearly eliminated fleas for 2 mo. From 9-14 mo post-treatment, we found only 10 fleas on FipBit sites versus 1,266 fleas on nontreated sites. This degree and duration of flea control should suppress plague transmission. FipBits are effective, inexpensive, and easily distributed but require federal approval for operational use.


Subject(s)
Ferrets , Flea Infestations/veterinary , Plague/veterinary , Pyrazoles/pharmacology , Sciuridae/parasitology , Siphonaptera/drug effects , Animals , Flea Infestations/prevention & control , Insecticides/administration & dosage , Insecticides/pharmacology , Plague/prevention & control , Pyrazoles/administration & dosage
12.
Mol Phylogenet Evol ; 155: 106998, 2021 02.
Article in English | MEDLINE | ID: mdl-33130299

ABSTRACT

The evolution of obligate parasites is often interpreted in light of their hosts' evolutionary history. An expanded approach is to examine the histories of multiple lineages of parasites that inhabit similar environments on a particular host lineage. Western North American chipmunks (genus Tamias) have a broad distribution, a history of divergence with gene flow, and host two species of sucking lice (Anoplura), Hoplopleura arboricola and Neohaematopinus pacificus. From total genomic sequencing, we obtained sequences of over 1100 loci sampled across the genomes of these lice to compare their evolutionary histories and examine the roles of host association in structuring louse relationships. Within each louse species, clades are largely associated with closely related chipmunk host species. Exceptions to this pattern appear to have a biogeographic component, but differ between the two louse species. Phylogenetic relationships among these major louse clades, in both species, are not congruent with chipmunk relationships. In the context of host associations, each louse lineage has a different evolutionary history, supporting the hypothesis that host-parasite assemblages vary both across the landscape and with the taxa under investigation. In addition, the louse Hoplopleura erratica (parasitizing the eastern Tamias striatus) is embedded within H. arboricola, rendering it paraphyletic. This phylogenetic result, together with comparable divergences within H. arboricola, indicate a need for taxonomic revision. Both host divergence and biogeographic components shape parasite diversification as demonstrated by the distinctive diversification patterns of these two independently evolving lineages that parasitize the same hosts.


Subject(s)
Anoplura/classification , Parasites/genetics , Phylogeny , Sciuridae/parasitology , Animals , Anoplura/genetics , Base Sequence , Species Specificity
13.
J Vector Ecol ; 45(2): 356-365, 2020 12.
Article in English | MEDLINE | ID: mdl-33207046

ABSTRACT

Sylvatic plague, caused by the bacterium Yersinia pestis and transmitted by fleas, occurs in prairie dogs of the western United States. Outbreaks can devastate prairie dog communities, often causing nearly 100% mortality. Three competent flea vectors, prairie dog specialists Oropsylla hirsuta and O. tuberculata, and generalist Pulex simulans, are found on prairie dogs and in their burrows. Fleas are affected by climate, which varies across the range of black-tailed prairie dogs (Cynomys ludovicianus), but these effects may be ameliorated somewhat due to the burrowing habits of prairie dogs. Our goal was to assess how temperature and precipitation affect off-host flea abundance and whether relative flea abundance varied across the range of black-tailed prairie dogs. Flea abundance was measured by swabbing 300 prairie dog burrows at six widely distributed sites in early and late summer of 2016 and 2017. Relative abundance of flea species varied among sites and sampling sessions. Flea abundance and prevalence increased with monthly mean high temperature and declined with higher winter precipitation. Predicted climate change in North America will likely influence flea abundance and distribution, thereby impacting plague dynamics in prairie dog colonies.


Subject(s)
Insect Vectors , Sciuridae/parasitology , Siphonaptera , Weather , Animals , Population Dynamics , United States
14.
Vector Borne Zoonotic Dis ; 20(12): 888-896, 2020 12.
Article in English | MEDLINE | ID: mdl-33074791

ABSTRACT

Plague originated in Asia as a flea-borne zoonosis of mammalian hosts. Today, the disease is distributed nearly worldwide. In western United States of America, plague is maintained, transmitted, and amplified in diverse communities of rodents and fleas. We examined flea diversity on three species of prairie dogs (Cynomys spp., PDs) and six species of sympatric small rodents in Montana and Utah, United States of America. Among 2896 fleas, 19 species were identified; 13 were found on PDs and 9 were found on small rodents. In Montana, three flea species were found on PDs; the three species parasitize PDs and mice. In Utah, 12 flea species were found on PDs; the 12 species parasitize PDs, mice, voles, chipmunks, ground squirrels, rock squirrels, and marmots. Diverse flea communities and their willingness to parasitize many types of hosts, across multiple seasons and habitats, may favor plague maintenance and transmission. Flea parasitism on Peromyscus deer mice varied directly with elevation. Fleas are prone to desiccation, and might prosper at higher, mesic elevations; in addition, Peromyscus nest characteristics may vary with elevation. Effective management of plague is critical. Plague management is probably most effective when encompassing communities of rodents and fleas. Treatment of PD burrows with 0.05% deltamethrin dust, which suppressed fleas on PDs for >365 days, suppressed fleas on small rodents for at least 58 days. At one site, deltamethrin suppressed fleas on small rodents for at least 383 days. By simultaneously suppressing fleas on PDs and small rodents, deltamethrin should promote ecosystem resilience and One Health objectives.


Subject(s)
Flea Infestations/veterinary , Plague/veterinary , Rodent Diseases/microbiology , Siphonaptera/microbiology , Animals , Ecosystem , Flea Infestations/drug therapy , Flea Infestations/epidemiology , Insecticides/administration & dosage , Montana/epidemiology , Nitriles/administration & dosage , Plague/epidemiology , Plague/microbiology , Plague/prevention & control , Pyrethrins/administration & dosage , Rodent Diseases/epidemiology , Rodent Diseases/prevention & control , Rodentia , Sciuridae/parasitology , Utah/epidemiology
15.
J Parasitol ; 106(3): 406-410, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32579665

ABSTRACT

New World flying squirrels, Glaucomys spp., are nocturnal arboreal sciurid rodents that have been previously surveyed for coccidial parasites. To date, 4 species of Eimeria have been reported from 2 species of Glaucomys. Here we report 2 species of eimerians from southern flying squirrels (Glaucomys volans) and the endemic Prince of Wales flying squirrel (Glaucomys sabrinus griseifrons). Oocysts of Eimeria dorneyi Levine and Ivens were found to be passing in the feces of 4 G. s. griseifrons from Alaska and a new species of Eimeria was present in feces from 6 G. volans from Arkansas. Oocysts of Eimeria hnidai n. sp. are ellipsoidal with a bilayered wall, measure 23.7 × 13.7 µm, and have a length/width (L/W) ratio of 1.7; a micropyle and oocyst residuum are absent but polar granule(s) are present. Sporocysts are ellipsoidal-elongate and measure 11.8 × 4.9 µm, L/W 2.2; Stieda body is present but sub-Stieda and para-Stieda bodies are absent. The sporocyst residuum is composed of small indistinct granules along the edge or in the center of the sporocyst. This is the first coccidian reported from G. volans from Arkansas as well as the initial coccidian (E. dorneyi) reported from G. s. griseifrons from Alaska. We also provide a summation of the coccidia known from North American flying squirrels.


Subject(s)
Coccidiosis/veterinary , Eimeria/classification , Rodent Diseases/parasitology , Sciuridae/parasitology , Alaska/epidemiology , Animals , Arkansas/epidemiology , Coccidiosis/epidemiology , Coccidiosis/parasitology , Eimeria/isolation & purification , Feces/parasitology , Rodent Diseases/epidemiology
16.
J Vector Ecol ; 45(1): 32-44, 2020 06.
Article in English | MEDLINE | ID: mdl-32492279

ABSTRACT

The number of recognized flea-borne pathogens has increased over the past decade. However, the true number of infections related to all flea-borne pathogens remains unknown. To better understand the enzootic cycle of flea-borne pathogens, fleas were sampled from small mammals trapped in central Pennsylvania. A total of 541 small mammals were trapped, with white-footed mice (Peromyscus leucopus) and southern red-backed voles (Myodes gapperi) accounting for over 94% of the captures. Only P. leucopus were positive for examined blood-borne pathogens, with 47 (18.1%) and ten (4.8%) positive for Anaplasma phagocytophilum and Babesia microti, respectively. In addition, 61 fleas were collected from small mammals and tested for pathogens. Orchopeas leucopus was the most common flea and Bartonella vinsonii subspecies arupensis, B. microti, and a Rickettsia felis-like bacterium were detected in various flea samples. To the best of our knowledge, this is the first report of B. microti DNA detected from a flea and the first report of a R. felis-like bacterium from rodent fleas in eastern North America. This study provides evidence of emerging pathogens found in fleas, but further investigation is required to resolve the ecology of flea-borne disease transmission cycles.


Subject(s)
Bartonella/pathogenicity , Siphonaptera/parasitology , Animals , Arvicolinae/parasitology , Babesia microti/parasitology , Babesia microti/pathogenicity , Male , Mammals/parasitology , Pennsylvania , Peromyscus/parasitology , Rickettsia felis/pathogenicity , Sciuridae/parasitology
17.
J Vector Ecol ; 45(1): 82-88, 2020 06.
Article in English | MEDLINE | ID: mdl-32492281

ABSTRACT

Human health practitioners and wildlife biologists use insecticides to manage plague by suppressing fleas (Siphonaptera), but insecticides can also kill other ectoparasites. We investigated effects of deltamethrin and fipronil on ectoparasites from black-tailed prairie dogs (Cynomys ludovicianus, BTPDs). In late July, 2018, we treated three sites with 0.05% deltamethrin dust and 5 sites with host-fed 0.005% fipronil grain. Three non-treated sites functioned as experimental baselines. We collected ectoparasites before treatments (June-July, 2018) and after treatments (August-October, 2018, June-July, 2019). Both deltamethrin and fipronil suppressed fleas for at least 12 months. Deltamethrin had no detectable effect on mites (Arachnida). Fipronil suppressed mites for at least 12 months. Lice (Phthiraptera) were scarce on non-treated sites throughout the study, complicating interpretation. Concentrating on eight sites where all three ectoparasites where found in June-July, 2018 (before treatments), flea intensity was greatest on BTPDs carrying many lice and mites. These three ectoparasites co-occurred at high numbers, which might facilitate plague transmission in some cases. Lethal effects of insecticides on ectoparasite communities are potentially advantageous in the context of plague management.


Subject(s)
Insecticides/pharmacology , Sciuridae/parasitology , Animals , Nitriles/pharmacology , Phthiraptera/drug effects , Pyrazoles/pharmacology , Pyrethrins/pharmacology
18.
Genome Biol Evol ; 12(5): 618-625, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32277812

ABSTRACT

Prairie dogs (genus Cynomys) are a charismatic symbol of the American West. Their large social aggregations and complex vocalizations have been the subject of scientific and popular interest for decades. A large body of literature has documented their role as keystone species of western North America's grasslands: They generate habitat for other vertebrates, increase nutrient availability for plants, and act as a food source for mammalian, squamate, and avian predators. An additional keystone role lies in their extreme susceptibility to sylvatic plague (caused by Yersinia pestis), which results in periodic population extinctions, thereby generating spatiotemporal heterogeneity in both biotic communities and ecological processes. Here, we report the first Cynomys genome for a Gunnison's prairie dog (C. gunnisoni gunnisoni) from Telluride, Colorado (USA). The genome was constructed using a hybrid assembly of PacBio and Illumina reads and assembled with MaSuRCA and PBJelly, which resulted in a scaffold N50 of 824 kb. Total genome size was 2.67 Gb, with 32.46% of the bases occurring in repeat regions. We recovered 94.9% (91% complete) of the single copy orthologs using the mammalian Benchmarking Universal Single-Copy Orthologs database and detected 49,377 gene models (332,141 coding regions). Pairwise Sequentially Markovian Coalescent showed support for long-term stable population size followed by a steady decline beginning near the end of the Pleistocene, as well as a recent population reduction. The genome will aid in studies of mammalian evolution, disease resistance, and the genomic basis of life history traits in ground squirrels.


Subject(s)
Genetic Variation , Genome , Plague/transmission , Repetitive Sequences, Nucleic Acid , Sciuridae/genetics , Yersinia pestis/physiology , Animals , Plague/epidemiology , Plague/veterinary , Sciuridae/parasitology
19.
Sci Rep ; 10(1): 1026, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974403

ABSTRACT

Cryptosporidium spp. and Enterocytozoon bieneusi are two well-known protist pathogens which can result in diarrhea in humans and animals. To examine the occurrence and genetic characteristics of Cryptosporidium spp. and E. bieneusi in pet red squirrels (Sciurus vulgaris), 314 fecal specimens were collected from red squirrels from four pet shops and owners in Sichuan province, China. Cryptosporidium spp. and E. bieneusi were examined by nested PCR targeting the partial small subunit rRNA (SSU rRNA) gene and the ribosomal internal transcribed spacer (ITS) gene respectively. The infection rates were 8.6% (27/314) for Cryptosporidium spp. and 19.4% (61/314) for E. bieneusi. Five Cryptosporidium species/genotypes were identified by DNA sequence analysis: Cryptosporidium rat genotype II (n = 8), Cryptosporidium ferret genotype (n = 8), Cryptosporidium chipmunk genotype III (n = 5), Cryptosporidium rat genotype I (n = 4), and Cryptosporidium parvum (n = 2). Additionally, a total of five E. bieneusi genotypes were revealed, including three known genotypes (D, SCC-2, and SCC-3) and two novel genotypes (RS01 and RS02). Phylogenetic analysis revealed that genotype D fell into group 1, whereas the remaining genotypes clustered into group 10. To our knowledge, this is the first study to report Cryptosporidium spp. and E. bieneusi in pet red squirrels in China. Moreover, C. parvum and genotype D of E. bieneusi, previously identified in humans, were also found in red squirrels, suggesting that red squirrels may give rise to cryptosporidiosis and microsporidiosis in humans through zoonotic transmissions. These results provide preliminary reference data for monitoring Cryptosporidium spp. and E. bieneusi infections in pet red squirrels and humans.


Subject(s)
Cryptosporidiosis/epidemiology , Cryptosporidium/genetics , Enterocytozoon/genetics , Microsporidiosis/epidemiology , Microsporidiosis/veterinary , Sciuridae/parasitology , Animals , China/epidemiology , Cryptosporidiosis/transmission , Cryptosporidium/isolation & purification , DNA, Ribosomal Spacer/genetics , Enterocytozoon/isolation & purification , Feces/parasitology , Female , Humans , Male , Microsporidiosis/transmission , Pets/parasitology , Phylogeny , RNA, Ribosomal/genetics , Sequence Analysis, DNA , Zoonoses/epidemiology , Zoonoses/parasitology
20.
Nat Commun ; 11(1): 281, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941912

ABSTRACT

Yersinia pestis is transmitted from fleas to rodents when the bacterium develops an extensive biofilm in the foregut of a flea, starving it into a feeding frenzy, or, alternatively, during a brief period directly after feeding on a bacteremic host. These two transmission modes are in a trade-off regulated by the amount of biofilm produced by the bacterium. Here by investigating 446 global isolated Y. pestis genomes, including 78 newly sequenced isolates sampled over 40 years from a plague focus in China, we provide evidence for strong selection pressures on the RNA polymerase ω-subunit encoding gene rpoZ. We demonstrate that rpoZ variants have an increased rate of biofilm production in vitro, and that they evolve in the ecosystem during colder and drier periods. Our results support the notion that the bacterium is constantly adapting-through extended phenotype changes in the fleas-in response to climate-driven changes in the niche.


Subject(s)
Bacterial Proteins/genetics , Plague/microbiology , Siphonaptera/microbiology , Yersinia pestis/physiology , Animals , Biofilms , Biological Evolution , China , Climate , DNA-Directed RNA Polymerases/genetics , Disease Reservoirs , Ecosystem , Flea Infestations , Genetic Variation , Genome, Bacterial , Host-Parasite Interactions , Host-Pathogen Interactions , Marmota/parasitology , Phenotype , Phylogeny , Sciuridae/parasitology , Selection, Genetic , Siphonaptera/physiology , Yersinia pestis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...