Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.388
Filter
1.
Compr Rev Food Sci Food Saf ; 23(3): e13368, 2024 05.
Article in English | MEDLINE | ID: mdl-38720574

ABSTRACT

Spoilage and deterioration of aquatic products during storage are inevitable, posing significant challenges to their suitability for consumption and the sustainability of the aquatic products supply chain. Research on the nonthermal processing of fruit juices, probiotics, dairy products, and meat has demonstrated positive outcomes in preserving quality. This review examines specific spoilage bacteria species and mechanisms for various aquatic products and discusses the principles, characteristics, and applications of six nonthermal processing methods for bacterial inhibition to maintain microbiological safety and physicochemical quality. The primary spoilage bacteria groups differ among fish, crustaceans, and shellfish based on storage conditions and durations. Four metabolic pathways utilized by spoilage microorganisms-peptides and amino acids, nitrogen compounds, nucleotides, and carbohydrates-are crucial in explaining spoilage. Nonthermal processing techniques, such as ultrahigh pressure, irradiation, magnetic/electric fields, plasma, and ultrasound, can inactivate microorganisms, thereby enhancing microbiological safety, physicochemical quality, and shelf life. Future research may integrate nonthermal processing with other technologies (e.g., modified atmosphere packaging and omics) to elucidate mechanisms of spoilage and improve the storage quality of aquatic products.


Subject(s)
Food Handling , Food Microbiology , Animals , Food Handling/methods , Food Preservation/methods , Food Safety/methods , Seafood/microbiology , Seafood/standards , Bacteria , Shellfish/microbiology , Shellfish/standards , Dairy Products/microbiology , Dairy Products/standards , Probiotics , Fishes/microbiology
2.
Int J Food Microbiol ; 418: 110717, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38701665

ABSTRACT

Fish sold at retail markets are often contaminated with harmful bacterial pathogens, posing significant health risks. Despite the growing aquaculture industry in Bangladesh to meet high demand, little attention has been paid to ensuring the safety of fish. The objective of this study was to evaluate the microbiological quality of tilapia and pangas fish sold in retail markets across Dhaka city, Bangladesh. Specifically, the study aimed to compare the quality of fish from traditional wet markets and modern supermarkets, as well as fish samples collected during morning and evening hours. A total of 500 raw cut-fish samples (250 tilapia and 250 pangas) were collected at the point of sale from 32 wet markets and 25 supermarkets. All samples were tested for Escherichia coli, extended-spectrum ß-lactamase-producing E. coli (ESBL-Ec), along with the foodborne pathogens Salmonella, Shigella, Vibrio, and Cryptosporidium spp. Bacterial isolates were characterized using antibiotic susceptibility tests (AST) and the presence of common virulence and antibiotic-resistant genes. Fish samples from retail markets had higher prevalence of tested bacteria including E. coli (92 %), V. cholerae (62 %), ESBL-Ec (48 %), and Salmonella spp. (24 %). There was a significant difference in the prevalence of E. coli (97 % vs. 71 %), ESBL-Ec (58 % vs. 8 %) and Salmonella spp. (28 % vs. 8 %) on the wet market samples compared to supermarket samples (p < 0.005). The mean concentration of E. coli on fish from the wet market was 3.0 ± 0.9 log10 CFU/g, while that from supermarkets was 1.6 ± 0.9 log10 CFU/g. The mean concentration of ESBL-Ec in fish from wet markets and supermarkets were 2.3 ± 0.8 log10 CFU/g and 1.6 ± 0.5 log10 CFU/g, respectively. AST revealed that 46 % of E. coli isolates were multi-drug resistant (MDR), while 4 %, 2 % and 5 % of E. coli, Salmonella spp. and Vibrio spp. isolates, respectively, were resistant to carbapenems. At least 3 % of total E. coli isolates were found to be diarrheagenic, while 40 % of Salmonella isolates harbored pathogenic genes (stn, bcfC, ssaQ, avrA and sodC1), and none of the V. cholerae isolates harbored ctxA and tcpA. Our research shows that raw-cut fish samples from retail markets are contaminated with pathogenic and antibiotic-resistant bacteria, which could be a significant food safety concern. Public health interventions should be implemented to improve food safety and hygiene practices in the retail fish markets.


Subject(s)
Drug Resistance, Bacterial , Seafood , Tilapia , Animals , Tilapia/microbiology , Bangladesh/epidemiology , Seafood/microbiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Escherichia coli/isolation & purification , Escherichia coli/drug effects , Escherichia coli/genetics , Prevalence , Salmonella/isolation & purification , Salmonella/drug effects , Salmonella/genetics , Food Microbiology , Food Contamination/analysis , Cryptosporidium/isolation & purification , Cryptosporidium/genetics , Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Vibrio/isolation & purification , Vibrio/genetics , Vibrio/drug effects , Fishes/microbiology , Shigella/isolation & purification , Shigella/genetics , Shigella/drug effects
3.
Int J Food Microbiol ; 418: 110737, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38749264

ABSTRACT

Prevalent in marine, estuarine and coastal environments, Vibrio parahaemolyticus is one of the major foodborne pathogens which can cause acute gastroenteritis through consumption of contaminated food. This study encompassed antimicrobial resistance, molecular characteristics and phylogenetic relationships of 163 V. parahaemolyticus isolated from aquatic foods across 15 provinces in China. The isolates showed high resistance rates against ampicillin (90.80 %, 148/163) and cefazolin (72.39 %, 118/163). Only 5 isolates demonstrated multi-drug resistance (MDR) phenotypes. A total of 37 different antibiotic resistance genes (ARGs) in correlation with seven antimicrobial categories were identified. tet(34) and tet(35) were present in all 163 isolates. Other most prevalent ARGs were those conferring resistance to ß-lactams, with prevalence rate around 18.40 % (30/163). The virulence genes tdh and trh were found in 17 (10.43 %) and 9 (5.52 %) isolates, respectively. Totally 121 sequence types (STs) were identified through whole genome analysis, among which 60 were novel. The most prevalent sequence type was ST3 (9.20 %, 15/163), which shared the same genotype profile of trh_, tdh+ and blaCARB-22+. Most of the tdh+V. parahaemolyticus isolates was clustered into a distinctive clade by the phylogenetic analysis. Our study showed that the antimicrobial resistance of V. parahaemolyticus in aquatic foods in China was moderate. However, the emerging of MDR isolates implicate strengthened monitoring is needed for the better treatment of human V. parahaemolyticus infections. High genetic diversity and virulence potential of the isolates analyzed in this study help better understanding and evaluating the risk of V. parahaemolyticus posed to public health.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Phylogeny , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/drug effects , Vibrio parahaemolyticus/isolation & purification , Vibrio parahaemolyticus/pathogenicity , Vibrio parahaemolyticus/classification , China/epidemiology , Anti-Bacterial Agents/pharmacology , Food Microbiology , Seafood/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Virulence Factors/genetics , Humans , Genotype
4.
Int J Food Microbiol ; 418: 110711, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38677237

ABSTRACT

Enterococci are emerging nosocomial pathogens. Their widespread distribution causes them to be food contaminants. Furthermore, Enterococci can colonize various ecological niches and diffuse into the food chain via contaminated animals and foods because of their remarkable tolerance to unfavorable environmental circumstances. Due to their potential dissemination to humans, antimicrobial-resistant Enterococci in fish are a worldwide health issue. This study characterized AMR, ARGs, VAGs, gelatinase activity, and biofilm formation in Enterococcus spp. recovered from fish and seafood and evaluated potential correlations. 54 Enterococcus spp. strains(32.73 %)were isolated from 165 samples (75 Oreochromis niloticus, 30 Argyrosomus regius, and 60 Shrimp), comprising 30 Enterococcus faecalis (55.6 %) and 24 Enterococcus faecium (44.4 %) with total 32.73 % (54/165), The maximum prevalence rate of Enterococcus spp. was observed in Nile tilapia (34/54; 63 %), followed by shrimp (14/54; 25.9 %) and Argyrosomus regius (6/54; 11.1 %). The maximum prevalence rate of E. faecalis was observed in Nile tilapia (22/30; 73.3 %), followed by shrimp (8/30; 26.7 %) with significant differences. The prevalence rate of E. faecium was observed in Nile tilapia (12/24; 50 %), followed by shrimp (6/24,25 %). E. faecium is only isolated from Argyrosomus regius (6/24,25 %). Isolates exhibited high resistance against both tetracycline (90.7 %) and erythromycin(88.9 %), followed by gentamycin (77.8 %), ciprofloxacin (74.1 %), levofloxacin (72.2 %), penicillin (44.4 %), vancomycin (37 %), and linezolid (20.4 %). 50 strains (92.6 %) exhibited resistance to more than two antibiotics, 5 strains (10 %) were XDR, and the remaining 45 strains (90 %) were classified as MDR. 92.6 % of the isolates had MARindices >0.2, indicating they originated in settings with a high risk of contamination. Additionally, ten ARGs were identified, with tet(M) 92.6 %, followed by erm(B) (88.9 %), aac(6')-Ie-aph(2″)-Ia(77.8 %), tet(K) (75.9 %), gyrA (74.1 %), blaZ (48.1 %), vanA (37 %), vanB (31.5 %), optrA (20.4 %), and catA(3.7 %). Biofilm formation and gelatinase activity were observed in 85.2 %, and 61.1 % of the isolates, respectively. A total of 11 VAGs were detected, with gelE as the most prevalent (83.3 %) followed by agg(79.6 %), pil (74.1 %), both sprE and asa1 (72.2 %), hyl (70.4 %), eps(68.5 %), EF3314 (57.4 %), ace (50 %), and cylA (35.2 %) with no detection of cylB. In conclusion, the emergence of linezolid-resistant -vancomycin-resistant enterococci recovered from Egyptian fish and shrimp, suggests that fish and seafood might participate a fundamental part in the emergence of antimicrobial resistance among humans.


Subject(s)
Anti-Bacterial Agents , Linezolid , Animals , Anti-Bacterial Agents/pharmacology , Linezolid/pharmacology , Virulence , Fishes/microbiology , Microbial Sensitivity Tests , Enterococcus/drug effects , Enterococcus/isolation & purification , Drug Resistance, Bacterial , Crustacea/microbiology , Seafood/microbiology , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/isolation & purification , Biofilms/drug effects , Biofilms/growth & development
5.
Int J Food Microbiol ; 417: 110691, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38631283

ABSTRACT

The presence of Vibrio parahaemolyticus (Vp) in different production stages of seafood has generated negative impacts on both public health and the sustainability of the industry. To further better investigate the fitness of Vp at the phenotypical level, a great number of studies have been conducted in recent years using plate counting methods. In the meantime, with the increasing accessibility of the next generation sequencing and the advances in analytical chemistry techniques, omics-oriented biotechnologies have further advanced our knowledge in the survival and virulence mechanisms of Vp at various molecular levels. These observations provide insights to guide the development of novel prevention and control strategies and benefit the monitoring and mitigation of food safety risks associated with Vp contamination. To timely capture these recent advances, this review firstly summarizes the most recent phenotypical level studies and provide insights about the survival of Vp under important in vitro stresses and on aquatic products. After that, molecular survival mechanisms of Vp at transcriptomic and proteomic levels are summarized and discussed. Looking forward, other newer omics-biotechnology such as metabolomics and secretomics show great potential to be used for confirming the cellular responses of Vp. Powerful data mining tools from the field of machine learning and artificial intelligence, that can better utilize the omics data and solve complex problems in the processing, analysis, and interpretation of omics data, will further improve our mechanistic understanding of Vp.


Subject(s)
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/pathogenicity , Vibrio parahaemolyticus/growth & development , Vibrio parahaemolyticus/metabolism , Seafood/microbiology , Proteomics , Virulence , Food Microbiology , Humans , Transcriptome , Animals
6.
BMC Microbiol ; 24(1): 145, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671363

ABSTRACT

BACKGROUND: Vibrio parahaemolyticus is the predominant etiological agent of seafood-associated foodborne illnesses on a global scale. It is essential to elucidate the mechanisms by which this pathogen disseminates. Given the existing research predominantly concentrates on localized outbreaks, there is a pressing necessity for a comprehensive investigation to capture strains of V. parahaemolyticus cross borders. RESULTS: This study examined the frequency and genetic attributes of imported V. parahaemolyticus strains among travelers entering Shanghai Port, China, between 2017 and 2019.Through the collection of 21 strains from diverse countries and regions, Southeast Asia was pinpointed as a significant source for the emergence of V. parahaemolyticus. Phylogenetic analysis revealed clear delineation between strains originating from human and environmental sources, emphasizing that underlying genome data of foodborne pathogens is essential for environmental monitoring, food safety and early diagnosis of diseases. Furthermore, our study identified the presence of virulence genes (tdh and tlh) and approximately 120 antibiotic resistance-related genes in the majority of isolates, highlighting their crucial involvement in the pathogenesis of V. parahaemolyticus. CONCLUSIONS: This research enhanced our comprehension of the worldwide transmission of V. parahaemolyticus and its antimicrobial resistance patterns. The findings have important implications for public health interventions and antimicrobial stewardship strategies, underscoring the necessity for epidemiological surveillance of pathogen at international travel hubs.


Subject(s)
Foodborne Diseases , Phylogeny , Vibrio Infections , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/isolation & purification , Vibrio parahaemolyticus/classification , Vibrio parahaemolyticus/pathogenicity , Vibrio parahaemolyticus/drug effects , Humans , China/epidemiology , Vibrio Infections/microbiology , Vibrio Infections/epidemiology , Foodborne Diseases/microbiology , Foodborne Diseases/epidemiology , Genome, Bacterial/genetics , Travel , Virulence Factors/genetics , Genomics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Seafood/microbiology
7.
Int J Food Microbiol ; 417: 110708, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38653121

ABSTRACT

Salmonella Thompson is a prevalent foodborne pathogen and a major threat to food safety and public health. This study aims to reveal the dissemination mechanism of S. Thompson with co-resistance to ceftriaxone and ciprofloxacin. In this study, 181 S. Thompson isolates were obtained from a retrospective screening on 2118 serotyped Salmonella isolates from foods and patients, which were disseminated in 12 of 16 districts in Shanghai, China. A total of 10 (5.5 %) S. Thompson isolates exhibited resistance to ceftriaxone (MIC ranging from 8 to 32 µg/mL) and ciprofloxacin (MIC ranging from 2 to 8 µg/mL). The AmpC ß-lactamase gene blaCMY-2 and plasmid-mediated quinolone resistance (PMQR) genes of qnrS and qepA were identified in the 9 isolates. Conjugation results showed that the co-transfer of blaCMY-2, qnrS, and qepA occurred on the IncC plasmids with sizes of ∼150 (n = 8) or ∼138 (n = 1) kbp. Three typical modules of ISEcp1-blaCMY-2-blc-sugE, IS26-IS15DIV-qnrS-ISKpn19, and ISCR3-qepA-intl1 were identified in an ST3 IncC plasmid pSH11G0791. Phylogenetic analysis indicated that IncC plasmids evolved into Lineages 1, 2, and 3. IncC plasmids from China including pSH11G0791 in this study fell into Lineage 1 with those from the USA, suggesting their close genotype relationship. In conclusion, to our knowledge, it is the first report of the co-existence of blaCMY-2, qnrS, and qepA in IncC plasmids, and the conjugational transfer contributed to their dissemination in S. Thompson. These findings underline further challenges for the prevention and treatment of Enterobacteriaceae infections posed by IncC plasmids bearing blaCMY-2, qnrS, and qepA.


Subject(s)
Anti-Bacterial Agents , Diarrhea , Plasmids , Salmonella enterica , Seafood , Humans , Plasmids/genetics , China , Anti-Bacterial Agents/pharmacology , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Seafood/microbiology , Diarrhea/microbiology , Microbial Sensitivity Tests , beta-Lactamases/genetics , Retrospective Studies , Drug Resistance, Multiple, Bacterial/genetics , Ciprofloxacin/pharmacology , Ceftriaxone/pharmacology , Bacterial Proteins/genetics , Serogroup , Food Microbiology
8.
Food Chem ; 450: 139345, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640524

ABSTRACT

The protective mode of PostbioYDFF-3 (referred to as postbiotics) on the quality stability of refrigerated fillets was explored from the aspects of endogenous enzyme activity and the abundance of spoilage microorganisms. Compared to the control group, the samples soaked in postbiotics showed significant reductions in TVC, TVB-N and TBARS values by 39.6%, 58.6% and 25.5% on day 5, respectively. In addition, the color changes, biogenic amine accumulation and texture softening of the fish fillets soaked in postbiotics were effectively suppressed. Furthermore, the activity of endogenous enzyme activities was detected. The calpain activities were significantly inhibited (p < 0.05) after soaking in postbiotics, which declined by 23%. Meanwhile, high throughput sequencing analysis further indicated that the growth of spoilage microorganism such as Acinetobacter and Pseudomonas were suppressed. Overall, the PostbioYDFF-3 was suitable for preserving fish meat.


Subject(s)
Bacteria , Carps , Food Preservation , Seafood , Animals , Seafood/analysis , Seafood/microbiology , Food Preservation/methods , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Bacteria/enzymology , Refrigeration , Food Preservatives/pharmacology , Meat/analysis , Meat/microbiology , Pseudomonas/enzymology , Pseudomonas/growth & development
9.
Int J Food Microbiol ; 415: 110641, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38432054

ABSTRACT

The commercialization of processed fish products is rising in restaurants and small to medium enterprises. However, there is a lack of data related to the microbiological safety of such products. In this study total aerobic colony count and Enterobacteriaceae, as proxy of process hygiene criteria, and detection of Listeria monocytogenes and concentration of histamine, as food safety criteria, were investigated in Salmo salar (salmon), Xiphias gladius (swordfish) and Thunnus albacares (yellowfin tuna), before, during, and at the end of a dry-curing process, performed in a dedicated cabinet, at controlled temperature, relative humidity and ventilation, up to 240 h. The microbiological parameters were investigated in the tested fish products by culture methods and shotgun metagenomic, while the presence of histamine, and other biogenic amines, was quantified by High Performance Liquid Chromatography. In the raw material, and up to the end of the dry curing process, the concentration of Enterobacteriaceae was always lower than 10 CFU/g, while total aerobic colony counts ranged between 3.9 and 5.4 Log CFU/g in salmon; 5.5 and 5.9 Log CFU/g in swordfish; 4.4 and 4.8 Log CFU/g in tuna. The pH values were significantly different between fish species, in the raw materials and during processing except for T4, occurring 70 h after the start of the process for salmon and after 114 h for swordfish and tuna. Water activity was different at specific sampling points and at the end of processing. Overall, 79 % of the sequences identified in the tested fish samples were assigned to y bacteria. The most abundant phyla were Pseudomonadota, Bacillota and Mycoplasmatota. The microbial populations identified by shotgun metagenomic in the tested fish species clustered well separated one from the other. Moreover, the microbial richness was significantly higher in salmon and tuna in comparison to swordfish. Listeria monocytogenes was not detected in the raw material by using the reference cultural method and very few reads (relative abundance <0.007) were detected in swordfish and tuna by shotgun metagenomic. Histamine producing bacteria, belonging to the genera Vibrio, Morganella, Photobacterium and Klebsiella, were identified primarily in swordfish. However, histamine and other biogenic amines were not detected in any sample. To the best of our knowledge this is the first paper reporting time point determinations of microbiological quality and safety parameters in salmon, swordfish and tuna, before, during and at the end of a dry-curing process. The data collected in this paper can help to predict the risk profile of ready to eat dry-cured fish products during storage before consumption.


Subject(s)
Food Microbiology , Histamine , Animals , Histamine/analysis , Seafood/microbiology , Biogenic Amines/analysis , Enterobacteriaceae , Fishes , Bacteria/genetics , Tuna/microbiology , Colony Count, Microbial
10.
Food Chem ; 448: 139045, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38537549

ABSTRACT

This article summarizes the characterization, by shotgun proteomics, of 11 bacterial strains identified as responsible for seafood spoilage. A total of 4455 peptide spectrum matches, corresponding to 4299 peptides and 3817 proteins were identified. Analyses of data determined the functional pathways they are involved in. The proteins identified were integrated into a protein-protein network that involves 371 nodes and 3016 edges. Those proteins are implicated in energy pathways, peptidoglycan biosynthesis, spermidine/putrescine metabolism. An additional 773 peptides were characterized as virulence factors, that participates in bacterial pathogenesis; while 14 peptides were defined as biomarkers, as they can be used to differentiate the bacterial species present. This report represents the most extensive proteomic repository available in the field of seafood spoilage bacteria; the data substantially advances the understanding of seafood decay, as well as provides fundamental bases for the recognition of the bacteria existent in seafood that cause spoilage during food processing/storage.


Subject(s)
Bacteria , Bacterial Proteins , Proteomics , Seafood , Virulence Factors , Seafood/microbiology , Seafood/analysis , Virulence Factors/metabolism , Virulence Factors/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Animals , Food Microbiology
11.
Food Chem ; 444: 138685, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38341917

ABSTRACT

The preservation effects of a photodynamic inactivation (PDI)-mediated polylactic acid/5-aminolevulinic acid (PLA/ALA) film on the storage quality of salmon fillets were investigated. Results showed that the PDI-mediated PLA/ALA film could continuously generate reactive oxygen species by consuming oxygen to inactivate native pathogens and spoilage bacteria on salmon fillets. Meanwhile, the film maintained the content of muscle proteins and their secondary and tertiary structures, as well as the integrity of myosin by keeping the activity of Ca2+-ATPase, all of which protected the muscle proteins from degradation. Furthermore, the film retained the activity of total superoxide dismutase (T-SOD), suppressed the accumulation of lipid peroxides (e.g., MDA), which greatly inhibited four main types of protein oxidations. As a result, the content of flavor amino acids and essential amino acids in salmon fillets was preserved. Therefore, the PDI-mediated antimicrobial packaging film greatly preserves the storage quality of aquatic products by preserving the protein quality.


Subject(s)
Salmon , Seafood , Animals , Salmon/microbiology , Seafood/microbiology , Anti-Bacterial Agents/pharmacology , Aminolevulinic Acid , Muscle Proteins , Polyesters , Food Preservation/methods , Food Packaging/methods
12.
J Agric Food Chem ; 72(8): 4448-4463, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38364257

ABSTRACT

The presence of biogenic amines (histamine, tyramine, putrescine, and cadaverine) in seafood is a significant concern for food safety. This review describes for the first time a shotgun quantitative proteomics strategy to evaluate and compare foodborne strains of bacteria that produce biogenic amines in seafoods. This approach recognized 35,621 peptide spectrum matches, belonging to 20,792 peptides, and 4621 proteins. It allowed the determination of functional pathways and the classification of the strains into hierarchical clusters. The study identified a protein-protein interaction network involving 1160 nodes/10,318 edges. Proteins were related to energy pathways, spermidine biosynthesis, and putrescine metabolism. Label-free quantitative proteomics allowed the identification of differentially regulated proteins in specific strains such as putrescine aminotransferase, arginine decarboxylase, and l-histidine-binding protein. Additionally, 123 peptides were characterized as virulence factors and 299 peptide biomarkers were selected to identify bacterial species in fish products. This study presents the most extensive proteomic repository and progress in the science of food biogenic bacteria and could be applied in the food industry for the detection of bacterial contamination that produces histamine and other biogenic amines during food processing/storage.


Subject(s)
Histamine , Putrescine , Animals , Proteomics , Virulence Factors , Biogenic Amines/metabolism , Bacteria/metabolism , Fish Products , Peptides , Seafood/microbiology
13.
Water Res ; 254: 121379, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38422694

ABSTRACT

UV degradation of marine microplastics (MPs) could increase their vector potential for pathogenic bacteria and threaten human health. However, little is known about how the degree of UV aging affects interactions between MPs and pathogens and how various types of MPs differ in their impact on seafood safety. This study investigated five types of UV-aged MPs and their impact on Vibrio parahaemolyticus, a seafood pathogen. MPs exposed to UV for 60 days showed similar physicochemical changes such as surface cracking and hydrophobicity reduction. Regardless of the type, longer UV exposure of MPs resulted in more biofilm formation on the surface under the same conditions. V. parahaemolyticus types that formed biofilms on the MP surface showed 1.4- to 5.0-fold upregulation of virulence-related genes compared to those that did not form biofilms, independently of UV exposure. However, longer UV exposure increased resistance of V. parahaemolyticus on MPs to chlorine, heat, and human gastrointestinal environment. This study implies that the more UV degradation occurs on MPs, the more microbial biofilm formation is induced, which can significantly increase virulence and environmental resistance of bacteria regardless of the type of MP.


Subject(s)
Vibrio parahaemolyticus , Humans , Aged , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/metabolism , Microplastics , Plastics , Seafood/microbiology , Biofilms , Bacteria
14.
Food Res Int ; 177: 113806, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225110

ABSTRACT

Vibrio parahaemolyticus (V. parahaemolyticus) is the main pathogenic bacteria in seafood that can cause serious food-borne illness. The annual incidence of V. parahaemolyticus infection in the United States exceeds 45,000 cases, indicating there are potential shortcomings in seafood sterilization techniques. Meanwhile, the ongoing emergence of antibiotic-resistant strains highlights the urgent need for novel bacteriostatic strategies to eliminate V. parahaemolyticus. Nano-BiPO4 is a semiconductor with high H2O2 production efficiency and has potential for photocatalytic bacterial inactivation. But the effectiveness and mechanism of BiPO4 photocatalytic inactivation of V. parahaemolyticus has not been reported. In this study, nano-BiPO4 synthesized in pure water (P1) was found to exhibit optimal H2O2 production efficiency (1203 µmol h-1g-1) and antibacterial activity (in 0.8 g/L). Under UV light irradiation, P1 induced alterations in bacterial cell morphology, elevation in intracellular levels of ROS, H2O2, O2-, GSSG and MDA, and reduction in GSH level. Meanwhile, metabolomic analysis revealed that P1 stimulates the arginine biosynthesis, TCA cycle and alanine, aspartate and glutamate metabolism. These abnormal changes in the oxidative stress indicators and metabolic pathways proved that the bacterial damage was related to the H2O2 produced by nano-BiPO4 photocatalysis. Moreover, sliced abalone and hemolysis assay were used to demonstrate the applicability and biosafety of P1. This study provides theoretical support for exploring nano-BiPO4 as a bacterial inhibitor against V. parahaemolyticus.


Subject(s)
Gastropoda , Vibrio parahaemolyticus , Animals , Hydrogen Peroxide/metabolism , Seafood/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
15.
Int J Biol Macromol ; 257(Pt 1): 128614, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061528

ABSTRACT

Vibrio parahaemolyticus has been considered as the leading pathogen associated with seafood-borne disease. Hexanal possesses antibacterial property but the hydrophobicity and volatility limit its application. The purpose of this study was to prepare hexanal-chitosan nanoemulsion (HCN), investigate its antibacterial ability against V. parahaemolyticus, and examine the combination of HCN with sodium alginate coating on the quality attributes of shrimp during cold storage. The mean droplet size of HCN fabricated by ultrasonic emulsification was 91.28 nm. HCN showed regular spherical shape and exhibited good centrifugation stability and storage stability at 4 °C. HCN exerted anti-V. parahaemolyticus effect with the minimum inhibitory concentration and minimal bactericidal concentration of both 5 mg/mL. Furthermore, HCN induced morphological changes and destroyed bacterial membrane, resulting in cell death. The results of preservation test showed that HCN alone and its combination with sodium alginate coating effectively retarded the quality deterioration and microbial spoilage of shelled shrimps during refrigerated storage. Comparatively, the combination treatment exhibited better preservation effect. The present study suggested that HCN prepared by ultrasonic emulsification is an effective alternative to control V. parahaemolyticus contamination in seafood and also shows great application potential in the quality maintaining of seafood during cold storage.


Subject(s)
Aldehydes , Chitosan , Vibrio parahaemolyticus , Animals , Chitosan/pharmacology , Anti-Bacterial Agents/pharmacology , Seafood/microbiology , Crustacea , Alginates/pharmacology
16.
Food Chem ; 439: 138113, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38043276

ABSTRACT

Detection of viable Vibrio parahaemolyticus (V. parahaemolyticus) is a major challenge due to its significant risk to food safety and human health. Herein, we developed a phagomagnetic separation-ATP bioluminescence (PhMS-BL) assay based on phage VPHZ6 for rapid and sensitive detection of viable V. parahaemolyticus. Phage as a recognition element was coupled to magnetic beads to capture and enrich V. parahaemolyticus, shortening detection time and improving method sensitivity. The intracellular ATP released by chemical lysis using CTAB was quantified using firefly fluorescein-adenosine triphosphate bioluminescence system to detect viable bacteria. So, PhMS-BL method was able to detect V. parahaemolyticus in a linear range of 2.3 × 102 to 1.3 × 107 CFU mL-1, with a detection limit of 78 CFU mL-1 within 15 min. It is successfully applied to detect V. parahaemolyticus in spiked lake water, lobster tail meat, and clam meat. The developed detection strategy can rapidly and sensitively detect viable V. parahaemolyticus in food matrixes.


Subject(s)
Vibrio parahaemolyticus , Humans , Seafood/microbiology , Food Safety , Immunomagnetic Separation , Sensitivity and Specificity
17.
Food Res Int ; 174(Pt 1): 113525, 2023 12.
Article in English | MEDLINE | ID: mdl-37986426

ABSTRACT

S. cerevisiae and L. plantarum play important roles in Suanyu fermentation. This study investigated the interaction between S. cerevisiae and L. plantarum during fermentation and its impact on metabolic pathways. Co-culturing S. cerevisiae and L. plantarum increased pH to 5.72, reduced TVB-N to 9.47 mg/mL, and achieved high utilization rates of sugars (98.9%) and proteins (73.7%). During microbial interactions, S. cerevisiae and L. plantarum produced antibiotics, including phenyllactate and Gentamicin C1a, inhibiting the growth of each other. S. cerevisiae used S-adenosyl-l-methionine to counteract acid production of L. plantarum, establishing dominance in Suanyu fermentation. Microbial interactions influenced carbohydrate and energy metabolism pathways, such as nicotinate and nicotinamide metabolism and purine metabolism. S. cerevisiae significantly impacted gene expression in protein synthesis and cell growth pathways, including ribosome, SNARE interactions, basal transcription factors, and MAPK signaling. These findings offer insights into microbial interactions and metabolic processes during Suanyu fermentation.


Subject(s)
Fermented Foods , Lactobacillus plantarum , Saccharomyces cerevisiae , Seafood , Animals , Fermentation , Microbial Interactions , Multiomics , Saccharomyces cerevisiae/metabolism , Lactobacillus plantarum/metabolism , Seafood/microbiology , Fermented Foods/microbiology
18.
Food Res Int ; 173(Pt 2): 113462, 2023 11.
Article in English | MEDLINE | ID: mdl-37803786

ABSTRACT

There is little known about the growth and survival of naturally-occurring Vibrio parahaemolyticus in harvested raw shrimps. In this study, the fate of naturally-occurring V. parahaemolyticus in post-harvest raw shrimps was investigated from 4℃ to 30℃ using real-time PCR combined with propidium monoazide (PMA-qPCR). The Baranyi-model was used to fit the growth and survival data. A square root model and non-linear Arrhenius model was then used to quantify the parameters derived from the Baranyi-model. The results showed that naturally-occurring V. parahaemolyticus were slowly inactivated at 4℃ and 7℃ with deactivation rates of 0.019 Log CFU/g/h and 0.025 Log CFU/g/h. Conversely, at 15, 20, 25, and 30 °C, the average maximum growth rates (µmax) of naturally-occurring V. parahaemolyticus were determined to be 0.044, 0.105, 0.179 and 0.336 Log CFU/g/h, accompanied by the average lag phases (λ) of 15.5 h, 7.3 h, 4.4 h and 3.7 h. The validation metrics, Af and Bf, for both the square root model and non-linear, indicating that the model had a good ability to predict the growth behavior of naturally-occurring V. parahaemolyticus in post-harvest raw shrimps. Furthermore, a comparative exploration between the growth of artificially contaminated V. parahaemolyticus in cooked shrimps and naturally-occurring V. parahaemolyticus in post-harvest raw shrimps revealed intriguing insights. While no substantial distinction in deactivation rates emerged at 4 °C and 7 °C (P > 0.05), a discernible disparity in growth rates was observable at 15 °C, 20 °C, 25 °C, and 30 °C, with the former surpassing the latter. Which indicated the risk of V. parahaemolyticus using models derived from cooked shrimps may be biased. Our study also unveiled a discernible seasonal effect. The µmax and λ of V. parahaemolyticus in shrimps harvested in summer were similar to those harvested in autumn, while the initial and maximum bacterial concentration harvested in summer were higher than those harvested in autumn. This predictive microbiology model of naturally-occurring V. parahaemolyticus in raw shrimps provides relevance to modelling growth in situ.


Subject(s)
Decapoda , Penaeidae , Vibrio parahaemolyticus , Animals , Colony Count, Microbial , Food Microbiology , Seafood/microbiology , Penaeidae/microbiology
19.
Environ Sci Pollut Res Int ; 30(49): 107681-107692, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37740157

ABSTRACT

Vibrio parahaemolyticus, a potent human and aquatic pathogen, is usually found in estuaries and oceans. Human illness is associated with consuming uncooked/partially cooked contaminated seafood. The study on bivalve-associated V. parahaemolyticus revealed that the post-monsoon season had the highest bacterial abundance (9 ± 1.5 log cfu) compared to the monsoon season (8.03 ± 0.56 log cfu). Antimicrobial resistance (AMR) profiling was performed on 114 V. parahaemolyticus isolates obtained from bivalves. The highest AMR was observed against ampicillin (78%). Chloramphenicol was found to be effective against all the isolates. Multiple antibiotic resistance index values of 0.2 or higher were detected in 18% of the isolates. Molecular analysis of antimicrobial resistant genes (ARGs) revealed the high prevalence (100%) of the TEM-1 gene in the aquatic environment. After plasmid profiling and curing, 41.6% and 100% of the resistant isolates were found to be sensitive to ampicillin and cephalosporins, respectively, indicating the prevalence of plasmid-associated ARGs in the aquatic environment. A study to evaluate the antagonistic properties of Bacillus subtilis, Pseudomonas aeruginosa, and Bacillus amyloliquefaciens against V. parahaemolyticus isolates identified the potential of these bacteria to resist the growth of V. parahaemolyticus.


Subject(s)
Bivalvia , Vibrio parahaemolyticus , Animals , Humans , Anti-Bacterial Agents/pharmacology , Vibrio parahaemolyticus/genetics , Seafood/microbiology , Drug Resistance, Bacterial/genetics , Ampicillin
20.
Braz J Microbiol ; 54(3): 2117-2127, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37531004

ABSTRACT

The microbiota of aquatic animals is heavily influenced by their environment, offering a potential source for biotechnologically relevant microorganisms. In this investigation, bacterial strains from fish and fish products were investigated to determine their antimicrobial effects against fish and food pathogens. Twelve strains, including five Lactococcus, two Enterococcus hirae, two Enterococcus mundtii, and three Latilactobacillus sakei were selected as producing bacteriocin-like substances with antimicrobial properties that were active against a broad spectrum of bacteria, such as Listeria monocytogenes, Staphylococcus aureus, and Pseudomonas aeruginosa. Selected strains were identified via 16S rRNA sequencing. Most strains exhibited sensitivity to eight types of antibiotics (erythromycin, tetracycline, chloramphenicol, vancomycin, fosfomycin, gentamicin, ampicillin, and netilmicin), lacked hemolysin and gelatinase virulence factors, and did not produce histamine. These findings suggest that marine fish may be a promising source of lactic acid bacteria strains with antimicrobial potential for use as biopreservatives in the food industry.


Subject(s)
Anti-Infective Agents , Bacteriocins , Lactobacillales , Listeria monocytogenes , Animals , Lactobacillales/genetics , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , Bacteriocins/genetics , Bacteriocins/pharmacology , Listeria monocytogenes/genetics , Fishes , Seafood/microbiology , Food Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...