Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 174: 116536, 2024 May.
Article in English | MEDLINE | ID: mdl-38569274

ABSTRACT

Diabetic kidney disease (DKD) is a leading cause of kidney failure. However, the involvement of renal fibroblasts and their communications with renal epithelial cells during DKD remain poorly understood. We investigated the potential role of renal proximal tubular epithelial cells (PTECs) in renal fibroblast activation that might lead to DKD. Additionally, the protective effects of curcumin, a known antioxidant, against renal fibroblast activation induced by high glucose-treated PTECs were investigated. Secretome was collected from HK-2 PTECs under normal glucose, high glucose, high glucose pretreated/cotreated with curcumin, or osmotic control condition for 24 h. Such secretome was then used to treat BHK-21 renal fibroblasts for 24 h. BHK-21 cells treated with high glucose-induced secretome had increased levels of fibroblast activation markers, including spindle index, F-actin, α-smooth muscle actin (α-SMA), fibronectin, collagen I, matrix metalloproteinase-2 (MMP-2) and MMP-9, as compared with normal glucose and osmotic control conditions. However, all these increases were successfully mitigated by curcumin. In addition, high glucose markedly increased intracellular reactive oxygen species (ROS) and transforming growth factor-ß (TGF-ß) secretion, but did not affect the secretion of platelet-derived growth factor A (PDGFA) and interleukin-1ß (IL-1ß), in HK-2 renal cells as compared with normal glucose and osmotic control conditions. Both intracellular ROS and secreted TGF-ß levels were successfully mitigated by curcumin. Therefore, curcumin prevents the high glucose-induced stimulatory effects of renal cell secretome on fibroblast activation, at least in part, via mitigating intracellular ROS and TGF-ß secretion.


Subject(s)
Curcumin , Fibroblasts , Glucose , Reactive Oxygen Species , Transforming Growth Factor beta , Curcumin/pharmacology , Glucose/toxicity , Fibroblasts/drug effects , Fibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Humans , Reactive Oxygen Species/metabolism , Cell Line , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Animals , Secretome/drug effects , Secretome/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Diabetic Nephropathies/metabolism , Antioxidants/pharmacology
2.
Acta Biomater ; 145: 77-87, 2022 06.
Article in English | MEDLINE | ID: mdl-35460910

ABSTRACT

Postmenopausal osteoporosis results from a pro-resorptive bone environment, which decreases bone mineral density causing increased fracture risk. Bone marrow derived mesenchymal stem/stromal cells (MSCs) secrete factors involved in bone homeostasis, but osteoporosis mediated changes to their secretions remain understudied. Herein, we examined the secretome of MSCs isolated from ovariectomized rats (OVX rMSCs), a model of post-menopausal osteoporosis, as a function of cell-cell interactions. Specifically, we controlled clustering of OVX and SHAM rMSCs by assembling them in granular hydrogels synthesized from poly(ethylene glycol) microgels with average diameters of ∼10, 100, and 200 µm. We directed both the sizes of rMSC clusters (single cells to ∼30 cells/cluster) and the percentages of cells within clusters (∼20-90%) by controlling the scaffold pore dimensions. Large clusters of OVX rMSCs had a pro-resorptive secretory profile, with increased concentrations of Activin A, CXCL1, CX3CL1, MCP-1, TIMP-1, and TNF-ɑ, compared to SHAM rMSCs. As this pro-resorptive bias was only observed in large cell clusters, we characterized the expression of several cadherins, mediators of cell-cell contacts. N-cadherin expression was elevated (∼4-fold) in OVX relative to SHAM rMSCs, in both cell clusters and single cells. Finally, TIMP-1 and MCP-1 secretion was only decreased in large cell clusters of OVX rMSCs when N-cadherin interactions were blocked, highlighting the dependence of OVX rMSC secretion of pro-resorptive cytokines on N-cadherin mediated cell-cell contacts. Further elucidation of the N-cadherin mediated osteoporotic MSC secretome may have implications for developing therapies for postmenopausal osteoporosis. STATEMENT OF SIGNIFICANCE: Postmenopausal osteoporosis is a prevalent bone disorder that affects tens of millions of women worldwide. This disease is characterized by severe bone loss resulting from a pro-resorptive bone marrow environment, where the rates of bone resorption outpace the rates of bone deposition. The paracrine factors secreted by bone marrow MSCs can influence cell types responsible for bone homeostasis, but the osteoporosis-mediated changes to MSC secretory properties remains understudied. In this study, we used PEG-based porous granular scaffolds to study the influence of cell clustering on the secretory properties of osteoporotic MSCs. We observed increased secretion of several pro-resorptive factors by osteoporotic MSCs in large clusters. Further, we explored the dependence of this altered secretion profile on N-cadherin mediated cell-cell contacts.


Subject(s)
Cadherins , Hydrogels , Osteoporosis, Postmenopausal , Osteoporosis , Animals , Cadherins/metabolism , Female , Humans , Hydrogels/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Osteoporosis/therapy , Osteoporosis, Postmenopausal/complications , Ovariectomy/adverse effects , Polyethylene Glycols/pharmacology , Rats , Rats, Sprague-Dawley , Secretome/drug effects , Secretome/metabolism , Tissue Inhibitor of Metalloproteinase-1
3.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216249

ABSTRACT

Multiple studies have demonstrated that various nanoparticles (NPs) stimulate osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibit adipogenic ones. The mechanisms of these effects are not determined. The aim of this paper was to estimate Wharton's Jelly MSCs phenotype and humoral factor production during tri-lineage differentiation per se and in the presence of silicon-gold NPs. Silicon (SiNPs), gold (AuNPs), and 10% Au-doped Si nanoparticles (SiAuNPs) were synthesized by laser ablation, characterized, and studied in MSC cultures before and during differentiation. Humoral factor production (n = 41) was analyzed by Luminex technology. NPs were nontoxic, did not induce ROS production, and stimulated G-CSF, GM-CSF, VEGF, CXCL1 (GRO) production in four day MSC cultures. During MSC differentiation, all NPs stimulated CD13 and CD90 expression in osteogenic cultures. MSC differentiation resulted in a decrease in multiple humoral factor production to day 14 of incubation. NPs did not significantly affect the production in chondrogenic cultures and stimulated it in both osteogenic and adipogenic ones. The major difference in the protein production between osteogenic and adipogenic MSC cultures in the presence of NPs was VEGF level, which was unaffected in osteogenic cells and 4-9 times increased in adipogenic ones. The effects of NPs decreased in a row AuNPs > SiAuNPs > SiNPs. Taken collectively, high expression of CD13 and CD90 by MSCs and critical level of VEGF production can, at least, partially explain the stimulatory effect of NPs on MSC osteogenic differentiation.


Subject(s)
Cell Differentiation/drug effects , Gold/pharmacology , Metal Nanoparticles/administration & dosage , Secretome/drug effects , Silicon/pharmacology , Wharton Jelly/drug effects , Adipogenesis/drug effects , Animals , CD13 Antigens/metabolism , Chondrogenesis/drug effects , Female , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Phenotype , Secretome/metabolism , Thy-1 Antigens/metabolism , Vascular Endothelial Growth Factor A/metabolism , Wharton Jelly/metabolism
4.
Int J Mol Sci ; 22(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34830067

ABSTRACT

Mesenchymal stromal cells isolated from menstrual blood (MenSCs) exhibit a potent pro-angiogenic and immunomodulatory capacity. Their therapeutic effect is mediated by paracrine mediators released by their secretomes. In this work, we aimed to evaluate the effect of a specific priming condition on the phenotype and secretome content of MenSCs. Our results revealed that the optimal condition for priming MenSCs was the combination of interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) that produced a synergistic and additive effect on IDO1 release and immune-related molecule expression. The analyses of MenSC-derived secretomes after IFNγ and TNFα priming also revealed an increase in EV release and in the differentially expressed miRNAs involved in the immune response and inflammation. Proliferation assays on lymphocyte subsets demonstrated a decrease in CD4+ T cells and CD8+ T cells co-cultured with secretomes, especially in the lymphocytes co-cultured with secretomes from primed cells. Additionally, the expression of immune checkpoints (PD-1 and CTLA-4) was increased in the CD4+ T cells co-cultured with MenSC-derived secretomes. These findings demonstrate that the combination of IFNγ and TNFα represents an excellent priming strategy to enhance the immunomodulatory capacity of MenSCs. Moreover, the secretome derived from primed MenSCs may be postulated as a therapeutic option for the regulation of adverse inflammatory reactions.


Subject(s)
Interferon-gamma/pharmacology , Menstruation/blood , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Secretome/immunology , Secretome/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Adult , Antigens, Surface/analysis , Coculture Techniques , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Healthy Volunteers , Humans , Immunomodulation/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , MicroRNAs/drug effects , MicroRNAs/metabolism , Secretome/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
5.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830141

ABSTRACT

Fibroblasts contribute to approximately 20% of the non-cardiomyocytic cells in the heart. They play important roles in the myocardial adaption to stretch, inflammation, and other pathophysiological conditions. Fibroblasts are a major source of extracellular matrix (ECM) proteins whose production is regulated by cytokines, such as TNF-α or TGF-ß. The resulting myocardial fibrosis is a hallmark of pathological remodeling in dilated cardiomyopathy (DCM). Therefore, in the present study, the secretome and corresponding transcriptome of human cardiac fibroblasts from patients with DCM was investigated under normal conditions and after TNF-α or TGF-ß stimulation. Secreted proteins were quantified via mass spectrometry and expression of genes coding for secreted proteins was analyzed via Affymetrix Transcriptome Profiling. Thus, we provide comprehensive proteome and transcriptome data on the human cardiac fibroblast's secretome. In the secretome of quiescent fibroblasts, 58% of the protein amount belonged to the ECM fraction. Interestingly, cytokines were responsible for 5% of the total protein amount in the secretome and up to 10% in the corresponding transcriptome. Furthermore, cytokine gene expression and secretion were upregulated upon TNF-α stimulation, while collagen secretion levels were elevated after TGF-ß treatment. These results suggest that myocardial fibroblasts contribute to pro-fibrotic and to inflammatory processes in response to extracellular stimuli.


Subject(s)
Cytokines/pharmacology , Fibroblasts/drug effects , Myocardium/metabolism , Secretome/drug effects , Transcriptome/drug effects , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cells, Cultured , Collagen/genetics , Collagen/metabolism , Cytokines/genetics , Cytokines/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Microscopy, Fluorescence , Myocardium/cytology , Oligonucleotide Array Sequence Analysis , Secretome/metabolism , Tandem Mass Spectrometry , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
6.
Cancer Lett ; 522: 269-280, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34534616

ABSTRACT

Obesity is a rising epidemic, the influence of which on cancer development, progression as well as its impact on current standard of care cancer treatments is profound with many facets. Obesity is emerging as a modulating factor in many cancer therapies, such as chemotherapy, radiotherapy, immunotherapy and combination therapies. It has been reported to diminish the efficacy of some treatments but has also been alluded to being protective in terms of reduced treatment toxicities, thus the evolution of the obesity paradox. The obese tumour microenvironment influences treatment response through modulation of a series of aspects, including altered adipocyte secretome, angiogenesis, hypoxia, fibrosis, free fatty acid uptake as well as a modulated immune landscape. However, the influence of these underlying mechanisms on cancer treatment response and the biological action of adipose tissue is still largely unknown. Elucidation of these facets may lead to the enhanced efficacy of current treatment options or the identification of novel methods to combat cancer in the obese tumour microenvironment.


Subject(s)
Neoplasms/drug therapy , Neoplasms/radiotherapy , Obesity/drug therapy , Obesity/radiotherapy , Adipocytes/drug effects , Adipocytes/radiation effects , Combined Modality Therapy , Humans , Neoplasms/complications , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/radiotherapy , Obesity/complications , Obesity/pathology , Secretome/drug effects , Secretome/radiation effects , Treatment Outcome , Tumor Microenvironment/drug effects , Tumor Microenvironment/radiation effects
7.
Cell Mol Gastroenterol Hepatol ; 11(5): 1405-1436, 2021.
Article in English | MEDLINE | ID: mdl-33482394

ABSTRACT

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) from pancreatic adenocarcinoma (PDA) present high protein synthesis rates. CAFs express the G-protein-coupled somatostatin receptor sst1. The sst1 agonist SOM230 blocks CAF protumoral features in vitro and in immunocompromised mice. We have explored here the therapeutic potential of SOM230, and underlying mechanisms, in immunocompetent models of murine PDA mimicking the heavy fibrotic and immunosuppressive stroma observed in patient tumors. METHODS: Large-scale mass spectrometry analyses were performed on media conditioned from 9 patient PDA-derived CAF primary cultures. Spontaneous transgenic and experimental (orthotopic co-graft of tumor cells plus CAFs) PDA-bearing mice were longitudinally ultrasound-monitored for tumor and metastatic progression. Histopathology and flow cytometry analyses were performed on primary tumors and metastases. Stromal signatures were functionally validated through bioinformatics using several published, and 1 original, PDA database. RESULTS: Proteomics on the CAF secretome showed that SOM230 controls stromal activities including inflammatory responses. Among the identified secreted proteins, we validated that colony-stimulating factor 1 (CSF-1) (a macrophage growth factor) was reduced by SOM230 in the tumor and plasma of PDA-harboring mice, alongside intratumor stromal normalization (reduced CAF and macrophage activities), and dramatic metastasis reduction. In transgenic mice, these SOM230 benefits alleviate the chemotherapy-induced (gemcitabine) immunosuppressive stroma reshaping. Mechanistically, SOM230 acts in vivo on CAFs through sst1 to disrupt prometastatic CAF production of CSF-1 and cross-talk with macrophages. We found that in patients, stromal CSF-1 was associated with aggressive PDA forms. CONCLUSIONS: We propose SOM230 as an antimetastatic therapy in PDA for its capacity to remodel the fibrotic and immunosuppressive myeloid stroma. This pharmacotherapy should benefit PDA patients treated with chemotherapies.


Subject(s)
Cancer-Associated Fibroblasts/drug effects , Carcinoma, Pancreatic Ductal/drug therapy , Macrophages/drug effects , Pancreatic Neoplasms/drug therapy , Secretome/drug effects , Somatostatin/analogs & derivatives , Aged , Aged, 80 and over , Animals , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/secondary , Female , Hormones/pharmacology , Humans , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Somatostatin/pharmacology
8.
J Appl Toxicol ; 41(8): 1286-1303, 2021 08.
Article in English | MEDLINE | ID: mdl-33355407

ABSTRACT

The specific cytotoxic effects of nanoparticles on tumor cells may be used in future antitumor clinical applications. Gold nanoparticles (AuNPs) have been reported to produce potent cytotoxic effects; however, the precise mechanism is unclear. In this study, AuNPs were synthesized; the average size of the particles was 62.2 ± 6 nm with smooth surface and multiple shapes, which were determined using transmission electron microscopy and field emission scanning electron microscopy. The selected area electron diffraction patterns suggested that the synthesized AuNPs were crystalline. The X-ray photoelectron spectroscopy (XPS) spectrum of the synthesized AuNPs has presented an intense peak at 100 eV, signifying the entire composition of Au in the developed AuNPs. This synthesized AuNPs showed the most potent efficacy in prostate cancer cells, regardless of whether or not they were androgen dependent. Secretome determinations using two-dimensional difference in-gel electrophoresis (2D-DIGE), followed by enzyme-linked immunosorbent assay and quantitative reverse transcriptase-polymerase chain reaction validations, have identified a series of secretory proteins that were dysregulated by AuNP treatment in prostate cancer cells, many of which are highly involved in cytokine-chemokine functions, including CXCL3, interleukin-10, CCL2, and matrix metalloproteinase 9 (MMP9). Further research on molecular mechanism has indicated that AuNPs can trigger the secretion of anticancer factors and myeloid cell-polarizing factors from tumor cells through MMP9 inhibition. These results have clearly signified the cytotoxic potential of AuNPs for treating prostate cancer and may provide a novel direction for prostate cancer therapy in the future.


Subject(s)
Metal Nanoparticles/therapeutic use , Prostatic Neoplasms/drug therapy , Secretome/drug effects , Cell Line, Tumor , Cytotoxins/therapeutic use , Electrophoresis, Gel, Two-Dimensional , Gold , Humans , Male , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Photoelectron Spectroscopy , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...