Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 217: 112656, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35816880

ABSTRACT

The present study explores the differentiation of myoblasts in bioengineered 3D composite scaffolds containing keratin and gelatin. Based on the composition and rheological properties three different scaffolds namely HM1, HM2 and HM3 were prepared, characterized and employed for the present study. The scaffolds were then subjected to C2C12 myoblasts differentiation under in vitro conditions as per the standard protocols. Results reveal a wide variation in the elastic modulus, water uptake and degradation rate of the scaffolds significantly impact the myogenesis processes. Composite scaffolds HM2 and HM3 ease the myogenesis compared to HM1, wherein, results in nil myogenesis. Among HM2 and HM3, accelerated myogenesis and the significant expression of myogenin mRNA levels along with extensive myotube development were observed in the HM3 scaffold. In conclusion, scaffolds modulus play a vital role in myogenesis and the observations of the present study provide a possible strategy for better skeletal muscle regeneration using composite scaffolds.


Subject(s)
Muscle, Skeletal , Scleroproteins , Cell Differentiation , Elastic Modulus , Muscle Development/physiology , Muscle, Skeletal/metabolism , Myoblasts , Scleroproteins/metabolism , Tissue Scaffolds
2.
J Virol ; 94(21)2020 10 14.
Article in English | MEDLINE | ID: mdl-32817218

ABSTRACT

Fiber proteins are commonly found in eukaryotic and prokaryotic viruses, where they play important roles in mediating viral attachment and host cell entry. They typically form trimeric structures and are incorporated into virions via noncovalent interactions. Orsay virus, a small RNA virus which specifically infects the laboratory model nematode Caenorhabditis elegans, encodes a fibrous protein δ that can be expressed as a free protein and as a capsid protein-δ (CP-δ) fusion protein. Free δ has previously been demonstrated to facilitate viral exit following intracellular expression; however, the biological significance and prevalence of CP-δ remained relatively unknown. Here, we demonstrate that Orsay CP-δ is covalently incorporated into infectious particles, the first example of any attached viral fibers known to date. The crystal structure of δ(1-101) (a deletion mutant containing the first 101 amino acid [aa] residues of δ) reveals a pentameric, 145-Å long fiber with an N-terminal coiled coil followed by multiple ß-bracelet repeats. Electron micrographs of infectious virions depict particle-associated CP-δ fibers with dimensions similar to free δ. The δ proteins from two other nematode viruses, Le Blanc and Santeuil, which both specifically infect Caenorhabditis briggsae, were also found to form fibrous molecules. Recombinant Le Blanc δ was able to block Orsay virus infection in worm culture and vice versa, suggesting these two viruses likely compete for the same cell receptor(s). Thus, we propose that while CP-δ likely mediates host cell attachment for all three nematode viruses, additional downstream factor(s) ultimately determine the host specificity and range of each virus.IMPORTANCE Viruses often have extended fibers to mediate host cell recognition and entry, serving as promising targets for antiviral drug development. Unlike other known viral fibers, the δ proteins from the three recently discovered nematode viruses are incorporated into infectious particles as protruding fibers covalently linked to the capsid. Crystal structures of δ revealed novel pentameric folding repeats, which we term ß-bracelets, in the intermediate shaft region. Based on sequence analysis, the ß-bracelet motif of δ is conserved in all three nematode viruses and could account for ∼60% of the total length of the fiber. Our study indicated that δ plays important roles in cell attachment for this group of nematode viruses. In addition, the tightly knitted ß-bracelet fold, which presumably allows δ to survive harsh environments in the worm gut, could be applicable to bioengineering applications given its potentially high stability.


Subject(s)
Capsid Proteins/chemistry , Nodaviridae/ultrastructure , Polyproteins/chemistry , Scleroproteins/chemistry , Viral Proteins/chemistry , Virion/ultrastructure , Amino Acid Sequence , Animals , Caenorhabditis elegans/virology , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Host Specificity , Models, Molecular , Nodaviridae/genetics , Nodaviridae/metabolism , Polyproteins/genetics , Polyproteins/metabolism , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Scleroproteins/genetics , Scleroproteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/genetics , Virion/metabolism
3.
Biochemistry ; 55(7): 1024-35, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26784838

ABSTRACT

The impacts of glycosylation on biomineralization protein function are largely unknown. This is certainly true for the mollusk shell, where glycosylated intracrystalline proteins such as AP24 (Haliotis rufescens) exist but their functions and the role of glycosylation remain elusive. To assess the effect of glycosylation on protein function, we expressed two recombinant variants of AP24: an unglycosylated bacteria-expressed version (rAP24N) and a glycosylated insect cell-expressed version (rAP24G). Our findings indicate that rAP24G is expressed as a single polypeptide containing variations in glycosylation that create microheterogeneity in rAP24G molecular masses. These post-translational modifications incorporate O- and N-glycans and anionic monosialylated and bisialylated, and monosulfated and bisulfated monosaccharides on the protein molecules. AFM and DLS experiments confirm that both rAP24N and rAP24G aggregate to form protein phases, with rAP24N exhibiting a higher degree of aggregation, compared to rAP24G. With regard to functionality, we observe that both recombinant proteins exhibit similar behavior within in vitro calcium carbonate mineralization assays and potentiometric titrations. However, rAP24G modifies crystal growth directions and is a stronger nucleation inhibitor, whereas rAP24N exhibits higher mineral phase stabilization and nanoparticle containment. We believe that the post-translational addition of anionic groups (via sialylation and sulfation), along with modifications to the protein surface topology, may explain the changes in glycosylated rAP24G aggregation and mineralization behavior, relative to rAP24N.


Subject(s)
Gastropoda/chemistry , Glycoproteins/chemistry , Nacre/chemistry , Protein Processing, Post-Translational , Scleroproteins/chemistry , Amino Acid Sequence , Animals , Calcification, Physiologic , Computational Biology , Escherichia coli , Gastropoda/ultrastructure , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosylation , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Molecular Sequence Data , Molecular Weight , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Aggregates , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Scleroproteins/genetics , Scleroproteins/metabolism , Sf9 Cells , Spodoptera
4.
Biotechnol Bioeng ; 113(5): 913-29, 2016 May.
Article in English | MEDLINE | ID: mdl-26332660

ABSTRACT

Fibrous proteins, such as silk, elastin and collagen are finding broad impact in biomaterial systems for a range of biomedical and industrial applications. Some of the key advantages of biosynthetic fibrous proteins compared to synthetic polymers include the tailorability of sequence, protein size, degradation pattern, and mechanical properties. Recombinant DNA production and precise control over genetic sequence of these proteins allows expansion and fine tuning of material properties to meet the needs for specific applications. We review current approaches in the design, cloning, and expression of fibrous proteins, with a focus on strategies utilized to meet the challenges of repetitive fibrous protein production. We discuss recent advances in understanding the fundamental basis of structure-function relationships and the designs that foster fibrous protein self-assembly towards predictable architectures and properties for a range of applications. We highlight the potential of functionalization through genetic engineering to design fibrous protein systems for biotechnological and biomedical applications.


Subject(s)
Biotechnology/methods , Cloning, Molecular/methods , Protein Engineering/methods , Scleroproteins/genetics , Silk/genetics , Animals , Collagen/chemistry , Collagen/genetics , Collagen/isolation & purification , Collagen/metabolism , Elastin/chemistry , Elastin/genetics , Elastin/isolation & purification , Elastin/metabolism , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Scleroproteins/chemistry , Scleroproteins/isolation & purification , Scleroproteins/metabolism , Silk/chemistry , Silk/isolation & purification , Silk/metabolism
6.
J Struct Biol ; 134(1): 25-34, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11469874

ABSTRACT

The juvenile shell of the brachiopod Discinisca consists of a mosaic of micrometer-sized siliceous tablets embedded in a chitinous substrate. The first-formed tablets are secreted on glycocalyx by a newly differentiated collective of outer epithelial cells. They are mainly rhombic but may also be ellipsoidal, discoidal, or deformed and sporadically overlap one another. On the surrounding juvenile shell, secreted by an incipient outer mantle lobe, the tablets are nearly all perfect rhombic plates in rhombic arrays. Their constant size, arrangement, and centripetal crystallization suggest intracellular assembly. The tablets, which are normally bilamellar, consist of discrete aggregates of crystalline spherules of silica in rhombic arrays within an organic matrix of fibrous protein and, presumably, a soluble polysaccharide(s). Mosaic secretion ceases at about the time when juveniles settle on the sea bed, which more or less coincides with the secretion of a ring of lamellae around the mosaic, induced by rapid advances and retractions of the outer mantle lobe prior to deposition of the organophosphatic mature shell. Energy dispersion X-ray analyses of pelagic and newly settled juveniles show that phosphatic secretion, even in the site of the first-formed outer epithelial collective, does not begin until all siliceous secretion has ceased.


Subject(s)
Crustacea/anatomy & histology , Silicon/metabolism , Animals , Chitin/chemistry , Chitin/metabolism , Crustacea/growth & development , Crustacea/ultrastructure , Crystallization , Crystallography, X-Ray , Epithelial Cells/metabolism , Glycocalyx/metabolism , Microscopy, Electron, Scanning , Phosphates/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Scleroproteins/metabolism , Silicon/chemistry
7.
Atherosclerosis ; 157(1): 251-4, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11427228

ABSTRACT

Plaques from the coronary arteries of explanted hearts showed massive calcification (15-fold increase) with a loss of scleroproteins (-36%), an increase in the collagen to elastin ratio (twofold) and activation (+15%) of matrix metalloproteinase-2 (MMP-2). Plaque-free portions of the coronary artery gave results similar to those obtained with the internal mammary artery. There was a significant correlation between plaque calcification and MMP-2 activation, suggesting that the two processes may be linked.


Subject(s)
Coronary Disease/metabolism , Matrix Metalloproteinase 2/metabolism , Scleroproteins/metabolism , Adult , Aged , Calcinosis/metabolism , Coronary Disease/pathology , Coronary Vessels/metabolism , Coronary Vessels/pathology , Enzyme Activation , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...