Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.207
Filter
1.
Food Res Int ; 186: 114410, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729706

ABSTRACT

Protein and lipid are two major components that undergo significant changes during processing of aquatic products. This study focused on the protein oxidation, protein conformational states, lipid oxidation and lipid molecule profiling of salted large yellow croaker during storage, and their correlations were investigated. The degree of oxidation of protein and lipid was time-dependent, leading to an increase in carbonyl content and surface hydrophobicity, a decrease in sulfhydryl groups, and an increase in conjugated diene, peroxide value and thiobarbituric acid reactive substances value. Oxidation caused protein structure denaturation and aggregation during storage. Lipid composition and content changed dynamically, with polyunsaturated phosphatidylcholine (PC) was preferentially oxidized compared to polyunsaturated triacylglycerol. Correlation analysis showed that the degradation of polyunsaturated key differential lipids (PC 18:2_20:5, PC 16:0_22:6, PC 16:0_20:5, etc.) was closely related to the oxidation of protein and lipid. The changes in protein conformation and the peroxidation of polyunsaturated lipids mutually promote each other's oxidation process.


Subject(s)
Fish Proteins , Food Storage , Oxidation-Reduction , Perciformes , Animals , Perciformes/metabolism , Fish Proteins/chemistry , Lipid Peroxidation , Hydrophobic and Hydrophilic Interactions , Lipids/chemistry , Protein Conformation , Thiobarbituric Acid Reactive Substances/analysis , Seafood/analysis
2.
Food Res Int ; 186: 114363, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729725

ABSTRACT

This study evaluates the impact of high-intensity ultrasound (HIU) on the physicochemical properties and in-vitro digestibility of Atlantic cod (Gadus morhua). Various ultrasound durations (0-60 min) were applied to assess changes in color attributes, total antioxidant capacity (TAC), total flavonoid content (TFC), total phenolic content (TPC), total protein content, and in-vitro protein digestibility (IVPD). Results indicated HIU maximumly increased TAC, TFC, TPC, and peptide content before digestion by 7.28 % (US60), 3.00 % (US30), 32.43 % (US10), and 18.93 % (US60), respectively. While HIU reduced total protein content, it enhanced IVPD by up to 12.24 % (US30). Color attributes electron microscopy reflected structural changes in the cod samples, suggesting the effectiveness of HIU in altering protein structures. These findings highlight HIU's potential as a non-thermal technique for improving the sensory and nutritional quality of Atlantic cod, offering valuable insights for the seafood processing industry and consumers.


Subject(s)
Antioxidants , Digestion , Food Handling , Gadus morhua , Nutritive Value , Seafood , Gadus morhua/metabolism , Animals , Seafood/analysis , Antioxidants/analysis , Antioxidants/chemistry , Food Handling/methods , Phenols/analysis , Ultrasonic Waves , Flavonoids/analysis , Nutrients/analysis , Taste , Color
3.
J Agric Food Chem ; 72(20): 11820-11835, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38710668

ABSTRACT

Physicochemical properties and protein alterations in Ovalipes punctatus during cold-chain transportation were examined via sensory scores, water-holding capacity (WHC), glucose (GLU) content, catalase (CAT) activity, urea nitrogen (UN) content, and tandem mass tag (TMT)-based proteomic analysis. The results revealed that sensory characteristics and texture of crab muscle deteriorated during transportation. Proteomic analysis revealed 442 and 470 different expressed proteins (DEPs) in crabs after 18 h (FC) and 36 h (DC) of transportation compared with live crabs (LC). Proteins related to muscle structure and amino acid metabolism significantly changed, as evidenced by the decreased WHC and sensory scores of crab muscle. Glycolysis, calcium signaling, and peroxisome pathways were upregulated in the FC/LC comparison, aligning with the changes in GLU content and CAT activity, revealing the stress response of energy metabolism and immune response in crabs during 0-18 h of transportation. The downregulated tricarboxylic acid (TCA) cycle and carcinogenesis-reactive oxygen species pathways were correlated with the decreasing trend in CAT activity, suggesting a gradual retardation in both energy and antioxidant metabolism in crabs during 18-36 h of transportation. Furthermore, the regulated purine nucleoside metabolic and nucleoside diphosphate-related processes, with the increasing changes in UN content, revealed the accumulation of metabolites in crabs.


Subject(s)
Brachyura , Muscles , Proteomics , Animals , Brachyura/metabolism , Brachyura/chemistry , Muscles/metabolism , Muscles/chemistry , Transportation , Shellfish/analysis , Cold Temperature , Tandem Mass Spectrometry , Seafood/analysis
4.
Anal Bioanal Chem ; 416(14): 3459-3471, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727737

ABSTRACT

Concerns regarding microplastic (MP) contamination in aquatic ecosystems and its impact on seafood require a better understanding of human dietary MP exposure including extensive monitoring. While conventional techniques for MP analysis like infrared or Raman microspectroscopy provide detailed particle information, they are limited by low sample throughput, particularly when dealing with high particle numbers in seafood due to matrix-related residues. Consequently, more rapid techniques need to be developed to meet the requirements of large-scale monitoring. This study focused on semi-automated fluorescence imaging analysis after Nile red staining for rapid MP screening in seafood. By implementing RGB-based fluorescence threshold values, the need for high operator expertise to prevent misclassification was addressed. Food-relevant MP was identified with over 95% probability and differentiated from natural polymers with a 1% error rate. Comparison with laser direct infrared imaging (LDIR), a state-of-the-art method for rapid MP analysis, showed similar particle counts, indicating plausible results. However, highly variable recovery rates attributed to inhomogeneous particle spiking experiments highlight the need for future development of certified reference material including sample preparation. The proposed method demonstrated suitability of high throughput analysis for seafood samples, requiring 0.02-0.06 h/cm2 filter surface compared to 4.5-14.7 h/cm with LDIR analysis. Overall, the method holds promise as a screening tool for more accurate yet resource-intensive MP analysis methods such as spectroscopic or thermoanalytical techniques.


Subject(s)
Oxazines , Seafood , Seafood/analysis , Oxazines/analysis , Food Contamination/analysis , Microplastics/analysis , Animals , Water Pollutants, Chemical/analysis , Staining and Labeling/methods , Plastics/analysis , Humans , Fluorescent Dyes/chemistry
5.
Food Res Int ; 183: 114240, 2024 May.
Article in English | MEDLINE | ID: mdl-38760119

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic organic pollutants found in various environments, notably aquatic ecosystems and the food chain, posing significant health risks. Traditional methods for detecting PAHs in food involve complex processes and considerable reagent usage, raising environmental concerns. This study explores eco-friendly approaches suing solid phases derived from natural sources in matrix solid phase dispersion. We aimed to develop, optimize, and validate a sample preparation technique for seafood, employing natural materials for PAH analysis. Ten natural phases were compared with a commercial reference phase. The methodology involved matrix solid phase dispersion and pressurized liquid extraction, followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Three solid phases (perlite, sweet manioc starch, and barley) showed superior performance in LC-MS/MS and were further evaluated with gas chromatography-tandem mass spectrometry (GC-MS/MS), confirming perlite as the most effective phase. Validation followed Brazilian regulatory guidelines and European Community Regulation 2021/808/EC. The resulting method offered advantages in cost-effectiveness, reduced environmental impact, cleaner extracts, and enhanced analytical performance compared to the reference solid phase and LC-MS/MS. Proficiency analysis confirmed method reliability, with over 50% alignment with green analytical chemistry principles. In conclusion, this study developed an environmentally sustainable sample preparation technique for seafood analysis using natural solid phases, particularly perlite, for PAH determination.


Subject(s)
Food Contamination , Gas Chromatography-Mass Spectrometry , Polycyclic Aromatic Hydrocarbons , Seafood , Tandem Mass Spectrometry , Polycyclic Aromatic Hydrocarbons/analysis , Seafood/analysis , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods , Chromatography, Liquid/methods , Food Contamination/analysis , Solid Phase Extraction/methods , Reproducibility of Results , Brazil , Green Chemistry Technology/methods
6.
Food Res Int ; 183: 114190, 2024 May.
Article in English | MEDLINE | ID: mdl-38760127

ABSTRACT

This study aimed to determine the effect of different frozen temperatures during storage on the quality of Antarctic krill (Euphausia superba) and assess the change at the metabolite level via a combination of physicochemical property analysis, liquid chromatography-tandem mass spectrometry (LC-MS) based non-targeted metabolomics profiling. Regarding samples stored at -20 °C, the expressions of 7055 metabolites were elevated, while 2313 were downregulated. Lipids and lipid molecules had the highest proportion of differential metabolites. A total of 432 discriminatory metabolites with Kyoto Encyclopedia of Genes and Genomes (KEGG) IDs was obtained. We also observed that the concentrations of differential bitter free amino acids (FAAs) and oxidation products of arachidonic and linoleic acid increased. Moreover, as the storage temperature increased, the freshness, umami, and sweetness components were considerably reduced. Furthermore, results indicated that the color, pH and water-holding capacity (WHC) were potential indicators of quality deterioration, while inosinic acid was a probable biomarker for umami degradation of frozen Antarctic krill. In conclusion, this study demonstrates that storage at lower temperatures can be beneficial for maintaining the freshness of Antarctic krill from macro and micro perspectives.


Subject(s)
Euphausiacea , Freezing , Metabolomics , Tandem Mass Spectrometry , Animals , Euphausiacea/chemistry , Antarctic Regions , Food Storage/methods , Taste , Hydrogen-Ion Concentration , Seafood/analysis , Chromatography, Liquid
7.
Food Res Int ; 187: 114342, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763635

ABSTRACT

Microplastics, an emerging pollutant, have garnered widespread attention due to potential repercussions on human health and the environment. Given the critical role of seafood in food security, growing concerns about microplastics might be detrimental to meeting future global food demand. This study employed a discrete choice experiment to investigate Chilean consumers' preferences for technology aimed at mitigating microplastic levels in mussels. Using a between-subjects design with information treatments, we examined the impact of informing consumers about potential human health and environmental effects linked to microplastics pollution on their valuation for the technology. We found that the information treatments increased consumers' willingness to pay for mussels. Specifically, consumers were willing to pay a premium of around US$ 4 for 250 g of mussel meat with a 90 % depuration efficiency certification. The provision of health impact information increased the price premium by 56 %, while the provision of environmental information increased it by 21 %. Furthermore, combined health and environmental information significantly increased the probability of non-purchasing behavior by 22.8 % and the risk perception of microplastics for human health by 5.8 %. These results emphasized the critical role of information in shaping consumer preferences and provided evidence for validating investment in research and development related to microplastic pollution mitigation measures.


Subject(s)
Consumer Behavior , Microplastics , Seafood , Humans , Microplastics/analysis , Seafood/analysis , Female , Adult , Male , Food Contamination , Animals , Water Pollutants, Chemical/analysis , Chile , Middle Aged , Young Adult , Bivalvia , Choice Behavior
8.
Food Res Int ; 187: 114323, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763630

ABSTRACT

The balance regulation between characteristic aroma and hazards in high-temperature processed fish is a hot spot. This study was aimed to explore the interactive relationship between the nutritional value, microstructures, aroma, and harmful substances of hairtail under different frying methods including traditional frying (TF), air frying (AF), and vacuum frying (VF) via chemical pattern recognition. The results indicated that VF-prepared hairtail could form a crunchy mouthfeel and retain the highest content of protein (645.53 mg/g) and the lowest content of fat (242.03 mg/g). Vacuum frying reduced lipid oxidation in hairtail, resulting in the POV reaching 0.02 mg/g, significantly lower than that of TF (0.05 mg/g) and AF (0.21 mg/g), and TBARS reached 0.83 mg/g, significantly lower than that of AF (1.96 mg/g) (P < 0.05), respectively. Notable variations were observedin the aroma profileof hairtail preparedfrom different frying methods. Vacuum frying of hairtail resulted in higher levels of pyrazines and alcohols, whereas traditional frying and air frying were associated with the formation of aldehydes and ketones, respectively. Air frying was not a healthy way to cook hairtail which produced the highest concentration of harmful substances (up to 190.63 ng/g), significantly higher than VF (5.72 ng/g) and TF (52.78 ng/g) (P < 0.05), especially norharman (122.57 ng/g), significantly higher than VF (4.50 ng/g) and TF (32.63 ng/g) (P < 0.05). Norharman and acrylamide were the key harmful substances in hairtail treated with traditional frying. The vacuum frying method was an excellent alternative for deep-fried hairtail as a snack food with fewer harmful substances and a fine aroma, providing a theoretic guidance for preparing healthy hairtail food with high nutrition and superior sensory attraction.


Subject(s)
Cooking , Hot Temperature , Odorants , Animals , Cooking/methods , Odorants/analysis , Aldehydes/analysis , Nutritive Value , Perciformes , Volatile Organic Compounds/analysis , Pyrazines/analysis , Pyrazines/chemistry , Seafood/analysis
9.
Food Res Int ; 187: 114462, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763689

ABSTRACT

The risk of tuna adulteration is high driven by economic benefits. The authenticity of tuna is required to protect both consumers and tuna stocks. Given this, the study is designed to identify species-specific peptides for distinguishing three commercial tropical tuna species. The peptides derived from trypsin digestion were separated and detected using ultrahigh-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) in data-dependent acquisition (DDA) mode. Venn analysis showed that there were differences in peptide composition among the three tested tuna species. The biological specificity screening through the National Center for Biotechnology Information's Basic Local Alignment Search Tool (NCBI BLAST) revealed that 93 peptides could serve as potential species-specific peptides. Finally, the detection specificity of species-specific peptides of raw meats and processed products was carried out by multiple reaction monitoring (MRM) mode based on a Q-Trap mass spectrometer. The results showed that three, one and two peptides of Katsuwonus pelamis, Thunnus obesus and Thunnus albacores, respectively could serve as species-specific peptides.


Subject(s)
Peptides , Species Specificity , Tuna , Animals , Peptides/analysis , Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Seafood/analysis , Food Contamination/analysis , Fish Proteins/analysis
10.
Analyst ; 149(10): 2988-2995, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38602359

ABSTRACT

The use of formalin to preserve raw food items such as fish, meat, vegetables etc. is very commonly practiced in the present day. Also, formaldehyde (FA), which is the main constituent of formalin solution, is known to cause serious health issues on exposure. Considering the ill effects of formaldehyde, herein we report synthesis of highly sensitive triphenylmethane based formaldehyde (FA) sensors from a single step reaction of inexpensive reagents namely 4-hydroxy benzaldehyde and 2,6-dimethyl phenol. The synthetic method also provides highly pure product in bulk quantity. The analytical activity of the triphenylmethane sensor 1 with a limit of detection (LOD) value of 2.31 × 10-6 M for FA was significantly enhanced through induced deprotonation and thereafter a LOD value of 1.82 × 10-8 M could be achieved. To the best of our knowledge, the LOD value of the deprotonated form (sensor 2) for FA was superior to those of all the FA optical sensors reported so far. The mechanism of sensing was demonstrated by 1H-NMR titration and recording mass spectra before and after addition of FA to a solution of sensor 2. Both sensor 1 and sensor 2 exhibit quenching in emission upon addition of FA. A fluorescence study also demonstrates enhancement in analytical activity of the sensor upon induced deprotonation. Then the sensor was effectively immobilized into a hydrophilic and biocompatible starch-PVA polymer matrix which enabled detection of FA in a 100% aqueous system reversibly. Again, quick and effective sensing of FA in real food samples (stored fish) with the help of a computational application was demonstrated. The sensors have significant practical applicability as they effectively detect FA in real food samples qualitatively and quantitatively.


Subject(s)
Fishes , Formaldehyde , Limit of Detection , Trityl Compounds , Formaldehyde/analysis , Formaldehyde/chemistry , Animals , Trityl Compounds/chemistry , Trityl Compounds/analysis , Gases/chemistry , Gases/analysis , Seafood/analysis , Food Contamination/analysis , Solutions , Food Analysis/methods , Food Analysis/instrumentation , Spectrometry, Fluorescence/methods
11.
Sci Total Environ ; 929: 172535, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38641109

ABSTRACT

Microplastics (MPs) are emerging contaminants of increasing concern as they may cause adverse effects and carry other contaminants, which may potentially compromise human health. Despite occurring in aquatic ecosystems worldwide, the knowledge about MP presence in different aquaculture systems and their potential impact on seafood products is still limited. This study aimed to determine the levels of MPs in water, feed, and European seabass (Dicentrarchus labrax) from three relevant aquaculture systems and estimate human exposure to MPs and metals through seabass consumption. The recirculating aquaculture system (RAS) had the highest MP occurrence in water and feed. MP levels in seabass followed the aquaculture system's levels in water and feed, with RAS-farmed fish presenting the highest MP load, both in the fish gastrointestinal tract (GIT) and muscle, followed by pond-, and cage-farmed fish. MPs' characteristics across aquaculture systems and fish samples remained consistent, with the predominant recovered particles falling within the MP size range. The particles were visually characterized and chemically identified by micro-Fourier Transform Infrared Spectroscopy (µFTIR). Most of these particles were fibres composed of man-made cellulose and PET. MP levels in GIT were significantly higher than in muscle for pond- and RAS-farmed fish, MPs' bioconcentration factors >1 indicated bioconcentration in farmed seabass. Metal concentrations in fish muscle were below permissible limits, posing low intake risks for consumers according to the available health-based guidance values and estimated dietary scenarios.


Subject(s)
Aquaculture , Bass , Metals , Microplastics , Water Pollutants, Chemical , Bass/metabolism , Animals , Water Pollutants, Chemical/analysis , Microplastics/analysis , Humans , Metals/analysis , Food Safety , Environmental Monitoring , Food Contamination/analysis , Risk Assessment , Seafood/analysis , Environmental Exposure/statistics & numerical data
12.
Int J Biol Macromol ; 267(Pt 1): 131485, 2024 May.
Article in English | MEDLINE | ID: mdl-38604429

ABSTRACT

Global seafood consumption is estimated at 156 million tons annually, with an economic loss of >25 billion euros annually due to marine fish spoilage. In contrast to traditional smart packaging which can only roughly estimate food freshness, an intelligent platform integrating machine learning and smart aerogel can accurately predict remaining shelf life in food products, reducing economic losses and food waste. In this study, we prepared aerogels based on anthocyanin complexes that exhibited excellent environmental responsiveness, high porosity, high color-rendering properties, high biocompatibility, high stability, and irreversibility. The aerogel showed excellent indication properties for rainbow trout and proved suitable for fish storage environments. Among the four machine learning models, the radial basis function neural network and backpropagation network optimized by genetic algorithm demonstrated excellent monitoring performance. Also, the two-channel dataset provided more comprehensive information and superior descriptive capability. The three-layer structure of the monitoring platform provided a new paradigm for intelligent and sophisticated food packaging. The results of the study might be of great significance to the food industry and sustainable development.


Subject(s)
Alginates , Anthocyanins , Colorimetry , Food Packaging , Gels , Anthocyanins/chemistry , Food Packaging/methods , Alginates/chemistry , Gels/chemistry , Colorimetry/methods , Animals , Porosity , Seafood/analysis , Oncorhynchus mykiss , Machine Learning
13.
Sci Total Environ ; 929: 172332, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38615776

ABSTRACT

Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.


Subject(s)
Carbon , Food Safety , Nanostructures , Seafood , Seafood/analysis , Food Safety/methods , Nanostructures/analysis , Carbon/analysis , Food Contamination/analysis
14.
Mar Pollut Bull ; 202: 116375, 2024 May.
Article in English | MEDLINE | ID: mdl-38621352

ABSTRACT

The massive industrial growth in Gresik, East Java, Indonesia has the potential to result in metal contamination in the nearby coastal waters. The purpose of this study was to analyze the metal concentrations in edible species from the Gresik coastal waters and evaluate the potential health risks linked to this metal contamination. Metal concentrations (Cu, Fe, Pb, Zn, As, Cd, Ni, Hg, and Cr) in fish and shrimp samples mostly met the maximum limits established by national and international regulatory organizations. The concentrations of As in Scatophagus argus exceed both the permissible limit established by Indonesia and the provisional tolerable weekly intake (PTWI). The As concentration in Arius bilineatus is equal to the PTWI. The target cancer risk (TCR) values for both As and Cr in all analyzed species exceed the threshold of 0.0001, suggesting that these two metals possess the potential to provide a cancer risk to humans.


Subject(s)
Environmental Monitoring , Fishes , Metals , Water Pollutants, Chemical , Indonesia , Water Pollutants, Chemical/analysis , Animals , Metals/analysis , Risk Assessment , Metals, Heavy/analysis , Humans , Food Contamination/analysis , Seafood/analysis
15.
Sci Rep ; 14(1): 8017, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580836

ABSTRACT

Cyanobacteria produce neurotoxic non-protein amino acids (NPAAs) that accumulate in ecosystems and food webs. American lobsters (Homarus americanus H. Milne-Edwards) are one of the most valuable seafood industries in Canada with exports valued at > $2 billion. Two previous studies have assessed the occurrence of ß-N-methylamino-L-alanine (BMAA) in a small number of lobster tissues but a complete study has not previously been undertaken. We measured NPAAs in eyeballs, brain, legs, claws, tails, and eggs of 4 lobsters per year for the 2021 and 2022 harvests. Our study included 4 male and 4 female lobsters. We detected BMAA and its isomers, N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB) and ß-aminomethyl-L-alanine (BAMA) by a fully validated reverse phase chromatography-tandem mass spectrometry method. We quantified BMAA, DAB, AEG and BAMA in all of the lobster tissues. Our quantification data varied by individual lobster, sex and collection year. Significantly more BMAA was quantified in lobsters harvested in 2021 than 2022. Interestingly, more BAMA was quantified in lobsters harvested in 2022 than 2021. Monitoring of lobster harvests for cyanobacterial neurotoxins when harmful algal bloom events occur could mitigate risks to human health.


Subject(s)
Amino Acids, Diamino , Decapoda , Neurotoxicity Syndromes , Animals , Male , Female , Humans , Nephropidae/metabolism , Ecosystem , Neurotoxins/toxicity , Amino Acids, Diamino/metabolism , Seafood/analysis , Decapoda/metabolism , beta-Alanine
16.
An Acad Bras Cienc ; 96(1): e20230238, 2024.
Article in English | MEDLINE | ID: mdl-38629657

ABSTRACT

Fish consumption is the main path of human exposure to Hg and may represent a risk to public health, even with low Hg concentrations in fish, if consumption rates are high. This study quantifies, for the first time, the Hg concentrations in nine most commercialized species in the São Luís (MA) fish market, where fish consumption is high, and estimates human exposure. Average Hg concentrations were highest in carnivorous species, yellow hake (Cynoscion acoupa) (0.296 mg kg-1), the Atlantic croaker (Micropogonias undulatus) (0.263 mg kg-1), whereas lowest concentrations were recorded in iliophagous Mullets (Mugil curema) (0.021 mg kg-1) and the Shorthead drum Larimus breviceps (0.025 mg kg-1). Significant correlations were observed between Hg concentrations and fish length in two species: the Coco-Sea catfish (Bagre bagre) and the Atlantic bumper (Chloroscombrus crysurus), but not in the other species, since they presented relatively uniform size of individuals and/or a small number of samples. Risk coefficients, despite the relatively low Hg concentrations, suggest that consumers should limit their consumption of Yellow hake and Atlantic croaker, as they can present some risk to human health (EDI > RfD and THQ > 1), depending on the frequency of their consumption and the consumer's body weight.


Subject(s)
Catfishes , Mercury , Smegmamorpha , Water Pollutants, Chemical , Animals , Humans , Mercury/analysis , Water Pollutants, Chemical/analysis , Fishes , Seafood/analysis , Environmental Monitoring , Food Contamination
17.
Mar Drugs ; 22(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38667793

ABSTRACT

Tetrodotoxin (TTX) is a marine toxin responsible for many intoxications around the world. Its presence in some pufferfish species and, as recently reported, in shellfish, poses a serious health concern. Although TTX is not routinely monitored, there is a need for fast, sensitive, reliable, and simple methods for its detection and quantification. In this work, we describe the use of an automated patch clamp (APC) system with Neuro-2a cells for the determination of TTX contents in pufferfish samples. The cells showed an IC50 of 6.4 nM for TTX and were not affected by the presence of muscle, skin, liver, and gonad tissues of a Sphoeroides pachygaster specimen (TTX-free) when analysed at 10 mg/mL. The LOD achieved with this technique was 0.05 mg TTX equiv./kg, which is far below the Japanese regulatory limit of 2 mg TTX equiv./kg. The APC system was applied to the analysis of extracts of a Lagocephalus sceleratus specimen, showing TTX contents that followed the trend of gonads > liver > skin > muscle. The APC system, providing an in vitro toxicological approach, offers the advantages of being sensitive, rapid, and reliable for the detection of TTX-like compounds in seafood.


Subject(s)
Patch-Clamp Techniques , Tetraodontiformes , Tetrodotoxin , Tetrodotoxin/analysis , Animals , Seafood/analysis , Mice , Food Contamination/analysis , Limit of Detection
18.
J Food Sci ; 89(5): 2909-2920, 2024 May.
Article in English | MEDLINE | ID: mdl-38551034

ABSTRACT

The accurate detection of biogenic amines (BAs) is an important means of ensuring the quality and safety of cephalopod seafood products. In this study, the pre-column derivatization of high-performance liquid chromatography (HPLC) was optimized using dansyl chloride (Dns-Cl) to detect BAs in octopus, cuttlefish, and squid. The reasons for the formation of BAs were investigated by assessing their decarboxylase activity and the rates of decomposition. The findings demonstrated that using Dns-Cl to optimize pre-column derivatization enabled the separation of nine different BAs. The detection limits ranged from 0.07 to 0.25 mg/L, and the results exhibited a high level of linearity (R2 ≥ 0.997). The decarboxylase activity and biodegradation rate positively correlated with the formation of BAs at temperatures below 0°C. Notably, the decarboxylase activity of octopus, cuttlefish, and squid exhibited a significant increase with prolonged storage time, and formyltransferase and carbamate kinase may be the key decarboxylase in cephalopod products. These findings serve as a valuable reference for further investigations into the mechanisms behind BAs production and the development of control technologies for BAs in cephalopod products. This study has successfully demonstrated the effectiveness of the Dns-Cl pre-column derivatization-HPLC method in accurately and efficiently detecting BAs in octopus, cuttlefish, and squid. Moreover, it highlights the influence of decarboxylase content and biodegradation rate on the formation of BAs. Importantly, this method can serve as a reference for detecting BAs in various seafood products.


Subject(s)
Biogenic Amines , Cephalopoda , Dansyl Compounds , Seafood , Animals , Chromatography, High Pressure Liquid/methods , Dansyl Compounds/chemistry , Cephalopoda/chemistry , Biogenic Amines/analysis , Seafood/analysis , Decapodiformes/chemistry , Limit of Detection , Carboxy-Lyases/metabolism
19.
Nat Food ; 5(3): 221-229, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38509235

ABSTRACT

Wild fish used as aquafeeds could be redirected towards human consumption to support sustainable marine resource use. Here we use mass-balance fish-in/fish-out ratio approaches to assess nutrient retention in salmon farming and identify scenarios that provide more nutrient-rich food to people. Using data on Norway's salmon farms, our study revealed that six of nine dietary nutrients had higher yields in wild fish used for feeds, such as anchovies and mackerel, than in farmed salmon production. Reallocating one-third of food-grade wild feed fish towards direct human consumption would increase seafood production, while also retaining by-products for use as aquafeeds, thus maximizing nutrient utilization of marine resources.


Subject(s)
Fish Oils , Perciformes , Animals , Humans , Fishes , Seafood/analysis , Salmon , Nutrients
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124157, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38492462

ABSTRACT

Tracking pH fluctuations in food samples is important for ensuring food freshness. Fluorescent probes have been widely applied as promising tools for the on-site detection of pH changes; however, most of them can be applied only at either lower or higher pH ranges because their response structures commonly have a single acid dissociation constant (pKa). To address this problem, we designed a fluorescent sensor, called HMB, containing a methylpiperazine group with two pKa values, which exhibited a unique dual-color response to pH changes over a wide pH range. Furthermore, the HMB-based test strips are easily prepared and used as portable labels for the visual monitoring of food spoilage that results in microbial and anaerobic glycolytic pathways in real food (such as cheese and shrimp). To the best of our knowledge, this is the first fluorescent pH sensor with two pKa values, and we expect that this work will inspire more sensor designs for food quality control.


Subject(s)
Fluorescent Dyes , Seafood , Seafood/analysis , Fluorescent Dyes/chemistry , Food Quality , Food Packaging/methods , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...