Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 35(23): e9201, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34542924

ABSTRACT

RATIONALE: Interest in growth hormone secretagogues has intensified during the past several years based on capable, ever-widening investigational applications of recombinant growth hormone in animals and humans. Ibutamoren is a potent, long-acting, selective and orally active non-peptide growth hormone secretagogue, which has a great potential for abuse as a performance-enhancing agent in sports. METHODS: To support drug metabolism and pharmacokinetic studies of chiral pharmaceuticals, it is necessary to combine the resolving power of high-performance liquid chromatography with the sensitivity of mass spectrometric techniques. This paper describes the metabolic conversion of ibutamoren using equine liver microsomes and metabolite characterization using a QExactive high-resolution mass spectrometer. RESULTS: A total of 32 metabolites for ibutamoren (20 phase I and 12 phase II) were detected. The important findings of the current research are as follows: (1) the growth hormone secretagogue ibutamoren was prone to oxidation, resulting in corresponding hydroxylated metabolites; (2) in ibutamoren, the dissociation of the phenyl ring and 2-amino-2-methylpropanamide side chain was also observed; (3) the glucuronic acid conjugates of mono-, di- and trihydroxylated analogues were detected; and (4) no sulfonic acid conjugated metabolites were observed in this study of ibutamoren. CONCLUSIONS: The reported data help in the speedy detection of the growth hormone secretagogue ibutamoren and reveal its illegal use in competitive sports.


Subject(s)
Indoles , Microsomes, Liver/metabolism , Secretagogues , Spiro Compounds , Animals , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Doping in Sports , Horses , Indoles/analysis , Indoles/chemistry , Indoles/metabolism , Secretagogues/analysis , Secretagogues/chemistry , Secretagogues/metabolism , Spiro Compounds/analysis , Spiro Compounds/chemistry , Spiro Compounds/metabolism , Tandem Mass Spectrometry/methods , Tandem Mass Spectrometry/standards
2.
Drug Test Anal ; 11(2): 350-354, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30136411

ABSTRACT

A number of unknown pharmaceutical preparations seized by Danish customs authorities were submitted for liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis. Comparison with reference standards unequivocally identified the content of the powders as analogs of the growth hormone secretagogues GHRP-2 (Pralmorelin), GHRP-6, Ipamorelin, and modified growth hormone releasing factor (modified GRF 1-29), which can be used as performance-enhancing substances in sports. In all cases, the detected modification involved the addition of an extra glycine amino acid at the N-terminus, and analytical methods targeting growth hormone secretagogues should hence be updated accordingly.


Subject(s)
Doping in Sports , Glycine/chemistry , Growth Hormone-Releasing Hormone/analysis , Oligopeptides/analysis , Peptide Fragments/analysis , Performance-Enhancing Substances/analysis , Secretagogues/analysis , Substance Abuse Detection/methods , Growth Hormone-Releasing Hormone/chemistry , Oligopeptides/chemistry , Peptide Fragments/chemistry , Powders , Reference Standards , Secretagogues/chemistry
3.
Biochemistry ; 57(26): 3894-3902, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29792023

ABSTRACT

The objective of this study was to investigate the effect and the mechanism of action of fernenediol as an insulin secretagogue. Wistar rats were treated with 0.1, 1, and 10 mg/kg fernenediol before inducing hyperglycemia by oral glucose. The glycaemia, insulin, LDH, calcium, and hepatic glycogen were analyzed. Considering the intestine and pancreas as targets for the triterpene action, the duodenum was used to verify the influence of fernenediol on intestinal glycosidases. Additionally, pancreatic islets were used for studies of 14C-deoxyglucose uptake and the influx of 45Ca2+ in hyperglycemic media with/without fernenediol in the presence/absence of an inhibitor/activator of KATP channels, glibenclamide, diazoxide, nifedipine, calcium chelator (BAPTA-AM), and H-89 and ST, the inhibitors of the PKA and PKC enzymes. Fernenediol significantly reduced glycaemia, potentiated glucose-induced insulin secretion, and stimulated liver glycogen deposition in hyperglycemic rats after an in vivo treatment without changing intestinal disaccharidases activities and showing no influence on intestinal glucose absorption. Also, it stimulated the glucose uptake and calcium influx in pancreatic islets. The involvement of voltage-dependent L-type calcium channels and ATP-dependent potassium channels and the release of calcium from intracellular stores are mandatory for the stimulatory effect of fernenediol on calcium influx. Fernenediol did not change PKA and PKC activities or modify calcium levels. This triterpene is a potent antihyperglycemic agent with a strong insulin secretagogue effect on glycogen accumulation as well. As a whole, this compound presents significant perspectives as a future new drug for the treatment of insulin resistance and/or diabetes.


Subject(s)
Hyperglycemia/blood , Insulin/blood , Secretagogues/pharmacology , Animals , Calcium Channels, L-Type/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Glycogen/metabolism , Hyperglycemia/drug therapy , Male , Potassium Channels/metabolism , Protein Kinase C/metabolism , Rats , Rats, Wistar , Secretagogues/chemistry
4.
Lipids ; 53(4): 429-436, 2018 04.
Article in English | MEDLINE | ID: mdl-29655176

ABSTRACT

Growth hormone (GH) release is a process that is well regulated by several factors, including GH secretagogues. GH can mediate the regulation of the fatty acid level and composition. The aim of this study was to determine the effect of a synthetic GH secretagogue peptide (A233) on the growth and fatty acid composition in tilapia (Oreochromis niloticus). To address this objective, we administrated a diet supplemented with A233 to juvenile tilapia for 60 days. The group fed with a diet supplemented with 600 µg of A233 per kg of feed increased in weight (4.81 ± 0.09 g) and specific growth rate (2.49 ± 0.03%/day) compared to the control diet group (3.63 ± 0.08 g, 2.07 ± 0.04%/day; respectively) (p < 0.001). In the muscle, the total lipids for the control diet group were higher than that in the group fed with 600 µg of A233 per kg feed; however, no differences were detected in the liver. In both tissues, the patterns of fatty acid composition and content were generally similar, with some exceptions. Tilapia fed with 600 µg of A233 per kg of feed showed, in liver and muscle, a significantly higher composition and content of n-3 polyunsaturated fatty acids (such as 20:5n-3, 22:5n-3, 22:6n-3) and n-3/n-6 PUFA than animals fed with the control diet. To our knowledge, this is the first report on the the effects of natural or synthetic GH secretagogues (GHS) on fatty acid composition, implying an increase in the nutritional quality of the tilapia.


Subject(s)
Cichlids/growth & development , Cichlids/metabolism , Fatty Acids, Omega-3/metabolism , Liver/drug effects , Muscles/drug effects , Peptide Hormones/pharmacology , Secretagogues/pharmacology , Animals , Dietary Supplements , Dose-Response Relationship, Drug , Liver/metabolism , Muscles/metabolism , Peptide Hormones/administration & dosage , Peptide Hormones/chemistry , Secretagogues/administration & dosage , Secretagogues/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...