Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.004
Filter
1.
Sci Rep ; 14(1): 12896, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839894

ABSTRACT

Healthy ecosystems and species have some degree of resilience to changing conditions, however as the frequency and severity of environmental changes increase, resilience may be diminished or lost. In Sweden, one example of a species with reduced resilience is the Atlantic cod (Gadus morhua). This species has been subjected to overfishing, and with additional pressures such as habitat degradation and changing environmental conditions there has been little to no recovery, despite more than a decade of management actions. Given the historical ecological, economical, and cultural significance of cod, it is important to understand how Atlantic cod respond to global climate change to recover and sustainably manage this species in the future. A multi-stressor experiment was conducted to evaluate physiological responses of juvenile cod exposed to warming, ocean acidification, and freshening, changes expected to occur in their nursery habitat. The response to single drivers showed variable effects related to fish biometrics and increased levels of oxidative stress dependent parameters. Importantly, two separate responses were seen within a single treatment for the multi-stressor and freshening groups. These within-treatment differences were correlated to genotype, with the offshore ecotype having a heightened stress response compared to the coastal ecotype, which may be better adapted to tolerate future changes. These results demonstrate that, while Atlantic cod have some tolerance for future changes, ecotypes respond differently, and cumulative effects of multiple stressors may lead to deleterious effects for this important species.


Subject(s)
Climate Change , Ecotype , Gadus morhua , Gadus morhua/physiology , Animals , Ecosystem , Stress, Physiological , Oceans and Seas , Sweden , Seawater/chemistry , Adaptation, Physiological , Oxidative Stress
2.
Harmful Algae ; 135: 102646, 2024 May.
Article in English | MEDLINE | ID: mdl-38830712

ABSTRACT

Toxic cyanobacterial blooms present a substantial risk to public health due to the production of secondary metabolites, notably microcystins (MCs). Microcystin-LR (MC-LR) is the most prevalent and toxic variant in freshwater. MCs resist conventional water treatment methods, persistently impacting water quality. This study focused on an oligohaline shallow lagoon historically affected by MC-producing cyanobacteria, aiming to identify bacteria capable of degrading MC and investigating the influence of environmental factors on this process. While isolated strains did not exhibit MC degradation, microbial assemblages directly sourced from lagoon water removed MC-LR within seven days at 25 ºC and pH 8.0. The associated bacterial community demonstrated an increased abundance of bacterial taxa assigned to Methylophilales, and also Rhodospirillales and Rhodocyclales to a lesser extent. However, elevated atmospheric temperatures (45 ºC) and acidification (pH 5.0 and 3.0) hindered MC-LR removal, indicating that extreme environmental changes could contribute to prolonged MC persistence in the water column. This study highlights the importance of considering environmental conditions in order to develop strategies to mitigate cyanotoxin contamination in aquatic ecosystems.


Subject(s)
Microcystins , Microcystins/metabolism , Microcystins/analysis , Bacteria/metabolism , Cyanobacteria/metabolism , Cyanobacteria/physiology , Microbiota , Seawater/microbiology , Seawater/chemistry , Plankton , Hydrogen-Ion Concentration
3.
Harmful Algae ; 135: 102632, 2024 May.
Article in English | MEDLINE | ID: mdl-38830710

ABSTRACT

This article presents the first results on shellfish toxicity in the Slovenian sea (Gulf of Trieste, Adriatic Sea) since the analytical methods for the detection of biotoxins (PSP, ASP, DSP and other lipophilic toxins) in bivalve molluscs were included in the national monitoring program in 2013. In addition to toxins, the composition and abundance of toxic phytoplankton and general environmental characteristics of the seawater (surface temperature and salinity) were also monitored. During the 2014-2019 study period, only lipophilic toxins were detected (78 positive tests out of 446 runs), of which okadaic acid (OA) predominated in 97 % of cases, while dinophysistoxin-2 and yessotoxins only gave a positive result in one sampling event each. The number of samples that did not comply with the EC Regulation for the OA group was 17 or 3.8 % of all tests performed, all of which took place from September to November, while a few positive OA tests were also recorded in December, April, and May. This toxicity pattern was consistent with the occurrence pattern of the five most common DSP-producing dinoflagellates, which was supported by the development of warm and thermohaline stratified waters: Dinophysis caudata, D. fortii, D. sacculus, D. tripos and Phalacroma rotundatum. The strong correlation (r = 0.611, p < 0.001) between D. fortii, reaching abundances of up to 950 cells L-1, and OA suggests that D. fortii is the main cause of OA production in Slovenian waters. Strong interannual variations in OA and phytoplankton dynamics, exacerbated by the effects of anthropogenic impacts in this coastal ecosystem, reduce the predictability of toxicity events and require continuous and efficient monitoring. Our results also show that the introduction of the LC-MS/MS method for lipophilic toxins has improved the management of aquaculture activities, which was not as accurate based on mouse bioassays.


Subject(s)
Marine Toxins , Mytilus , Okadaic Acid , Phytoplankton , Okadaic Acid/analysis , Okadaic Acid/toxicity , Animals , Marine Toxins/analysis , Slovenia , Seafood/analysis , Seawater/chemistry , Dinoflagellida
4.
Glob Chang Biol ; 30(6): e17345, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831686

ABSTRACT

Observations from the California Current System (CalCS) indicate that the long-term trend in ocean acidification (OA) and the naturally occurring corrosive conditions for the CaCO3 mineral aragonite (saturation state Ω < 1) have a damaging effect on shelled pteropods, a keystone group of calcifying organisms in the CalCS. Concern is heightened by recent findings suggesting that shell formation and developmental progress are already impacted when Ω falls below 1.5. Here, we quantify the impact of low Ω conditions on pteropods using an individual-based model (IBM) with life-stage-specific mortality, growth, and behavior in a high-resolution regional hindcast simulation of the CalCS between 1984 and 2019. Special attention is paid to attributing this impact to different processes that lead to such low Ω conditions, namely natural variability, long-term trend, and extreme events. We find that much of the observed damage in the CalCS, and specifically >70% of the shell CaCO3 loss, is due to the pteropods' exposure to naturally occurring low Ω conditions as a result of their diel vertical migration (DVM). Over the hindcast period, their exposure to damaging waters (Ω < 1.5) increases from 9% to 49%, doubling their shell CaCO3 loss, and increasing their mortality by ~40%. Most of this increased exposure is due to the shoaling of low Ω waters driven by the long-term trend in OA. Extreme OA events amplify this increase by ~40%. Our approach can quantify the health of pteropod populations under shifting environmental conditions, and attribute changes in fitness or population structure to changes in the stressor landscape across hierarchical time scales.


Subject(s)
Calcium Carbonate , Seawater , Calcium Carbonate/analysis , Animals , Seawater/chemistry , California , Animal Shells/chemistry , Hydrogen-Ion Concentration , Water Movements , Gastropoda/physiology , Gastropoda/growth & development , Climate Change
5.
Microbes Environ ; 39(5)2024.
Article in English | MEDLINE | ID: mdl-38839370

ABSTRACT

Microbiologically influenced corrosion refers to the corrosion of metal materials caused or promoted by microorganisms. Although some novel iron-corrosive microorganisms have been discovered in various manmade and natural freshwater and seawater environments, microbiologically influenced corrosion in the deep sea has not been investigated in detail. In the present study, we collected slime-like precipitates composed of corrosion products and microbial communities from a geochemical reactor set on an artificial hydrothermal vent for 14.5 months, and conducted culture-dependent and -independent microbial community ana-lyses with corrosive activity measurements. After enrichment cultivation at 37, 50, and 70°C with zero-valent iron particles, some of the microbial consortia showed accelerated iron dissolution, which was approximately 10- to 50-fold higher than that of the abiotic control. In a comparative ana-lysis based on the corrosion acceleration ratio and amplicon sequencing of the 16S rRNA gene, three types of corrosion were estimated: the methanogen-induced type, methanogen-sulfate-reducing bacteria cooperative type, and sulfate-reducing Firmicutes-induced type. The methanogen-induced and methanogen-sulfate-reducing bacteria cooperative types were observed at 50°C, while the sulfate-reducing Firmicutes-induced type was noted at 37°C. The present results suggest the microbial components associated with microbiologically influenced corrosion in deep-sea hydrothermal systems, providing important insights for the development of future deep-sea resources with metal infrastructures.


Subject(s)
Bacteria , Hydrothermal Vents , Iron , Microbial Consortia , RNA, Ribosomal, 16S , Seawater , Corrosion , Iron/metabolism , Iron/chemistry , Seawater/microbiology , Seawater/chemistry , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Hydrothermal Vents/microbiology , Phylogeny
6.
Sci Rep ; 14(1): 12757, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38830941

ABSTRACT

Reef-building corals live in highly hydrodynamic environments, where water flow largely controls the complex chemical microenvironments surrounding them-the concentration boundary layer (CBL). The CBL may be key to alleviate ocean acidification (OA) effects on coral colonies by partially isolating them. However, OA effects on coral CBL remain poorly understood, particularly under different flow velocities. Here, we investigated these effects on the reef-building corals Acropora cytherea, Pocillopora verrucosa, and Porites cylindrica. We preconditioned corals to a control (pH 8.0) and OA (pH 7.8) treatment for four months and tested how low flow (2 cm s-1) and moderate flow (6 cm s-1) affected O2 and H+ CBL traits (thickness, surface concentrations, and flux) inside a unidirectional-flow chamber. We found that CBL traits differed between species and flow velocities. Under OA, traits remained generally stable across flows, except surface pH. In all species, the H+ CBL was thin and led to lower surface pH. Still, low flow thickened H+ CBLs and increased light elevation of surface pH. In general, our findings reveal a weak to null OA modulation of the CBL. Moreover, the OA-buffering capacity by the H+ CBL may be limited in coral species, though low flow could enhance CBL sheltering.


Subject(s)
Anthozoa , Oceans and Seas , Oxygen , Seawater , Anthozoa/physiology , Anthozoa/metabolism , Animals , Hydrogen-Ion Concentration , Oxygen/metabolism , Oxygen/chemistry , Seawater/chemistry , Coral Reefs , Water Movements , Ocean Acidification
7.
Mar Pollut Bull ; 204: 116529, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824705

ABSTRACT

In the Arctic Ocean, variations in the colored dissolved organic matter (CDOM) have important value and significance. This study proposed and evaluated a novel method by combining the Google Earth Engine with a multilayer back-propagation neural network to retrieve CDOM concentration. This model performed well on the testing data and independent validation data (R2 = 0.76, RMSE = 0.37 m-1, MAPD = 35.43 %), and it was applied to Moderate Resolution Imaging Spectroradiometer (MODIS) images. The CDOM distribution in the Arctic Ocean and its main sea areas was first depicted during the ice-free period from 2002 to 2021, with average CDOM concentration in the range of 0.25 and 0.31 m-1. High CDOM concentration appeared in coastal areas affected by rivers on the Siberian side. The CDOM concentration was highly correlated with salinity (r = -0.92) and discharge (r > 0.68), while melting sea ice diluted seawater and CDOM concentration.


Subject(s)
Environmental Monitoring , Oceans and Seas , Remote Sensing Technology , Seawater , Arctic Regions , Environmental Monitoring/methods , Seawater/chemistry , Water Pollutants, Chemical/analysis , Salinity , Ice Cover/chemistry
8.
Mar Pollut Bull ; 204: 116516, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833951

ABSTRACT

This study investigates the presence of microplastics (MPs) in seawater, sediments, and organisms along the coastal areas of Da Nang, Vietnam. The results obtained revealed MP concentrations ranging from 111 to 304 MPs/L in seawater and 2267 to 4600 MPs/kg in sediment. In organisms such as oysters, mussels, crabs, snails, and fish, MP levels ranged from 1.8 to 17.3 MPs/g (wet weight). Fiber MPs were found to be predominant across seawater, sediment, and organisms. The study identified eight, ten, and eleven types of MPs in seawater, sediment, and organisms, respectively, with Nylon, Polytetrafluoroethylene (PTFE), and Ethylene vinyl alcohol (EVOH) being the most prevalent. Notably, MP concentrations were significantly higher in benthic organisms such as oysters, mussels, and crabs compared to fish (t-test, p < 0.05), suggesting habitat dependency. Similar concentrations, shapes, and types of MPs in seawater, sediments, and organisms demonstrate a tendency for MP accumulation in aquatic organisms within the marine environment.


Subject(s)
Aquatic Organisms , Environmental Monitoring , Microplastics , Seawater , Water Pollutants, Chemical , Animals , Vietnam , Water Pollutants, Chemical/analysis , Seawater/chemistry , Microplastics/analysis , Geologic Sediments/chemistry , Brachyura , Fishes , Bivalvia , Ostreidae , Snails
9.
Mar Pollut Bull ; 204: 116490, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843703

ABSTRACT

The range of impacts of chemical dispersants on indigenous marine microbial communities and their activity remains poorly constrained. We tested the response of nearshore surface waters chronically exposed to oil leakage from a downed platform and supplied with nutrients by the Mississippi River to Corexit dispersant and nutrient additions. As assessed using 14C-labeled tracers, hexadecane mineralization potential was orders of magnitude higher in all unamended samples than in previously assessed bathypelagic communities. Nutrient additions stimulated microbial mortality but did not affect community composition and had no generalizable effect on hydrocarbon mineralization potential. By contrast, Corexit amendments caused a rapid shift in community composition and a drawdown of inorganic nitrogen and orthophosphate though no generalizable effect on hydrocarbon mineralization potential. The hydrocarbonoclastic community's response to dispersants is largely driven by the relative availability of organic substrates and nutrients, underscoring the role of environmental conditions and multiple interacting stressors on hydrocarbon degradation potential.


Subject(s)
Hydrocarbons , Seawater , Water Pollutants, Chemical , Seawater/chemistry , Water Pollutants, Chemical/analysis , Hydrocarbons/analysis , Nutrients/analysis , Surface-Active Agents , Nitrogen/analysis , Alkanes/analysis , Environmental Monitoring , Lipids
10.
Anal Chim Acta ; 1313: 342790, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38862205

ABSTRACT

BACKGROUND: Extensive use of antibiotics leads to widespread environmental pollution, endangering ecosystems, and human health. It is particularly concerning, posing global threats requiring urgent attention and action. In this regard, the shift to mass spectrometry in determining antibiotics is highly desirable. Significant progress has been made in analyzing and optimizing the sensitivity of high-salt samples. However, the persistence of cumbersome operational procedures presents a significant challenge to this shift. Thus, the persistence of complex operational procedures needs to be addressed. RESULTS: In this study, a rapid and direct method for determining antibiotics in highly saline environmental water samples using microsyringe-based slug-flow microextraction (MSFME)-droplet spray ionization (DSI) mass spectrometry (MS) has been described. The proposed method successfully detected clarithromycin, ofloxacin, and sulfadimidine in seawater within a linear range of 1-1200 ng mL-1, with low limits of detection of 0.19 ng mL-1, 0.17 ng mL-1, and 0.20 ng mL-1, respectively (Signal/Noise = 3). Additionally, spiked real seawater samples of all three antibiotics demonstrated satisfactory recoveries (95.1-107.5%) and precision (RSD≤8.8%). The MSFME-treated high-salt sample (3.5 wt%) showed a mass spectral response intensity 4-5 orders of magnitude higher than the untreated medium-salt sample (0.35 wt%). Furthermore, exploration of the applicability of MSFME showed that it is suitable not only for high-salinity (3.5 wt%) samples but also for salt-free or low-salt and hard water samples rich in calcium and magnesium ions. SIGNIFICANCE: Comparisons with other methods, complex laboratory setups for sample processing are now simplified to a single step, completing the entire process, including desalination and detection, MSFME-DSI-MS provides faster results in less than 1 min while maintaining sensitivity comparable to that of other detection methods. In conclusion, this advancement provides an exceptionally simplified protocol for the rapid, highly sensitive, and quantitative determination of antibiotics in environmental water samples.


Subject(s)
Anti-Bacterial Agents , Seawater , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , Seawater/chemistry , Seawater/analysis , Water Pollutants, Chemical/analysis , Liquid Phase Microextraction/methods , Limit of Detection
11.
Glob Chang Biol ; 30(6): e17371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863267

ABSTRACT

As the balance between erosional and constructive processes on coral reefs tilts in favor of framework loss under human-induced local and global change, many reef habitats worldwide degrade and flatten. The resultant generation of coral rubble and the beds they form can have lasting effects on reef communities and structural complexity, threatening the continuity of reef ecological functions and the services they provide. To comprehensively capture changing framework processes and predict their evolution in the context of climate change, heavily colonized rubble fragments were exposed to ocean acidification (OA) conditions for 55 days. Controlled diurnal pH oscillations were incorporated in the treatments to account for the known impact of diel carbonate chemistry fluctuations on calcification and dissolution response to OA. Scenarios included contemporary pH (8.05 ± 0.025 diel fluctuation), elevated OA (7.90 ± 0.025), and high OA (7.70 ± 0.025). We used a multifaceted approach, combining chemical flux analyses, mass alteration measurements, and computed tomography scanning images to measure total and chemical bioerosion, as well as chemically driven secondary calcification. Rates of net carbonate loss measured in the contemporary conditions (1.36 kg m-2 year-1) were high compared to literature and increased in OA scenarios (elevated: 1.84 kg m-2 year-1 and high: 1.59 kg m-2 year-1). The acceleration of these rates was driven by enhanced chemical dissolution and reduced secondary calcification. Further analysis revealed that the extent of these changes was contingent on the density of the coral skeleton, in which the micro- and macroborer communities reside. Findings indicated that increased mechanical bioerosion rates occurred in rubble with lower skeletal density, which is of note considering that corals form lower-density skeletons under OA. These direct and indirect effects of OA on chemical and mechanical framework-altering processes will influence the permanence of this crucial habitat, carrying implications for biodiversity and reef ecosystem function.


Subject(s)
Anthozoa , Climate Change , Coral Reefs , Seawater , Anthozoa/physiology , Anthozoa/chemistry , Animals , Seawater/chemistry , Hydrogen-Ion Concentration , Calcification, Physiologic , Carbonates/chemistry , Carbonates/analysis , Oceans and Seas , Ocean Acidification
12.
Nat Commun ; 15(1): 4888, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849332

ABSTRACT

Chloroxylenol is a worldwide commonly used disinfectant. The massive consumption and relatively high chemical stability of chloroxylenol have caused eco-toxicological threats in receiving waters. We noticed that chloroxylenol has a chemical structure similar to numerous halo-phenolic disinfection byproducts. Solar detoxification of some halo-phenolic disinfection byproducts intrigued us to select a rapidly degradable chloroxylenol alternative from them. In investigating antimicrobial activities of disinfection byproducts, we found that 2,6-dichlorobenzoquinone was 9.0-22 times more efficient than chloroxylenol in inactivating the tested bacteria, fungi and viruses. Also, the developmental toxicity of 2,6-dichlorobenzoquinone to marine polychaete embryos decreased rapidly due to its rapid degradation via hydrolysis in receiving seawater, even without sunlight. Our work shows that 2,6-dichlorobenzoquinone is a promising disinfectant that well addresses human biosecurity and environmental sustainability. More importantly, our work may enlighten scientists to exploit the slightly alkaline nature of seawater and develop other industrial products that can degrade rapidly via hydrolysis in seawater.


Subject(s)
Disinfectants , Disinfection , Seawater , Disinfectants/chemistry , Disinfectants/pharmacology , Disinfection/methods , Seawater/chemistry , Animals , Hydrolysis , Polychaeta/drug effects , Fungi/drug effects , Bacteria/drug effects , Chlorophenols/chemistry , Viruses/drug effects , Humans , Xylenes
14.
Mar Pollut Bull ; 203: 116395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703626

ABSTRACT

In 2019, one of Brazil's most significant environmental disasters occurred, involving an oil spill that directly affected Pernambuco state. Contamination along the coast was evaluated by the quantification of polycyclic aromatic hydrocarbons (PAHs) in fifty seawater samples collected in the summer and winter of 2021. Analysis using fluorescence spectroscopy revealed that for all the samples, levels of dissolved/dispersed petroleum hydrocarbons (DDPHs) were higher than the regional baseline for tropical western shores of the Atlantic Ocean. GC-MS analyses quantified 17 PAHs in the samples, with highest total PAHs concentrations of 234 ng L-1 in summer and 33.3 ng L-1 in winter, which were consistent with the highest risks observed in ecotoxicity assays. The use of diagnostic ratios showed that the coast was impacted by a mixture of PAHs from petrogenic and pyrolytic sources. The results indicated the need for continuous monitoring of the regions affected by the 2019 spill.


Subject(s)
Environmental Monitoring , Petroleum Pollution , Polycyclic Aromatic Hydrocarbons , Seawater , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , Brazil , Seawater/chemistry , Water Pollutants, Chemical/analysis , Petroleum/analysis , Atlantic Ocean , Gas Chromatography-Mass Spectrometry
15.
Mar Pollut Bull ; 203: 116444, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705002

ABSTRACT

An efficient and sensitivity approach, which combines solid-phase extraction or ultrasonic extraction for pretreatment, followed by ultra-performance liquid chromatography-tandem mass spectrometry, has been established to simultaneously determine eight lipophilic phycotoxins and one hydrophilic phycotoxin in seawater, sediment and biota samples. The recoveries and matrix effects of target analytes were in the range of 61.6-117.3 %, 55.7-121.3 %, 57.5-139.9 % and 82.6 %-95.0 %, 85.8-106.8 %, 80.7 %-103.3 % in seawater, sediment, and biota samples, respectively. This established method revealed that seven, six and six phycotoxins were respectively detected in the Beibu Gulf, with concentrations ranging from 0.14 ng/L (okadaic acid, OA) to 26.83 ng/L (domoic acid, DA) in seawater, 0.04 ng/g (gymnodimine-A, GYM-A) to 2.75 ng/g (DA) in sediment and 0.01 ng/g (GYM-A) to 2.64 ng/g (domoic acid) in biota samples. These results suggest that the presented method is applicable for the simultaneous determination of trace marine lipophilic and hydrophilic phycotoxins in real samples.


Subject(s)
Biota , Environmental Monitoring , Marine Toxins , Seawater , Solid Phase Extraction , Marine Toxins/analysis , Environmental Monitoring/methods , Seawater/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Tandem Mass Spectrometry , Hydrophobic and Hydrophilic Interactions , Kainic Acid/analogs & derivatives , Kainic Acid/analysis , Heterocyclic Compounds, 3-Ring , Hydrocarbons, Cyclic , Imines
16.
Environ Pollut ; 351: 124105, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38710359

ABSTRACT

Micro- and nanoplastics (MNPs) can enter the atmosphere via sea spray aerosols (SSAs), but the effects of plastic characteristics on the aerosolization process are unclear. Furthermore, the importance of the transport of MNPs via these SSAs as a possible new exposure route for human health remains unknown. The aim of this study was two-fold: (1) to examine if a selection of factors affects aerosolization processes of MNPs, and (2) to estimate human exposure to MNPs via aerosols inhalation. A laboratory-based bubble bursting mechanism, simulating the aerosolization process at sea, was used to investigate the influence of MNP as well as seawater characteristics. To determine the potential human exposure to microplastics via inhalation of SSAs, the results of the laboratory experiments were extrapolated to the field based on sea surface microplastic concentrations and the volume of inhaled aerosols. Enrichment seemed to be influenced by MNP size, concentration and polymer type. With higher enrichment for smaller particles and denser polymers. Experiments with different concentrations showed a larger range of variability but nonetheless lower concentrations seemed to result in higher enrichment, presumably due to lower aggregation. In addition to the MNP characteristics, the type of seawater used seemed to influence the aerosolization process. Our human exposure estimate to microplastic via inhalation of sea spray aerosols shows that in comparison with reported inhaled concentrations in urban and indoor environments, this exposure route seems negligible for microplastics. Following the business-as-usual scenario on plastic production, the daily plastic inhalation in coastal areas in 2100 is estimated to increase but remain far below 1 particle per day. This study shows that aerosolization of MNPs is a new plastic transport pathway to be considered, but in terms of human exposure it seems negligible compared to other more important sources of MNPs, based on current reported environmental concentrations.


Subject(s)
Aerosols , Microplastics , Particle Size , Plastics , Seawater , Humans , Microplastics/analysis , Seawater/chemistry , Polymers/chemistry , Air Pollutants/analysis , Inhalation Exposure/statistics & numerical data , Environmental Monitoring/methods , Environmental Exposure , Nanoparticles
17.
Chemosphere ; 359: 142245, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735498

ABSTRACT

This study aimed to evaluate the concentration, distribution, along with the environmental and human health impact of eight heavy metals-Pb, Cr, Cu, Cd, Zn, Mn, Ni, and As-on St. Martin's Island in the northeastern Bay of Bengal, and in doing so to help implement new legislations to protect the island. Focusing on the island's significance as a tourist destination, with seafood being a prominent dietary component, three sample types (sediment, seawater, and crustaceans) were selected for a comprehensive assessment, considering seasonal variations. Concentration of metals was observed to be lower than the established standards in sediment samples, but in seawater samples, Pb, Cr, Cd and Zn were higher than US-EPA values for natural marine water. The metals displayed a decreasing trend of Zn > Ni > Pb > Cu > Mn > As > Cd > Cr in crustacean samples for both seasons. Crustacean samples displayed higher metal concentrations in winter than in monsoon. Pb exceeded the maximum allowable limit for crustaceans with a concentration of about 3 and 4 mg kg-1 in monsoon and winter respectively; being more than 6-8 times the standard for Bangladesh which is only about 0.5 mg kg-1. Health indices displayed that although adults may suffer less from carcinogenic/non-carcinogenic health effects, the risks are far greater for children. For both age groups, As and Ni displayed possibilities of developing cancer. Principal Component Analysis (PCA)shed light on the sources of metals and showed that most of them were from anthropogenic sources. Overall, this study found that the quality of the environment of the island was better in comparison to previous studies made before the pandemic, and so, if the trend continues, it may lead to a better environment for the organisms around the island and help to keep the negative physiological impacts from the consumption of these organisms to a minimal.


Subject(s)
Bays , Environmental Monitoring , Islands , Metals, Heavy , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Animals , Humans , Bays/chemistry , Seawater/chemistry , Geologic Sediments/chemistry , Anthozoa/chemistry , India , Seasons , Metals/analysis , Seafood/analysis , Crustacea
18.
Nat Commun ; 15(1): 4365, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778052

ABSTRACT

Biotic-abiotic hybrid photocatalytic system is an innovative strategy to capture solar energy. Diversifying solar energy conversion products and balancing photoelectron generation and transduction are critical to unravel the potential of hybrid photocatalysis. Here, we harvest solar energy in a dual mode for Cu2-xSe nanoparticles biomineralization and seawater desalination by integrating the merits of Shewanella oneidensis MR-1 and biogenic nanoparticles. Photoelectrons generated by extracellular Se0 nanoparticles power Cu2-xSe synthesis through two pathways that either cross the outer membrane to activate periplasmic Cu(II) reduction or are directly delivered into the extracellular space for Cu(I) evolution. Meanwhile, photoelectrons drive periplasmic Cu(II) reduction by reversing MtrABC complexes in S. oneidensis. Moreover, the unique photothermal feature of the as-prepared Cu2-xSe nanoparticles, the natural hydrophilicity, and the linking properties of bacterium offer a convenient way to tailor photothermal membranes for solar water production. This study provides a paradigm for balancing the source and sink of photoelectrons and diversifying solar energy conversion products in biotic-abiotic hybrid platforms.


Subject(s)
Biomineralization , Copper , Seawater , Shewanella , Solar Energy , Shewanella/metabolism , Copper/chemistry , Copper/metabolism , Seawater/microbiology , Seawater/chemistry , Salinity , Water Purification/methods , Nanoparticles/chemistry , Catalysis/radiation effects
19.
Anal Chim Acta ; 1309: 342685, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772667

ABSTRACT

The monitoring of heavy metal ions in ocean is crucial for environment protection and assessment of seawater quality. However, the detection of heavy metal ions in seawater with electrochemical sensors, especially for long-term monitoring, always faces challenges due to marine biofouling caused by the nonspecific adsorption of microbial and biomolecules. Herein, an electrochemical aptasensor, integrating both antifouling and antibacterial properties, was developed for the detection of Hg2+ in the ocean. In this electrochemical aptasensor, eco-friendly peptides with superior hydrophilicity served as anti-biofouling materials, preventing nonspecific adsorption on the sensing interface, while silver nanoparticles were employed to eliminate bacteria. Subsequently, a ferrocene-modified aptamer was employed for the specific recognition of Hg2+, leveraging the aptamer's ability to fold into a thymine-Hg2+-thymine (T-Hg2+-T) structure upon interaction, and bringing ferrocene nearer to the sensor surface, significantly amplifying the electrochemical response. The prepared electrochemical aptasensor significantly reduced the nonspecific adsorption in seawater while maintaining sensitive electrochemical response. Furthermore, the biosensor exhibited a linear response range of 0.01-100 nM with a detection limit of 2.30 pM, and realized the accurate monitoring of mercury ions in real marine environment. The research results offer new insights into the preparation of marine antifouling sensing devices, and it is expected that sensors with antifouling and antimicrobial capabilities will find broad applications in the monitoring of marine pollutants.


Subject(s)
Anti-Bacterial Agents , Biofouling , Biosensing Techniques , Electrochemical Techniques , Mercury , Seawater , Mercury/analysis , Seawater/chemistry , Seawater/microbiology , Electrochemical Techniques/methods , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Biosensing Techniques/methods , Biofouling/prevention & control , Aptamers, Nucleotide/chemistry , Silver/chemistry , Water Pollutants, Chemical/analysis , Metal Nanoparticles/chemistry , Limit of Detection , Ferrous Compounds/chemistry , Metallocenes
20.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791107

ABSTRACT

The present study employs X-ray photoelectron spectroscopy (XPS) to analyze plastic samples subjected to degradation processes with the aim to gain insight on the relevant chemical processes and disclose fragmentation mechanisms. Two model plastics, namely polystyrene (PS) and polyethylene (PE), are selected and analyzed before and after artificial UV radiation-triggered weathering, under simulated environmental hydrodynamic conditions, in fresh and marine water for different time intervals. The object of the study is to identify and quantify chemical groups possibly evidencing the occurrence of hydrolysis and oxidation reactions, which are the basis of degradation processes in the environment, determining macroplastic fragmentation. Artificially weathered plastic samples are analyzed also by Raman and FT-IR spectroscopy. Changes in surface chemistry with weathering are revealed by XPS, involving the increase in chemical moieties (hydroxyl, carbonyl, and carboxyl functionalities) which can be correlated with the degradation processes responsible for macroplastic fragmentation. On the other hand, the absence of significant modifications upon plastics weathering evidenced by Raman and FT-IR spectroscopy confirms the importance of investigating plastics surface, which represents the very first part of the materials exposed to degradation agents, thus revealing the power of XPS studies for this purpose. The XPS data on experimentally weathered particles are compared with ones obtained on microplastics collected from real marine environment for investigating the occurring degradation processes.


Subject(s)
Photoelectron Spectroscopy , Plastics , Polyethylene , Photoelectron Spectroscopy/methods , Plastics/chemistry , Polyethylene/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Polystyrenes/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Seawater/chemistry , Microplastics/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...