Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
1.
Prev Vet Med ; 193: 105388, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34098231

ABSTRACT

Classical scrapie is a prion disease of small ruminants, the infectious agent of which has been shown to be extremely persistent in the environment. Cleaning and disinfection (C&D) after a scrapie outbreak is currently recommended by many governments' veterinary advisors and implemented in most farms affected. Yet, the effectiveness of these procedures remains unclear. The aim of this study was to review existing literature and guidelines regarding farm C&D protocols following classical scrapie outbreaks and assess their effectiveness and the challenges that translation of policy and legislative requirements present at a practical level. A review of the literature was conducted to identify the on-farm C&D protocols used following outbreaks of scrapie, assess those materials with high risk for persistence of the scrapie agent on farms, and review the existing evidence of the effectiveness of recommended C&D protocols. An expert workshop was also organised in Great Britain (GB) to assess: the decision-making process used when implementing C&D protocols on GB farms, the experts' perceptions on the effectiveness of these protocols and changes needed, and their views on potential recommendations for policy and research. Outputs of the literature review revealed that the current recommended protocol for C&D [1 h treatment with sodium hypochlorite containing 20,000 ppm free chlorine or 2 M sodium hydroxide (NaOH)] is based on laboratory experiments. Only four field farm experiments have been conducted, indicating a lack of data on effectiveness of C&D protocols on farms by the re-occurrence of scrapie infection post re-stocking. Recommendations related to the control of outdoor environment, which are difficult and expensive to implement, vary between countries. The expert workshop concluded that there are no practical, cost-effective C&D alternatives to be considered at this time, with control therefore based on C&D only in combination with additional time restrictions on re-stocking and replacement with non-susceptible livestock or more genetically resistant types, where available. Participants agreed that C&D should still be completed on scrapie affected farms, as it is considered to be "good disease practice" and likely to reduce the levels of the prion protein. Participants felt that any additional protocols developed should not be "too prescriptive" (should not be written down in specific policies) because of significant variation in farm types, farm equipment and installations. Under this scenario, control of classical scrapie on farms should be designed with a level of C&D in combination with re-stocking temporal ban and replacement with livestock of limited susceptibility.


Subject(s)
Disease Outbreaks , Disinfection/standards , Prions , Scrapie , Sheep Diseases , Animals , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Guidelines as Topic , Scrapie/epidemiology , Scrapie/prevention & control , Sheep , Sheep Diseases/epidemiology , United Kingdom/epidemiology
2.
Viruses ; 13(5)2021 04 30.
Article in English | MEDLINE | ID: mdl-33946367

ABSTRACT

Prion diseases like scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt-Jakob disease (CJD) in humans are fatal neurodegenerative diseases characterized by the conformational conversion of the normal, mainly α-helical cellular prion protein (PrPC) into the abnormal ß-sheet rich infectious isoform PrPSc. Various therapeutic or prophylactic approaches have been conducted, but no approved therapeutic treatment is available so far. Immunisation against prions is hampered by the self-tolerance to PrPC in mammalian species. One strategy to avoid this tolerance is presenting PrP variants in virus-like particles (VLPs). Therefore, we vaccinated C57/BL6 mice with nine prion peptide variants presented by hamster polyomavirus capsid protein VP1/VP2-derived VLPs. Mice were subsequently challenged intraperitoneally with the murine RML prion strain. Importantly, one group exhibited significantly increased mean survival time of 240 days post-inoculation compared with 202 days of the control group. These data show that immunisation with VLPs presenting PrP peptides may represent a promising strategy for an effective vaccination against transmissible spongiform encephalitis agents.


Subject(s)
Cell Surface Display Techniques , Peptides/immunology , Polyomavirus/immunology , Prions/immunology , Scrapie/prevention & control , Vaccines, Virus-Like Particle/immunology , Animals , Disease Models, Animal , Epitope Mapping , Genetic Engineering , Humans , Immunization , Mice , Polyomavirus/ultrastructure , Prions/chemistry , Vaccination , Vaccines, Virus-Like Particle/ultrastructure
3.
Epidemiol Infect ; 148: e190, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32829733

ABSTRACT

The aim of this study was to apply a back-calculation model to Great Britain (GB) classical scrapie surveillance data, and use this model to estimate how many more cases might be expected, and over what time frame these cases might occur. A back-calculation model was applied to scrapie surveillance data between 2005 and 2019 to estimate the annual rate of decline of classical scrapie. This rate was then extrapolated to predict the number of future cases each year going forward. The model shows that there may be yet further cases of classical scrapie in GB. These will most likely occur in the fallen stock scheme, with approximately a 25% probability of at least 1 further scrapie positive, with a very low probability (~0.2%) of having up to three additional scrapie positives. This highlights the difficulty of completely eliminating all further cases, even in the presence of very effective control measures.


Subject(s)
Models, Biological , Scrapie/epidemiology , Animals , Population Surveillance , Risk Factors , Scrapie/prevention & control , Sheep , United Kingdom/epidemiology
4.
Sci Rep ; 10(1): 5042, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32193445

ABSTRACT

Phenotypic variability in prion diseases, such as scrapie, is associated to the existence of prion strains, which are different pathogenic prion protein (PrPSc) conformations with distinct pathobiological properties. To faithfully study scrapie strain variability in natural sheep isolates, transgenic mice expressing sheep cellular prion protein (PrPC) are used. In this study, we used two of such models to bioassay 20 scrapie isolates from the Spain-France-Andorra transboundary territory. Animals were intracerebrally inoculated and survival periods, proteinase K-resistant PrP (PrPres) banding patterns, lesion profiles and PrPSc distribution were studied. Inocula showed a remarkable homogeneity on banding patterns, all of them but one showing 19-kDa PrPres. However, a number of isolates caused accumulation of 21-kDa PrPres in TgShp XI. A different subgroup of isolates caused long survival periods and presence of 21-kDa PrPres in Tg338 mice. It seemed that one major 19-kDa prion isoform and two distinct 21-kDa variants coexisted in source inocula, and that they could be separated by bioassay in each transgenic model. The reason why each model favours a specific component of the mixture is unknown, although PrPC expression level may play a role. Our results indicate that coinfection with more than one substrain is more frequent than infection with a single component.


Subject(s)
Prion Proteins/metabolism , Scrapie/etiology , Scrapie/pathology , Animals , Brain/metabolism , Cattle , Disease Models, Animal , France , Mice, Transgenic , PrPSc Proteins/metabolism , PrPSc Proteins/pathogenicity , Scrapie/metabolism , Scrapie/prevention & control , Sheep , Spain
5.
Vet Pathol ; 56(3): 409-417, 2019 05.
Article in English | MEDLINE | ID: mdl-30558513

ABSTRACT

Scrapie is a fatal neurodegenerative disease of sheep resulting from the accumulation of a misfolded form of the prion protein (PrPSc). Polymorphisms in the host prion protein gene ( PRNP) can affect susceptibility to the scrapie agent. Lysine (K) at codon 171 of PRNP is an inadequately characterized, naturally occurring polymorphism in sheep. We inoculated Barbado sheep with PRNP genotypes QQ171, QK171, or KK171 by either the intracranial (IC, n = 2-7 per genotype) or oronasal (ON, n = 5 per genotype) routes with a scrapie isolate to investigate the effect of lysine at codon 171 on susceptibility. When neurologic signs were observed or at the end of the experiment (70 months postinoculation [MPI]), sheep were necropsied and tissue collected for histopathologic, immunohistochemical, enzyme immunoassay and Western blot examination for PrPSc. All genotypes of sheep developed scrapie after IC inoculation. After ON inoculation, sheep with the QK171 genotype had prolonged incubation periods compared to the QQ genotype. During the experiment, 2 of 5 of the ON-inoculated QK genotype sheep developed neurologic signs and had PrPSc in the brain. The other 3 of 5 sheep were asymptomatic at 70 MPI but had detectable PrPSc in peripheral tissues. None of the ON-inoculated sheep of the KK171 genotype developed signs or had detectable PrPSc. Our experiments demonstrate that sheep with the KK171 genotype are resistant to scrapie via oronasal exposure and that sheep with the QK171 genotype have prolonged incubation relative to QQ171 sheep. The K171 prion protein allele may be useful to enhance scrapie resistance in certain breeds of sheep.


Subject(s)
Immunization/veterinary , Prion Proteins/genetics , Scrapie/immunology , Administration, Intranasal/veterinary , Animals , Blotting, Western/veterinary , Disease Resistance/immunology , Female , Genotype , Immunization/methods , Immunoenzyme Techniques/veterinary , Male , Polymorphism, Genetic , Prion Proteins/administration & dosage , Prion Proteins/immunology , Scrapie/prevention & control , Sheep
6.
Prev Vet Med ; 158: 51-64, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30220396

ABSTRACT

Multiple controls established during the bovine spongiform encephalopathy (BSE) epidemic were not solely applied to BSE in cattle, but were implemented for scrapie in sheep and goats due to concerns over the occurrence of BSE in sheep. In the absence of BSE in sheep being observed, control measures for prion diseases are now being evaluated to ensure they remain proportionate to risk. This risk assessment, aims to estimate, by use of stochastic simulation, the impact of reducing controls for Specified Risk Materials (SRM) from sheep at abattoir. Three scenarios have been included: 1) current list of SRM; 2) brain and spinal cord of adult sheep; and 3) the brain of adult sheep. Results indicate the total amount of infectivity passing through British abattoirs is highest for atypical scrapie with nearly 3,500,000 Ovine Oral (OO) ID50 per year. The majority of this infectivity enters Category 1 waste for incineration, with only 13,000 OO ID50 per year within edible products. Under Scenario 2, an additional 4000 OO ID50 per year would be classified as edible products from the lifting of restrictions on the distal ileum of adult sheep. However, if SRM removal was limited to brain, an additional 110,000 OO ID50 per year would be permitted into edible products with the lifting of restrictions on the spinal cord of adult sheep. For classical scrapie, there is a mean estimate of infectivity of 30,000 OO ID50 per year at abattoir. This is lower than for atypical scrapie due to the lower occurrence of this disease in Great Britain. However, more infectivity is destined to reach the food chain as the disease is peripherally distributed in the carcase. The highest contributor to the total amount of infectivity consumed per year is the intestines (duodenum and jejunum). If SRM removal is limited to the brain and spinal cord of sheep over 12 months of age, there is an approximate mean increase from 19,000 to 21,000 OO ID50 per year diverted to edible products. If the SRM list is restricted to brain only, this increases to over 23,000 OO ID50 per year. For the potential of sheep-BSE, there is a very low estimate of 29 OO ID50 per year in total from carcases entering abattoir, due to the potential very rare occurrence of this disease. Given changes in SRM regulations there is a change of an additional 4 OO ID50 per year being diverted to edible products.


Subject(s)
Abattoirs , Food Contamination/analysis , Scrapie/prevention & control , Sheep Diseases/prevention & control , Animals , Goat Diseases/etiology , Goat Diseases/prevention & control , Goats , Models, Theoretical , Risk Assessment , Scrapie/etiology , Sheep , Sheep Diseases/etiology , Stochastic Processes , United Kingdom
7.
J Biol Chem ; 293(21): 8020-8031, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29636413

ABSTRACT

A central step in the pathogenesis of prion diseases is the conformational transition of the cellular prion protein (PrPC) into the scrapie isoform, denoted PrPSc Studies in transgenic mice have indicated that this conversion requires a direct interaction between PrPC and PrPSc; however, insights into the underlying mechanisms are still missing. Interestingly, only a subfraction of PrPC is converted in scrapie-infected cells, suggesting that not all PrPC species are suitable substrates for the conversion. On the basis of the observation that PrPC can form homodimers under physiological conditions with the internal hydrophobic domain (HD) serving as a putative dimerization domain, we wondered whether PrP dimerization is involved in the formation of neurotoxic and/or infectious PrP conformers. Here, we analyzed the possible impact on dimerization of pathogenic mutations in the HD that induce a spontaneous neurodegenerative disease in transgenic mice. Similarly to wildtype (WT) PrPC, the neurotoxic variant PrP(AV3) formed homodimers as well as heterodimers with WTPrPC Notably, forced PrP dimerization via an intermolecular disulfide bond did not interfere with its maturation and intracellular trafficking. Covalently linked PrP dimers were complex glycosylated, GPI-anchored, and sorted to the outer leaflet of the plasma membrane. However, forced PrPC dimerization completely blocked its conversion into PrPSc in chronically scrapie-infected mouse neuroblastoma cells. Moreover, PrPC dimers had a dominant-negative inhibition effect on the conversion of monomeric PrPC Our findings suggest that PrPC monomers are the major substrates for PrPSc propagation and that it may be possible to halt prion formation by stabilizing PrPC dimers.


Subject(s)
Neuroblastoma/prevention & control , Prion Proteins/chemistry , Prion Proteins/metabolism , Protein Multimerization , Scrapie/prevention & control , Animals , HeLa Cells , Humans , Mice , Mice, Transgenic , Neuroblastoma/pathology , Protein Transport , Scrapie/pathology , Tumor Cells, Cultured
8.
PLoS One ; 13(3): e0195009, 2018.
Article in English | MEDLINE | ID: mdl-29584772

ABSTRACT

Scrapie is a transmissible spongiform encephalopathy in sheep and an example of a disease that may be controlled through breeding for disease resistance. Member states of the European Union have introduced strategies for breeding against scrapie based on the selection of genetically resistant breeding rams. An ambitious strategy adopted in The Netherlands consisted of selecting resistant rams for breeding throughout both breeding and production sectors. Mathematical modelling of the effect of a breeding program on the spreading capacity of scrapie in a national flock is needed for making assessments on how long a breeding strategy needs to be maintained to achieve disease control. Here we describe such a model applied to the Dutch situation, with the use of data on the genetic content of the Dutch sheep population as well as on scrapie occurrence in this population. We show that the time needed for obtaining scrapie control depends crucially on two parameters measuring sheep population structure: the between-flock heterogeneity in genotype frequencies, and the heterogeneity of mixing (contact rates) between sheep flocks. Estimating the first parameter from Dutch genetic survey data and assuming scenario values for the second one, enables model prediction of the time needed to achieve scrapie control in The Netherlands.


Subject(s)
Disease Resistance/genetics , Models, Biological , Scrapie/genetics , Animals , Breeding , Gene Frequency , Genetic Heterogeneity , Genotype , Netherlands , Scrapie/prevention & control , Sheep
9.
Acta Vet Scand ; 60(1): 9, 2018 Feb 08.
Article in English | MEDLINE | ID: mdl-29422098

ABSTRACT

Yeasts can be used to convert organic food wastes to protein-rich animal feed in order to recapture nutrients. However, the reuse of animal-derived waste poses a risk for the transmission of infectious prions that can cause neurodegeneration and fatality in humans and animals. The aim of this study was to investigate the ability of yeasts to reduce prion activity during the biotransformation of waste substrates-thereby becoming a biosafety hurdle in such a circular food system. During pre-screening, 30 yeast isolates were spiked with Classical Scrapie prions and incubated for 72 h in casein substrate, as a waste substitute. Based on reduced Scrapie seeding activity, waste biotransformation and protease activities, intact cells and cell extracts of 10 yeasts were further tested. Prion analysis showed that five yeast species reduced Scrapie seeding activity by approximately 1 log10 or 90%. Cryptococcus laurentii showed the most potential to reduce prion activity since both intact and extracted cells reduced Scrapie by 1 log10 and achieved the highest protease activity. These results show that select forms of yeast can act as a prion hurdle during the biotransformation of waste. However, the limited ability of yeasts to reduce prion activity warrants caution as a sole barrier to transmission as higher log reductions are needed before using waste-cultured yeast in circular food systems.


Subject(s)
Biotransformation , Prions/metabolism , Scrapie/prevention & control , Waste Management/methods , Yeasts/metabolism , Animals , Cell Extracts/analysis , Food , Food Parasitology/standards , Food Parasitology/trends , Peptide Hydrolases/metabolism , Waste Management/standards , Yeasts/enzymology
10.
Prion ; 10(3): 165-81, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27220820

ABSTRACT

Bovine spongiform encephalopathy (BSE) created a global European crisis in the 1980s and 90s, with very serious health and economic implications. Classical BSE now appears to be under control, to a great extent as a result of a global research effort that identified the sources of prions in meat and bone meal (MBM) and developed new animal-testing tools that guided policy. Priority ( www.prionpriority.eu ) was a European Union (EU) Framework Program 7 (FP7)-funded project through which 21 European research institutions and small and medium enterprises (SMEs) joined efforts between 2009 and 2014, to conduct coordinated basic and applied research on prions and prion diseases. At the end of the project, the Priority consortium drafted a position paper ( www.prionpriority.eu/Priority position paper) with its main conclusions. In the present opinion paper, we summarize these conclusions. With respect to the issue of re-introducing ruminant protein into the feed-chain, our opinion is that sustaining an absolute ban on feeding ruminant protein to ruminants is essential. In particular, the spread and impact of non-classical forms of scrapie and BSE in ruminants is not fully understood and the risks cannot be estimated. Atypical prion agents will probably continue to represent the dominant form of prion diseases in the near future in Europe. Atypical L-type BSE has clear zoonotic potential, as demonstrated in experimental models. Similarly, there are now data indicating that the atypical scrapie agent can cross various species barriers. More epidemiological data from large cohorts are necessary to reach any conclusion on the impact of its transmissibility on public health. Re-evaluations of safety precautions may become necessary depending on the outcome of these studies. Intensified searching for molecular determinants of the species barrier is recommended, since this barrier is key for important policy areas and risk assessment. Understanding the structural basis for strains and the basis for adaptation of a strain to a new host will require continued fundamental research, also needed to understand mechanisms of prion transmission, replication and how they cause nervous system dysfunction and death. Early detection of prion infection, ideally at a preclinical stage, also remains crucial for development of effective treatment strategies.


Subject(s)
Food Chain , Prion Diseases/epidemiology , Prion Diseases/prevention & control , Prions/analysis , Animal Feed/adverse effects , Animals , Cattle , Early Diagnosis , Encephalopathy, Bovine Spongiform/diagnosis , Encephalopathy, Bovine Spongiform/epidemiology , Encephalopathy, Bovine Spongiform/prevention & control , Encephalopathy, Bovine Spongiform/transmission , Europe/epidemiology , Humans , Prion Diseases/diagnosis , Prion Diseases/transmission , Prions/isolation & purification , Prions/metabolism , Prions/pathogenicity , Scrapie/diagnosis , Scrapie/epidemiology , Scrapie/prevention & control , Scrapie/transmission
11.
Virulence ; 6(8): 787-801, 2015.
Article in English | MEDLINE | ID: mdl-26556670

ABSTRACT

Neurodegenerative human CJD and sheep scrapie are diseases caused by several different transmissible encephalopathy (TSE) agents. These infectious agents provoke innate immune responses in the brain, including late-onset abnormal prion protein (PrP-res) amyloid. Agent particles that lack detectable PrP sequences by deep proteomic analysis are highly infectious. Yet these agents, and their unusual resistance to denaturation, are often evaluated by PrP amyloid disruption. To reexamine the intrinsic resistance of TSE agents to denaturation, a paradigm for less resistant viruses and microbes, we developed a rapid and reproducible high yield agent isolation procedure from cultured cells that minimized PrP amyloid and other cellular proteins. Monotypic neuronal GT1 cells infected with the FU-CJD or 22L scrapie agents do not have complex brain changes that can camouflage infectious particles and prevent their disruption, and there are only 2 reports on infectious titers of any human CJD strain treated with chemical denaturants. Infectious titers of both CJD and scrapie were reduced by >4 logs with Thiourea-urea, a treatment not previously tested. A mere 5 min exposure to 4M GdnHCl at 22°C reduced infectivity by >5 logs. Infectious 22L particles were significantly more sensitive to denaturation than FU-CJD particles. A protocol using sonication with these chemical treatments may effectively decontaminate complicated instruments, such as duodenoscopes that harbor additional virulent microbes and biofilms associated with recent iatrogenic infections.


Subject(s)
Biofilms , Creutzfeldt-Jakob Syndrome/prevention & control , Decontamination/methods , Guanidine/pharmacology , Prions/drug effects , Scrapie/prevention & control , Thiourea/pharmacology , Amyloid/isolation & purification , Amyloid/metabolism , Animals , Cell Line , Creutzfeldt-Jakob Syndrome/etiology , Detergents/pharmacology , Mice , Neurons/chemistry , Neurons/metabolism , Neurons/pathology , Prions/isolation & purification , Prions/metabolism , Prions/pathogenicity , Protein Denaturation , Sodium Dodecyl Sulfate/pharmacology , Surgical Instruments , Urea/pharmacology
12.
PLoS One ; 10(10): e0139436, 2015.
Article in English | MEDLINE | ID: mdl-26426269

ABSTRACT

Genetic control programs for scrapie in sheep build on solid knowledge of how susceptibility to scrapie is modulated by the prion protein genotype at the level of an individual sheep. In order to satisfactorily analyze the effectivity of control programs at the population level, insight is needed at the flock level, i.e., how the grouping of sheep in flocks affects the population-level transmission risk. In particular, one would like to understand how this risk is affected by between-flock differences in genotype frequency distribution. A first step is to model the scrapie transmission risk within a flock as a function of the flock genotype profile. Here we do so by estimating parameters for a model of within-flock transmission using genotyping data on Dutch flocks affected by scrapie. We show that the data are consistent with a relatively simple transmission model assuming horizontal transmission and homogeneous mixing between animals. The model expresses the basic reproduction number for within-flock scrapie as a weighted average of genotype-specific susceptibilities, multiplied by a single overall transmission parameter. The value of the overall transmission parameter may vary between flocks to account for random between-flock variation in non-genetic determinants such as management practice. Here we provide an estimate of its mean value and variation for Dutch flocks.


Subject(s)
Disease Outbreaks/veterinary , Disease Transmission, Infectious/veterinary , Models, Statistical , Scrapie/prevention & control , Animals , Disease Susceptibility , Netherlands/epidemiology , Scrapie/epidemiology , Scrapie/transmission , Sheep
13.
Biochem Biophys Res Commun ; 464(3): 698-704, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26168721

ABSTRACT

Cellular heparan sulfate (HS) has a dual role in scrapie pathogenesis; it is required for PrP(Sc) (scrapie prion protein) formation and facilitates infection of cells, mediating cellular uptake of prions. We examined the involvement of heparanase, a mammalian endoglycosidase degrading HS, in scrapie infection. In cultured cells, heparanase treatment or over-expression resulted in a profound decrease in PrP(Sc). Moreover, disease onset and progression were dramatically delayed in scrapie infected transgenic mice over-expressing heparanase. Together, our results provide direct in vivo evidence for the involvement of intact HS in the pathogenesis of prion disease and the protective role of heparanase both in terms of susceptibility to infection and disease progression.


Subject(s)
Glucuronidase/genetics , Glucuronidase/metabolism , Prion Diseases/prevention & control , Animals , Cell Line , Cricetinae , Disease Progression , Disease Susceptibility , Female , Heparitin Sulfate/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , PrPSc Proteins/metabolism , PrPSc Proteins/pathogenicity , Prion Diseases/etiology , Prion Diseases/metabolism , Purkinje Cells/metabolism , Purkinje Cells/pathology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Scrapie/etiology , Scrapie/metabolism , Scrapie/prevention & control , Time Factors , Up-Regulation
14.
Transfusion ; 55(10): 2390-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26033029

ABSTRACT

BACKGROUND: The P-Capt prion reduction filter (MacoPharma) removes prion infectivity in model systems. This independent evaluation assesses prion removal from endogenously infected animal blood, using CE-marked P-Capt filters, and replicates the proposed use of the filter within the UK Blood Services. STUDY DESIGN AND METHODS: Two units of blood, generated from 263K scrapie-infected hamsters, were processed using leukoreduction filters (LXT-quadruple, MacoPharma). Approximately 100 mL of the removed plasma was added back to the red blood cells (RBCs) and the blood was filtered through a P-Capt filter. Samples of unfiltered whole blood, the prion filter input (RBCs plus plasma and SAGM [RBCPS]), and prion-filtered leukoreduced blood (PFB) were injected intracranially into hamsters. Clinical symptoms were monitored for 500 ± 1 day, and brains were assessed for spongiosis and prion protein deposit. RESULTS: In Filtration Run 1, none of the 50 challenged animals were diagnosed with scrapie after inoculation with the RBCPS fraction, while two of 190 hamsters injected with PFB were infected. In Filtration Run 2, one of 49 animals injected with RBCPS and two of 193 hamsters injected with PFB were infected. Run 1 reduced the infectious dose (ID) by 1.467 log (>1.187 log and <0.280 log for leukoreduction and prion filtration, respectively). Run 2 reduced prion infectivity by 1.424 log (1.127 and 0.297 log, respectively). Residual infectivity was estimated at 0.212 ± 0.149 IDs/mL (Run 1) and 0.208 ± 0.147 IDs/mL (Run 2). CONCLUSION: Leukoreduction removed the majority of infectivity from 263K scrapie hamster blood. The P-Capt filter removed a proportion of the remaining infectivity, but residual infectivity was observed in two independent processes.


Subject(s)
Blood Safety , Disinfection , Leukapheresis , PrPSc Proteins , Scrapie/prevention & control , Animals , Blood Safety/instrumentation , Blood Safety/methods , Cricetinae , Disease Models, Animal , Disinfection/instrumentation , Disinfection/methods , Leukapheresis/instrumentation , Leukapheresis/methods , Scrapie/blood
16.
Transfusion ; 55(2): 330-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25178436

ABSTRACT

BACKGROUND: Leukofiltration of blood components is currently implemented worldwide as a precautionary measure against white blood cell-associated adverse effects and the potential transmission of variant Creutzfeldt-Jakob disease (vCJD). A newly developed bifunctional filter (Sepacell Prima, Asahi Kasei Medical) was assessed for prion removal, leukoreduction (LR), and whether the filter significantly affected red blood cells (RBCs). STUDY DESIGN AND METHODS: Sepacell Prima's postfiltration effects on RBCs, including hemolysis, complement activation, and RBC chemistry, were compared with those of a conventional LR filter (Sepacell Pure RC). Prion removal was measured by Western blot after spiking RBCs with microsomal fractions derived from scrapie-infected hamster brain homogenate. Serially diluted exogenous prion solutions (0.05 mL), with or without filtration, were injected intracerebrally into Golden Syrian hamsters. RESULTS: LR efficiency of 4.44 log with the Sepacell Prima was comparable to 4.11 log with the conventional LR filter. There were no significant differences between the two filters in hemoglobin loss, hemolysis, complement activation, and RBC biomarkers. In vitro reduction of exogenously spiked prions by the filter exceeded 3 log. The titer, 6.63 (log ID50 /mL), of prefiltration infectivity of healthy hamsters was reduced to 2.52 (log ID50 /mL) after filtration. The reduction factor was calculated as 4.20 (log ID50 ). CONCLUSION: With confirmed removal efficacy for exogenous prion protein, this new bifunctional prion and LR filter should reduce the residual risk of vCJD transmission through blood transfusion without adding complexity to component processing.


Subject(s)
Blood-Borne Pathogens , Erythrocytes , Hemofiltration/instrumentation , Hemofiltration/methods , Prions , Animals , Creutzfeldt-Jakob Syndrome/blood , Creutzfeldt-Jakob Syndrome/prevention & control , Creutzfeldt-Jakob Syndrome/transmission , Cricetinae , Female , Humans , Male , Mesocricetus , Scrapie/blood , Scrapie/prevention & control , Scrapie/transmission
17.
Vet Rec ; 175(24): 624, 2014.
Article in English | MEDLINE | ID: mdl-25280776

ABSTRACT

Inbreeding in a small population of Chios sheep undergoing intense selection for the PrP gene was assessed 10 years after the beginning of a scrapie resistance selection programme. Inbreeding in this stock, already under selection for production traits, was analysed by using pedigree records containing 10,492 animals from 1968 to 2008, and also by genotyping 192 individuals with a panel of 15 microsatellites. Genetic markers indicated a loss of heterozygosity (FIS over all loci was 0.059) and allelic diversity (mean effective number of alleles was 3.075±0.275). The annual rate of inbreeding increased significantly after the start of the scrapie resistance programme, ΔF=0.005 compared with ΔF=0.001 before 1999, and was subjected to several genetic bottlenecks, mainly due to the low initial frequency of resistant animals. However, the mean individual inbreeding coefficient estimated from the pedigree - in this closed stock resembling the case of a rare breed - stood at the level of 4.5 per cent, five generations after the implementation of selection for the PrP gene. The inbreeding coefficient estimated by genetic markers was 4.37 per cent, implying that such a marker panel could be a useful and cost-effective tool for estimating inbreeding in unrecorded populations.


Subject(s)
Inbreeding/statistics & numerical data , Prions/genetics , Scrapie/prevention & control , Selection, Genetic , Sheep/genetics , Alleles , Animals , Genetic Markers , Genetic Variation , Genotype , Models, Statistical , Pedigree , Scrapie/genetics
19.
J Appl Microbiol ; 117(4): 940-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25039684

ABSTRACT

AIMS: To determine the risk associated with the use of carcase storage vessels on a scrapie infected farm. METHODS AND RESULTS: A stochastic quantitative risk assessment was developed to determine the rate of accumulation and fate of scrapie in a novel low-input storage system. For an example farm infected with classical scrapie, a mean of 10(3·6) Ovine Oral ID50 s was estimated to accumulate annually. Research indicates that the degradation of any prions present may range from insignificant to a magnitude of one or two logs over several months of storage. CONCLUSIONS: For infected farms, the likely partitioning of remaining prion into the sludge phase would necessitate the safe operation and removal of resulting materials from these systems. If complete mixing could be assumed, on average, the concentrations of infectivity are estimated to be slightly lower than that measured in placenta from infected sheep at lambing. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first quantitative assessment of the scrapie risk associated with fallen stock on farm and provides guidance to policy makers on the safety of one type of storage system and the relative risk when compared to other materials present on an infected farm.


Subject(s)
Animal Husbandry , Prions/physiology , Scrapie/prevention & control , Scrapie/transmission , Sheep, Domestic , Animals , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...