Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.791
Filter
1.
Cell Mol Life Sci ; 81(1): 207, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709385

ABSTRACT

The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.


Subject(s)
Cathepsin B , Lysosomes , Pancreatitis , Secretory Vesicles , rab GTP-Binding Proteins , rab7 GTP-Binding Proteins , Animals , Lysosomes/metabolism , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/genetics , Cathepsin B/metabolism , Cathepsin B/genetics , Mice , Secretory Vesicles/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins/metabolism , Acute Disease , Acinar Cells/metabolism , Acinar Cells/pathology , Trypsinogen/metabolism , Trypsinogen/genetics , Ceruletide , Enzyme Precursors/metabolism , Enzyme Precursors/genetics , Mice, Inbred C57BL , Mice, Knockout
2.
Anat Histol Embryol ; 53(3): e13051, 2024 May.
Article in English | MEDLINE | ID: mdl-38741549

ABSTRACT

Our research aimed to provide complete histological, histochemical and ultrastructural features of the lacrimal gland of the one-humped camel (Camelus dromedarius) as well as novel insights into its adaptability to the Egyptian desert. Our study was applied to 20 fresh lacrimal glands collected from 10 camels instantly after their slaughtering. The results revealed that the gland was a compound tubulo-acinar gland, and its acini were enclosed by a thick connective tissue capsule that was very rich in elastic and collagen fibres. The gland acini had irregular lumens and were composed of conical to pyramidal cells. The nuclei of secretory cells were found in the basal part, and the cytoplasm was eosinophilic and granular. The glandular tissue consisted of serous and mucous acini and seromucous secretory cells. Histochemically, there was a significant amount of neutral mucopolysaccharides in the acini in which mucous cells had a significant periodic acid-Schiff (PAS)-positive reaction, whereas seromucous cells had a mild PAS-positive reaction. Ultrastructurally, the lacrimal cells had numerous secretory vesicles with contents of moderately to highly electron-dense cytoplasm. The nuclear envelope consisted of two prominent membranes surrounding the peri-nuclear cisterna. The acinar cells had numerous electron-lucent and moderately electron-dense secretory granules, mainly situated on the apical surface, and secreted their contents into the lumen. The luminal surface of the mucous secretory cells represents the remains of secretory granules discharged by the merocrine mechanism. In conclusion, the mucous secretion is believed to aid in the washing and moistening of the eyeball, particularly in dry, hot and dusty environments.


Subject(s)
Camelus , Lacrimal Apparatus , Animals , Camelus/anatomy & histology , Lacrimal Apparatus/anatomy & histology , Lacrimal Apparatus/ultrastructure , Lacrimal Apparatus/cytology , Male , Secretory Vesicles/ultrastructure , Acinar Cells/ultrastructure , Acinar Cells/cytology , Female , Microscopy, Electron, Transmission/veterinary , Periodic Acid-Schiff Reaction/veterinary
3.
J Clin Invest ; 134(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557489

ABSTRACT

Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.


Subject(s)
Calcium Channels , Calcium , Mice , Animals , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium/metabolism , Pancreas/metabolism , Exocytosis/physiology , Secretory Vesicles/genetics
4.
Cell Calcium ; 120: 102883, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643716

ABSTRACT

The basal and glucose-induced insulin secretion from pancreatic beta cells is a tightly regulated process that is triggered in a Ca2+-dependent fashion and further positively modulated by substances that raise intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP) or by certain antidiabetic drugs. In a previous study, we have temporally resolved the subplasmalemmal [Ca2+]i dynamics in beta cells that are characterized by trains of sharply delimited spikes, reaching peak values up to 5 µM. Applying total internal reflection fluorescence (TIRF) microscopy and synaptopHluorin to visualize fusion events of individual granules, we found that several fusion events can coincide within 50 to 150 ms. To test whether subplasmalemmal [Ca2+]i microdomains around single or clustered Ca2+ channels may cause a synchronized release of insulin-containing vesicles, we applied simultaneous dual-color TIRF microscopy and monitored Ca2+ fluctuations and exocytotic events in INS-1 cells at high frame rates. The results indicate that fusions can be triggered by subplasmalemmal Ca2+ spiking. This, however, does account for a minority of fusion events. About 90 %-95 % of fusion events either happen between Ca2+ spikes or incidentally overlap with subplasmalemmal Ca2+ spikes. We conclude that only a fraction of exocytotic events in glucose-induced and tolbutamide- or forskolin-enhanced insulin release from INS-1 cells is tightly coupled to Ca2+ microdomains around voltage-gated Ca2+ channels.


Subject(s)
Calcium , Exocytosis , Insulin-Secreting Cells , Insulin , Microscopy, Fluorescence , Insulin-Secreting Cells/metabolism , Calcium/metabolism , Animals , Rats , Insulin/metabolism , Exocytosis/drug effects , Calcium Signaling , Insulin Secretion/drug effects , Glucose/metabolism , Secretory Vesicles/metabolism
5.
Cell Rep ; 43(4): 113992, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38536815

ABSTRACT

Insulin is packaged into secretory granules that depart the Golgi and undergo a maturation process that involves changes in the protein and lipid composition of the granules. Here, we show that insulin secretory granules form physical contacts with the endoplasmic reticulum and that the lipid exchange protein oxysterol-binding protein (OSBP) is recruited to these sites in a Ca2+-dependent manner. OSBP binding to insulin granules is positively regulated by phosphatidylinositol-4 (PI4)-kinases and negatively regulated by the PI4 phosphate (PI(4)P) phosphatase Sac2. Loss of Sac2 results in excess accumulation of cholesterol on insulin granules that is normalized when OSBP expression is reduced, and both acute inhibition and small interfering RNA (siRNA)-mediated knockdown of OSBP suppress glucose-stimulated insulin secretion without affecting insulin production or intracellular Ca2+ signaling. In conclusion, we show that lipid exchange at endoplasmic reticulum (ER)-granule contact sites is involved in the exocytic process and propose that these contacts act as reaction centers with multimodal functions during insulin granule maturation.


Subject(s)
Cholesterol , Endoplasmic Reticulum , Insulin Secretion , Insulin , Minor Histocompatibility Antigens , Receptors, Steroid , Secretory Vesicles , Endoplasmic Reticulum/metabolism , Secretory Vesicles/metabolism , Animals , Cholesterol/metabolism , Insulin/metabolism , Receptors, Steroid/metabolism , Phosphatidylinositol Phosphates/metabolism , Mice , Humans , Calcium/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Glucose/metabolism
6.
Adv Sci (Weinh) ; 11(21): e2309427, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38501900

ABSTRACT

Developing time-sustained drug delivery systems is a main goal in innovative medicines. Inspired by the architecture of secretory granules from the mammalian endocrine system it has generated non-toxic microscale amyloid materials through the coordination between divalent metals and poly-histidine stretches. Like their natural counterparts that keep the functionalities of the assembled protein, those synthetic structures release biologically active proteins during a slow self-disintegration process occurring in vitro and upon in vivo administration. Being these granules formed by a single pure protein species and therefore, chemically homogenous, they act as highly promising time-sustained drug delivery systems. Despite their enormous clinical potential, the nature of the clustering process and the quality of the released protein have been so far neglected issues. By using diverse polypeptide species and their protein-only oligomeric nanoscale versions as convenient models, a conformational rearrangement and a stabilization of the building blocks during their transit through the secretory granules, being the released material structurally distinguishable from the original source is proved here. This fact indicates a dynamic nature of secretory amyloids that act as conformational arrangers rather than as plain, inert protein-recruiting/protein-releasing granular depots.


Subject(s)
Amyloid , Amyloid/metabolism , Amyloid/chemistry , Humans , Secretory Vesicles/metabolism , Drug Delivery Systems/methods , Protein Conformation
7.
J Cell Sci ; 137(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38348894

ABSTRACT

Dense core vesicles (DCVs) and synaptic vesicles are specialised secretory vesicles in neurons and neuroendocrine cells, and abnormal release of their cargo is associated with various pathophysiologies. Endoplasmic reticulum (ER) stress and inter-organellar communication are also associated with disease biology. To investigate the functional status of regulated exocytosis arising from the crosstalk of a stressed ER and DCVs, ER stress was modelled in PC12 neuroendocrine cells using thapsigargin. DCV exocytosis was severely compromised in ER-stressed PC12 cells and was reversed to varying magnitudes by ER stress attenuators. Experiments with tunicamycin, an independent ER stressor, yielded similar results. Concurrently, ER stress also caused impaired DCV exocytosis in insulin-secreting INS-1 cells. Molecular analysis revealed blunted SNAP25 expression, potentially attributed to augmented levels of ATF4, an inhibitor of CREB that binds to the CREB-binding site. The effects of loss of function of ATF4 in ER-stressed cells substantiated this attribution. Our studies revealed severe defects in DCV exocytosis in ER-stressed cells for the first time, mediated by reduced levels of key exocytotic and granulogenic switches regulated via the eIF2α (EIF2A)-ATF4 axis.


Subject(s)
Neurons , Synaptic Vesicles , Rats , Animals , Neurons/metabolism , Synaptic Vesicles/metabolism , Exocytosis/physiology , Secretory Vesicles/metabolism , Endoplasmic Reticulum Stress
8.
Cell Rep ; 43(3): 113836, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38421874

ABSTRACT

Endocrine cells employ regulated exocytosis of secretory granules to secrete hormones and neurotransmitters. Secretory granule exocytosis depends on spatiotemporal variables such as proximity to the plasma membrane and age, with newly generated granules being preferentially released. Despite recent advances, we lack a comprehensive view of the molecular composition of insulin granules and associated changes over their lifetime. Here, we report a strategy for the purification of insulin secretory granules of distinct age from insulinoma INS-1 cells. Tagging the granule-resident protein phogrin with a cleavable CLIP tag, we obtain intact fractions of age-distinct granules for proteomic and lipidomic analyses. We find that the lipid composition changes over time, along with the physical properties of the membrane, and that kinesin-1 heavy chain (KIF5b) as well as Ras-related protein 3a (RAB3a) associate preferentially with younger granules. Further, we identify the Rho GTPase-activating protein (ARHGAP1) as a cytosolic factor associated with insulin granules.


Subject(s)
Insulinoma , Pancreatic Neoplasms , Humans , Insulin/metabolism , Proteomics , Lipidomics , Insulinoma/metabolism , Pancreatic Neoplasms/metabolism , Exocytosis , Secretory Vesicles/metabolism , Cytoplasmic Granules/metabolism
9.
Elife ; 132024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381485

ABSTRACT

The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.


Subject(s)
Epilepsy, Generalized , Golgi Apparatus , Secretory Vesicles , Seizures, Febrile , Cytoplasm , Cell Membrane , Clathrin
10.
Sci Rep ; 14(1): 3200, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38331993

ABSTRACT

In the Drosophila larval salivary gland, developmentally programmed fusions between lysosomes and secretory granules (SGs) and their subsequent acidification promote the maturation of SGs that are secreted shortly before puparium formation. Subsequently, ongoing fusions between non-secreted SGs and lysosomes give rise to degradative crinosomes, where the superfluous secretory material is degraded. Lysosomal fusions control both the quality and quantity of SGs, however, its molecular mechanism is incompletely characterized. Here we identify the R-SNARE Ykt6 as a novel regulator of crinosome formation, but not the acidification of maturing SGs. We show that Ykt6 localizes to Lamp1+ carrier vesicles, and forms a SNARE complex with Syntaxin 13 and Snap29 to mediate fusion with SGs. These Lamp1 carriers represent a distinct vesicle population that are functionally different from canonical Arl8+, Cathepsin L+ lysosomes, which also fuse with maturing SGs but are controlled by another SNARE complex composed of Syntaxin 13, Snap29 and Vamp7. Ykt6- and Vamp7-mediated vesicle fusions also determine the fate of SGs, as loss of either of these SNAREs prevents crinosomes from acquiring endosomal PI3P. Our results highlight that fusion events between SGs and different lysosome-related vesicle populations are critical for fine regulation of the maturation and crinophagic degradation of SGs.


Subject(s)
SNARE Proteins , Secretory Vesicles , SNARE Proteins/genetics , SNARE Proteins/metabolism , R-SNARE Proteins/genetics , R-SNARE Proteins/metabolism , Qa-SNARE Proteins/metabolism , Secretory Vesicles/metabolism , Membrane Fusion/physiology , Lysosomes/metabolism
11.
Nat Commun ; 15(1): 21, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167896

ABSTRACT

Membrane fusion and budding mediate fundamental processes like intracellular trafficking, exocytosis, and endocytosis. Fusion is thought to open a nanometer-range pore that may subsequently close or dilate irreversibly, whereas budding transforms flat membranes into vesicles. Reviewing recent breakthroughs in real-time visualization of membrane transformations well exceeding this classical view, we synthesize a new model and describe its underlying mechanistic principles and functions. Fusion involves hemi-to-full fusion, pore expansion, constriction and/or closure while fusing vesicles may shrink, enlarge, or receive another vesicle fusion; endocytosis follows exocytosis primarily by closing Ω-shaped profiles pre-formed through the flat-to-Λ-to-Ω-shape transition or formed via fusion. Calcium/SNARE-dependent fusion machinery, cytoskeleton-dependent membrane tension, osmotic pressure, calcium/dynamin-dependent fission machinery, and actin/dynamin-dependent force machinery work together to generate fusion and budding modes differing in pore status, vesicle size, speed and quantity, controls release probability, synchronization and content release rates/amounts, and underlies exo-endocytosis coupling to maintain membrane homeostasis. These transformations, underlying mechanisms, and functions may be conserved for fusion and budding in general.


Subject(s)
Calcium , Membrane Fusion , Cell Membrane , Exocytosis , Dynamins , Secretory Vesicles
12.
Proc Natl Acad Sci U S A ; 121(6): e2314309121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38285943

ABSTRACT

Mucins are large, highly glycosylated extracellular matrix proteins that line and protect epithelia of the respiratory, digestive, and urogenital tracts. Previous work has shown that mucins form large, interconnected polymeric networks that mediate their biological functions once secreted. However, how these large matrix molecules are compacted and packaged into much smaller secretory granules within cells prior to secretion is largely unknown. Here, we demonstrate that a small cysteine-rich adaptor protein is essential for proper packaging of a secretory mucin in vivo. This adaptor acts via cysteine bonding between itself and the cysteine-rich domain of the mucin. Loss of this adaptor protein disrupts mucin packaging in secretory granules, alters the mobile fraction within granules, and results in granules that are larger, more circular, and more fragile. Understanding the factors and mechanisms by which mucins and other highly glycosylated matrix proteins are properly packaged and secreted may provide insight into diseases characterized by aberrant mucin secretion.


Subject(s)
Cysteine , Mucins , Mucins/metabolism , Cysteine/metabolism , Biological Transport , Secretory Vesicles/metabolism
13.
Cells ; 13(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-38201297

ABSTRACT

MRGPRX2, the human member of the MAS-related G-protein-coupled receptors (GPCRs), mediates the immunoglobulin E (IgE)-independent responses of a subset of mast cells (MCs) that are associated with itch, pain, neurogenic inflammation, and pseudoallergy to drugs. The mechanisms underlying the responses of MRGPRX2 to its multiple and diverse ligands are still not completely understood. Given the close association between GPCR location and function, and the key role played by Rab GTPases in controlling discrete steps along vesicular trafficking, we aimed to reveal the vesicular pathways that directly impact MRGPRX2-mediated exocytosis by identifying the Rabs that influence this process. For this purpose, we screened 43 Rabs for their functional and phenotypic impacts on MC degranulation in response to the synthetic MRGPRX2 ligand compound 48/80 (c48/80), which is often used as the gold standard of MRGPRX2 ligands, or to substance P (SP), an important trigger of neuroinflammatory MC responses. Results of this study highlight the important roles played by macropinocytosis and autophagy in controlling MRGPRX2-mediated exocytosis, demonstrating a close feedback control between the internalization and post-endocytic trafficking of MRGPRX2 and its triggered exocytosis.


Subject(s)
Bodily Secretions , Exocytosis , Humans , Autophagy , Immunoglobulin E , Inflammation , Secretory Vesicles , Nerve Tissue Proteins , Receptors, Neuropeptide , Receptors, G-Protein-Coupled
14.
Biosci Biotechnol Biochem ; 88(2): 181-188, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-37968134

ABSTRACT

Type I hypersensitivity is triggered by mast cell degranulation, a stimulus-induced exocytosis of preformed secretory granules (SGs) containing various inflammatory mediators. The degree of degranulation is generally expressed as a percentage of secretory granule markers (such as ß-hexosaminidase and histamine) released into the external solution, and considerable time and labor are required for the quantification of markers in both the supernatants and cell lysates. In this study, we developed a simple fluorimetry-based degranulation assay using rat basophilic leukemia (RBL-2H3) mast cells. During degranulation, the styryl dye FM1-43 in the external solution fluorescently labeled the newly exocytosed SGs, whose increase in intensity was successively measured using a fluorescence microplate reader. In addition to the rate of ß-hexosaminidase secretion, the cellular FM1-43 intensity successfully represented the degree and kinetics of degranulation under various conditions, suggesting that this method facilitates multi-sample and/or multi-time-point analyses required for screening substances regulating mast cell degranulation.


Subject(s)
Cell Degranulation , Pyridinium Compounds , Quaternary Ammonium Compounds , Rats , Animals , Secretory Vesicles/metabolism , Mast Cells , beta-N-Acetylhexosaminidases
15.
Mol Metab ; 79: 101845, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013154

ABSTRACT

OBJECTIVE: Although individual steps have been characterized, there is little understanding of the overall process whereby glucose co-ordinates the biosynthesis of insulin with its export out of the endoplasmic reticulum (ER) and incorporation into insulin secretory granules (ISGs). Here we investigate a role for the transcription factor CREB3L2 in this context. METHODS: MIN6 cells and mouse islets were analysed by immunoblotting after treatment with glucose, fatty acids, thapsigargin and various inhibitors. Knockdown of CREB3L2 was achieved using si or sh constructs by transfection, or viral delivery. In vivo metabolic phenotyping was conducted after deletion of CREB3L2 in ß-cells of adult mice using Ins1-CreER+. Islets were isolated for RNAseq and assays of glucose-stimulated insulin secretion (GSIS). Trafficking was monitored in islet monolayers using a GFP-tagged proinsulin construct that allows for synchronised release from the ER. RESULTS: With a Km ≈3.5 mM, glucose rapidly (T1/2 0.9 h) increased full length (FL) CREB3L2 followed by a slower rise (T1/2 2.5 h) in its transcriptionally-active cleavage product, P60 CREB3L2. Glucose stimulation repressed the ER stress marker, CHOP, and this was partially reverted by knockdown of CREB3L2. Activation of CREB3L2 by glucose was not due to ER stress, however, but a combination of O-GlcNAcylation, which impaired proteasomal degradation of FL-CREB3L2, and mTORC1 stimulation, which enhanced its conversion to P60. cAMP generation also activated CREB3L2, but independently of glucose. Deletion of CREB3L2 inhibited GSIS ex vivo and, following a high-fat diet (HFD), impaired glucose tolerance and insulin secretion in vivo. RNAseq revealed that CREB3L2 regulated genes controlling trafficking to-and-from the Golgi, as well as a broader cohort associated with ß-cell compensation during a HFD. Although post-Golgi trafficking appeared intact, knockdown of CREB3L2 impaired the generation of both nascent ISGs and proinsulin condensates in the Golgi, implying a defect in ER export of proinsulin and/or its processing in the Golgi. CONCLUSION: The stimulation of CREB3L2 by glucose defines a novel, rapid and direct mechanism for co-ordinating the synthesis, packaging and storage of insulin, thereby minimizing ER overload and optimizing ß-cell function under conditions of high secretory demand. Upregulation of CREB3L2 also potentially contributes to the benefits of GLP1 agonism and might in itself constitute a novel means of treating ß-cell failure.


Subject(s)
Glucose , Insulin , Animals , Mice , Basic-Leucine Zipper Transcription Factors , Cyclic AMP Response Element-Binding Protein , Glucose/metabolism , Insulin/metabolism , Proinsulin/genetics , Proinsulin/metabolism , Secretory Vesicles/metabolism
16.
Biochem Biophys Res Commun ; 691: 149258, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38029541

ABSTRACT

Mast cells (MCs) possess numerous potent inflammatory mediators and undergo differential regulation in response to antigen (Ag) stimulation. Among the regulatory systems governing secretory responses, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play a pivotal role in facilitating granule-plasma membrane fusion and subsequent secretion. Our previous investigation documented the involvement of vesicle-associated membrane protein 3 (VAMP3) in regulating cytokine secretions in RBL-2H3 cells, a model for MC IgE-mediated responses. In addition to VAMP3, VAMP7 is expressed in MCs, but its functional role remains elusive. The present study seeks to explore VAMP7-specific regulatory mechanisms in MCs, shedding light on one of the mechanisms governing heterogeneous secretory responses in these cells. Murine bone marrow-derived mast cells (BMMCs) were examined to analyze the subcellular distribution of inflammatory mediators, specifically TNFα, CCL2, and histamine, and VAMPs (i.e., VAMP3, VAMP7, and VAMP8). Immunocytochemistry and the transient expression of fluorescent protein-conjugated target proteins were used to discern the distribution of various inflammatory mediators and VAMP7 through confocal laser scanning microscopy. Each inflammatory mediator (TNFα, CCL2, and histamine) was found in secretory granules of different sizes within BMMCs. VAMP7 exhibited a distinct distribution compared to VAMP3 in these granules. Notably, an overlapping distribution was observed between VAMP7 and CCL2, but not between VAMP7 and TNFα or VAMP7 and histamine. This suggests that CCL2 resides within VAMP7-expressing granules and is subject to VAMP7-dependent secretory regulation. Consistently, BMMCs with VAMP7 knockdown showed markedly reduced CCL2 secretion after Ag stimulation. These observations underscore the heterogeneity of MC secretory responses and unveil a novel VAMP7-dependent CCL2 secretion mechanism within MCs. This discovery might pave the way for the development of more precise therapeutic strategies to modulate MC secretion in allergic conditions.


Subject(s)
Histamine , Mast Cells , Mice , Animals , Vesicle-Associated Membrane Protein 3/genetics , Vesicle-Associated Membrane Protein 3/metabolism , Histamine/metabolism , Mast Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Secretory Vesicles/metabolism , SNARE Proteins/metabolism
17.
Mol Biol Cell ; 35(3): ar39, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38117597

ABSTRACT

Phospholipase D1 (PLD1) activity is essential for the stimulated exocytosis of secretory vesicles where it acts as a lipid-modifying enzyme to produces phosphatidic acid (PA). PLD1 localizes to the plasma membrane and secretory vesicles, and PLD1 inhibition or knockdowns reduce the rate of fusion. However, temporal data resolving when and where PLD1 and PA are required during exocytosis is lacking. In this work, PLD1 and production of PA are measured during the trafficking, docking, and fusion of secretory vesicles in PC12 cells. Using fluorescently tagged PLD1 and a PA-binding protein, cells were imaged using TIRF microscopy to monitor the presence of PLD1 and the formation of PA throughout the stages of exocytosis. Single docking and fusion events were imaged to measure the recruitment of PLD1 and the formation of PA. PLD1 is present on mobile, docking, and fusing vesicles and also colocalizes with Syx1a clusters. Treatment of cells with PLD inhibitors significantly reduces fusion, but not PLD1 localization to secretory vesicles. Inhibitors also alter the formation of PA; when PLD1 is active, PA slowly accumulates on docked vesicles. During fusion, PA is reduced in cells treated with PLD1 inhibitors, indicating that PLD1 produces PA during exocytosis.


Subject(s)
Phosphatidic Acids , Phospholipase D , Rats , Animals , Phosphatidic Acids/metabolism , Biological Transport , Cell Membrane/metabolism , Secretory Vesicles/metabolism , Phospholipase D/metabolism , Exocytosis/physiology
18.
Sci Rep ; 13(1): 22084, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38087030

ABSTRACT

Rab7 is known to function in the autophagy and endocytosis pathways in eukaryocytes and is related to various diseases. We recently reported that Rab7 plays a protective role against acute pancreatitis. However, its physiological function in exocytic cells remains unclear. Therefore, we investigated the role of Rab7 in pancreas-specific Rab7 knockout mice (Rab7Δpan). Immunofluorescence microscopy revealed that Rab7 colocalized with amylase in pancreatic acinar cells of wild-type mice, but not in Rab7Δpan mice. Western blotting confirmed Rab7 localization in the zymogen granule (ZG) membranes of wild-type mice. Cholecystokinin (CCK)-stimulated amylase secretion examined using isolated pancreatic acini was similar in Rab7Δpan and wild-type mice. In contrast, electron microscopy revealed that the diameters of ZGs were shorter and the number of ZGs was larger in the pancreatic acinar cells of Rab7Δpan mice than in those of wild-type mice. However, the number of ZGs decreased in both Rab7Δpan and wild-type mice after 24 h of starvation. In addition, the amount of amylase in the pancreas was decreased in both Rab7Δpan and wild-type mice. These data indicate that Rab7 localized on ZGs plays a crucial role in the maturation of ZGs but not in their autophagy or regulated exocytosis in pancreatic acinar cells.


Subject(s)
Acinar Cells , Pancreatitis , Animals , Mice , Acinar Cells/metabolism , Acute Disease , Amylases/metabolism , Autophagy , Exocytosis/physiology , Mice, Knockout , Pancreas/metabolism , Pancreatitis/metabolism , Secretory Vesicles/metabolism
19.
Curr Opin Plant Biol ; 76: 102482, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37924562

ABSTRACT

Exocytosis is a conserved trafficking pathway that transports secretory vesicles to the extracellular space, replenishes the plasma membrane and is essential for establishing cell polarity. Its spatiotemporal regulation is mediated by an evolutionary conserved octameric tethering complex, the exocyst. In plants, certain subunits of this complex have diversified and acquired multiple functions, including a central role in defense against pathogens and pests. Here, I review the latest evidence suggesting the dramatic expansion and functional diversification of the exocyst subunit Exo70 is likely driven by a coevolutionary arms race, in which Exo70 proteins are repeatedly targeted by effectors from multiple pathogens and, in turn, are monitored by plant immune receptors for pathogen perception.


Subject(s)
Exocytosis , Plants , Exocytosis/physiology , Cell Membrane/metabolism , Biological Transport , Secretory Vesicles/metabolism
20.
Elife ; 122023 Nov 24.
Article in English | MEDLINE | ID: mdl-37997893

ABSTRACT

A receptor protein called TGN46 has an important role in sorting secretory proteins into vesicles going to different destinations inside cells.


Subject(s)
Proteins , trans-Golgi Network , trans-Golgi Network/metabolism , Proteins/metabolism , Protein Transport , Golgi Apparatus/metabolism , Secretory Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...