Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53.893
Filter
1.
Food Chem ; 462: 140972, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208720

ABSTRACT

Field pea seeds have long been recognized as valuable feed ingredients for animal diets, due to their high-quality protein and starch digestibility. However, the chemical composition of pea cultivars can vary across different growing locations, consequently impacting their nutrient profiles. This study employs untargeted metabolomics in conjunction with the quantification of fatty acids and amino acids to explore the influence of three different growing locations in Spain (namely Andalusia, Aragon and Asturias), on the nutritional characteristics of seeds of various pea cultivars. Significant interactions between cultivar and environment were observed, with 121 metabolites distinguishing pea profiles. Lipids, lipid-like molecules, phenylpropanoids, polyketides, carbohydrates, and amino acids were the most affected metabolites. Fatty acid profiles varied across locations, with higher C16:0, C18:0, and 18:1 n-9 concentration in Aragón, while C18:2 n-6 predominated in Asturias and C18:3 n-3 in Andalusia. Amino acid content was also location-dependent, with higher levels in Asturias. These findings underscore the impact of environmental factors on pea metabolite profiles and emphasize the importance of selecting pea cultivars based on specific locations and animal requirements. Enhanced collaboration between research and industry is crucial for optimizing pea cultivation for animal feed production.


Subject(s)
Amino Acids , Animal Feed , Fatty Acids , Nutritive Value , Pisum sativum , Seeds , Pisum sativum/metabolism , Pisum sativum/chemistry , Pisum sativum/growth & development , Animal Feed/analysis , Amino Acids/metabolism , Amino Acids/analysis , Seeds/chemistry , Seeds/metabolism , Seeds/growth & development , Fatty Acids/metabolism , Fatty Acids/analysis , Animals , Spain , Metabolomics
2.
Food Chem ; 462: 140971, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208734

ABSTRACT

This study presents the contents of α-methylenecyclopropylglycine, a potentially toxic amino acid, in the peel, pulp and seed fractions of two well-known litchi varieties, namely Shahi and China, over a span of three harvest-seasons. For analysing α-methylenecyclopropylglycine, an LC-MS/MS-based method was validated. The method-accuracies fell within 75-110 % (RSD, <15 %) at 0.1 mg/kg (LOQ) and higher levels. A comparative evaluation of the results in peel, pulp and seed at 30 days before harvest (DBH), 15-DBH, and edible-ripe stage revealed that α-methylenecyclopropylglycine content increased as the litchi seeds grew towards maturity, regardless of the cultivar. In arils, at maturity, the concentration of α-methylenecyclopropylglycine ranged from not-detected to 11.7 µg/g dry weight. The Shahi cultivar showed slightly higher α-methylenecyclopropylglycine content in comparison to China litchi. This paper presents the first known analysis of combined seasonal data on different fruit components at various growth stages for the two chosen litchi cultivars grown in India.


Subject(s)
Fruit , Litchi , Seeds , Tandem Mass Spectrometry , Litchi/chemistry , Litchi/growth & development , Litchi/metabolism , Fruit/chemistry , Fruit/growth & development , China , Seeds/chemistry , Seeds/growth & development , Glycine/analogs & derivatives , Glycine/analysis , Chromatography, High Pressure Liquid , Cyclopropanes/analysis
3.
Food Chem ; 462: 141009, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213971

ABSTRACT

Cardamom seed (Elettaria cardamomum (L.)) is a well-appreciated spice in food and pharmaceutical industries owing to its unique rich flavor dominated by oxygenated monoterpenoids, α-terpinyl acetate and 1,8-cineole, to which most of the quality of cardamom essential oil (CEO) is attributed. CEO output is greatly influenced by different agronomic factors, processing, and EO extraction methods. In that context, the goal of this study is to provide an overarching review regarding emerged technologies along with their optimization parameters to achieve optimal oil yield with the best flavor quality. Furthermore, the recent approaches employed in CEO stabilization were highlighted alongside their pharmaceutical and food applications. Moreover, the different aspects of superlative CEO production including agricultural aspects, climatic requirements, and processing methods were also explained.


Subject(s)
Elettaria , Seeds , Spices , Seeds/chemistry , Seeds/growth & development , Spices/analysis , Elettaria/chemistry , Oils, Volatile/chemistry , Flavoring Agents/chemistry , Odorants/analysis , Humans , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Food Handling
4.
Food Chem ; 462: 141015, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39216375

ABSTRACT

Various strategies are being explored to reduce the formation of undesirable compounds during the thermal processing of foods. This study investigates the impact of incorporating annatto seed powder (Bixa orellana L.) into beef patties to reduce the formation of heterocyclic amines (HAs) during charcoal-grilling and pan-frying. A three-level full factorial design was used to assess the effect of both annatto seed powder concentration and cooking times on HAs formation. The results showed that HA formation increased with longer cooking times and decreased with higher concentrations of annatto seed powder. A significant reduction in HA content was observed in both charcoal-grilled and pan-fried beef patties when annatto seed powder was added, with a particularly notable 91 % reduction at the 1 % addition level. These findings demonstrate that the addition of annatto seed powder is a highly effective strategy for reducing HA formation in beef patties. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (PubChem CID: 62275); 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (PubChem CID: 104739); 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx) (PubChem CID: 104855); 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) (PubChem CID: 1530); 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) (PubChem CID: 5284474); 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) (PubChem CID: 5284476); 2-amino-9H-pyrido[2,3-b]indole (AαC) (PubChem CID: 62805); 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC) (PubChem CID: 62244); Bixin (PubChem CID: 5281226).


Subject(s)
Amines , Charcoal , Cooking , Plant Extracts , Seeds , Seeds/chemistry , Cattle , Animals , Amines/chemistry , Amines/analysis , Charcoal/chemistry , Plant Extracts/chemistry , Bixaceae/chemistry , Powders/chemistry , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/analysis , Hot Temperature , Meat Products/analysis , Carotenoids
5.
Food Chem ; 462: 140987, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39217748

ABSTRACT

This study aimed to investigate the textural changes of cooked germinated brown rice (GBR) during freeze-thaw treatment and propose a strategy for enhancing its texture using magnetic field (MF). Seven freeze-thaw cycles exhibited more pronounced effects compared to 7 days of freezing, resulting in increases in GBR hardness by 85.59 %-164.36 % and decreases in stickiness by 10.34 %-43.55 %. Water loss, structural damage of GBR flour, and starch retrogradation contributed to the deterioration of texture. MF mitigated these effects by inhibiting the transformation of bound water into free water, reducing water loss by 0.39 %-0.57 %, and shortening the phase transition period by 2.0-21.5 min, thereby diminishing structural damage to GBR flour and hindering starch retrogradation. Following MF treatment (5 mT), GBR hardness decreased by 21.00 %, while stickiness increased by 45.71 %. This study elucidates the mechanisms through which MF enhances the texture, offering theoretical insights for the industrial production of high-quality frozen rice products.


Subject(s)
Cooking , Freezing , Germination , Magnetic Fields , Oryza , Oryza/chemistry , Oryza/growth & development , Oryza/metabolism , Flour/analysis , Starch/chemistry , Starch/metabolism , Water/chemistry , Hardness , Food Handling , Seeds/chemistry , Seeds/growth & development
6.
Food Chem ; 462: 140847, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39226647

ABSTRACT

Effects of varying degree of milling (DOM) (0-22%) on the bran layer structure, physicochemical properties, and cooking quality of brown rice were explored. As the DOM increased, bran degree, protein, lipid, dietary fiber, amylose, mineral elements, and color parameters (a* and b* values) of milled rice decreased while starch and L* value increased. Microscopic fluorescence images showed that the pericarp, combined seed coat-nucellus layer, and aleurone layer were removed in rice processed at DOM of 6.6%, 9.2%, and 15.4%, respectively. The pasting properties, thermal properties, and palatability of rice increased as the DOM increased. Principal component and correlation analysis indicated that excessive milling lead to a decline in nutritional value of rice with limited impact on enhancing palatability. Notably, when parts of aleurone cell wall were retained, rice samples exhibited high cooking and sensory properties. It serves as a potential guide to the production of moderately milled rice.


Subject(s)
Cooking , Dietary Fiber , Oryza , Seeds , Oryza/chemistry , Dietary Fiber/analysis , Seeds/chemistry , Nutritive Value , Taste , Humans , Food Handling , Starch/chemistry , Amylose/chemistry , Amylose/analysis
7.
Food Chem ; 462: 140913, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39197241

ABSTRACT

Grape processing generates large amounts of by-products, including seeds rich in hydrophilic and lipophilic antioxidants. This study demonstrates, for the first time, that subjecting grape seeds to a single ultrasound-assisted extraction (UAE) with aqueous ethanolic solutions yields both flavan-3-ols and tocochromanols in the final extract. Notably, the water content in ethanol significantly influences the extractability of tocochromanols more than flavan-3-ols. Solid-to-solvent ratios of 1:50 to 1:2 were tested for both analytical and industrial applications. A sustainable analytical approach for recovering flavan-3-ols and tocochromanols using 60% and 96.4% ethanol extractions was validated and employed to profile nineteen genotypes of lesser-studied interspecific grape crosses (Vitis spp.). Different genotypes showed a wide range of concentrations of tocopherols (1.6-6.3 mg/100 g), tocotrienols (1.0-17.4 mg/100 g), and flavan-3-ols (861-9994 mg/100 g). This indicated that the genetic background and maturity of the plant material are crucial factors from an industrial perspective due to the initial concentration of bioactive compounds. Finally, the study also discussed the fundamental aspects of hydrophobic antioxidant extractability from the lipid matrix with aqueous ethanol solutions and the limitations of the workflow, such as the non-extractable tocochromanols and their esters and the losses of these lipophilic antioxidants during extraction.


Subject(s)
Flavonoids , Seeds , Vitis , Vitis/chemistry , Seeds/chemistry , Flavonoids/isolation & purification , Flavonoids/chemistry , Flavonoids/analysis , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Tocopherols/isolation & purification , Tocopherols/chemistry , Tocopherols/analysis , Tocotrienols/analysis , Tocotrienols/isolation & purification , Tocotrienols/chemistry
8.
PLoS Genet ; 20(10): e1011419, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39356718

ABSTRACT

C1-FDX (Complex I-ferredoxin) has been defined as a component of CI in a ferredoxin bridge in Arabidopsis mitochondria. However, its full function remains to be addressed. We created two c1-fdx mutants in Arabidopsis using the CRISPR-Cas9 methodology. The mutants show delayed seed germination. Over-expression of C1-FDX rescues the phenotype. Molecular analyses showed that loss of the C1-FDX function decreases the abundance and activity of both CI and subcomplexes of CV. In contrast, the over-expression of C1-FDX-GFP enhances the CI* (a sub-complex of CI) and CV assembly. Immunodetection reveals that the stoichiometric ratio of the α:ß subunits in the F1 module of CV is altered in the c1-fdx mutant. In the complemented mutants, C1-FDX-GFP was found to be associated with the F' and α/ß sub-complexes of CV. Protein interaction assays showed that C1-FDX could interact with the ß, γ, δ, and ε subunits of the F1 module, indicating that C1-FDX, a structural component of CI, also functions as an assembly factor in the assembly of F' and α/ß sub-complexes of CV. These results reveal a new role of C1-FDX in the CI and CV assembly and seed germination in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Electron Transport Complex I , Mitochondria , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Mitochondria/metabolism , Mitochondria/genetics , Germination/genetics , Ferredoxins/metabolism , Ferredoxins/genetics , Mutation , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Gene Expression Regulation, Plant , CRISPR-Cas Systems , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Plants, Genetically Modified
9.
Sci Rep ; 14(1): 22923, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358424

ABSTRACT

The popular organophosphorus (OP) compound chlorpyrifos (CP) has recently gained significant attention due to its health risks, particularly among farmers exposed to OP pesticides. This study aimed to evaluate the acute toxicity of Cuscuta reflexa seed extract (CRSE) and its efficacy of mitigating the adverse effects of CP in albino male mice. For acute toxicity analysis, the first group was served as the control group, while the second group was received CRSE (200 mg/kg/bw) on the first day of the 14-day experiment. For hepatotoxicity analysis, the first group was the control group, the second group (vehicle control) received corn oil (CO) (2 mL/kg/bw), the third group was given CP (20 mg/kg/bw) dissolved in corn oil and the fourth group was given CP (20 mg/kg/bw) along-with CRSE (200 mg/kg/bw) orally via gavage once daily for 21 days. The acute toxicity examination revealed no statistically significant differences between the CRSE-treated and control groups in serum biochemical indicators and histopathological analyses of various organs, suggesting that CRSE as safe at a dosage of 200 mg/kg/bw, with an oral LD50 in mice higher than 200 mg/kg. The hepatotoxicity study demonstrated that the CP administration resulted in liver damage and oxidative stress, while CRSE acted as an antioxidant and attenuated the signs of oxidative stress in liver damage. Hence, a promising therapeutic approach for lowering CP hepatotoxicity is co-treatment with CRSE.


Subject(s)
Chemical and Drug Induced Liver Injury , Chlorpyrifos , Cuscuta , Liver , Plant Extracts , Seeds , Animals , Chlorpyrifos/toxicity , Cuscuta/chemistry , Mice , Plant Extracts/pharmacology , Seeds/chemistry , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Male , Liver/drug effects , Liver/pathology , Liver/metabolism , Oxidative Stress/drug effects , Phytochemicals/pharmacology , Disease Models, Animal , Antioxidants/pharmacology
10.
Sci Rep ; 14(1): 22893, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358430

ABSTRACT

Akebia trifoliata is a medicinal plant with high oil content and broad pharmacological effects. To investigate the regulatory mechanisms of key metabolic pathways during seed development, we conducted an integrated multi-omics analysis, including transcriptomics, proteomics, and metabolomics, exploring the dynamic changes in carbon and lipid metabolism. Metabolomics analysis revealded that glucose and sucrose levels decreased, while glycolytic intermediate phosphoenolpyruvate and fatty acids increased with seed development, indicating a shift in carbon flux towards fatty acid synthesis. Integrated transcriptomic and proteomic analyses showed that 70 days after flowering, the expression levels of genes and proteins associated with carbon and fatty acid metabolism were upregulated, suggesting an increased energy demand. Additionally, LEC2, LEC1, WRI1, FUS3, and ABI3 were identified as vital regulators of lipid synthesis. By constructing a multi-omics co-expression network, we identified hub genes such as aroE, GAPDH, KCS, TPS, and hub proteins like PGM, PDH, ENO, PFK, PK, ACCase, SAD, PLC, and OGDH that play critical regulatory roles in seed lipid synthesis. This study provides new ideas for the molecular basis of lipid synthesis in Akebia trifoliata seeds and can facilitate future research on the genetic improvement through molecular-assisted breeding.


Subject(s)
Carbon , Gene Expression Regulation, Plant , Lipid Metabolism , Seeds , Seeds/metabolism , Seeds/growth & development , Seeds/genetics , Carbon/metabolism , Proteomics/methods , Gene Regulatory Networks , Metabolomics/methods , Plant Proteins/metabolism , Plant Proteins/genetics , Transcriptome , Gene Expression Profiling , Fatty Acids/metabolism , Metabolic Networks and Pathways , Multiomics
11.
Trop Anim Health Prod ; 56(8): 310, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352513

ABSTRACT

Usage of soyabean meal (SBM) in broiler diets is economically and environmentally unsustainable thus necessitating investigation of alternative protein sources. Therefore, this study investigated effects of incremental inclusion levels of Mucuna pruriens utilis seed meal (MSM) for partial substitution of SBM in broiler diets. In a completely randomized design (CRD), 400 day-old Ross 308 chicks were allotted to 5 iso-caloric-nitrogenous MSM-containing (0, 5, 10, 15, and 20%) dietary treatments. Each treatment was replicated 8 times, with each pen having 10 birds, during starter (d1 - 14), grower (d15 - 28), and finisher (d29 - 42) phases. Results showed that dietary MSM decreased feed intake (FI: quadratic: P < 0.001), body weight gain (BWG: linear: P < 0.001), and feed conversion efficiency (FCE: linear: P < 0.001) as it linearly decreased slaughter weight (SW: P < 0.001), hot carcass weight (HCW: P < 0.001), cold carcass weight (CCW: P < 0.001), dressing percentage (P < 0.001), and breast weight (P < 0.05). In contrast, dietary MSM linearly increased the weights of the liver (P < 0.01), proventriculus (P < 0.001), gizzard (P < 0.001), duodenum (P = 0.01), jejunum (P < 0.001), ileum (P < 0.001), caecum (P < 0.01), and colon (P < 0.01). Also, dietary MSM quadratically increased blood heterophils (P < 0.05) and alkaline phosphatase activity (P < 0.05) of the chickens whilst linearly increasing their serum amylase (P = 0.001) and lipase (P = 0.001) activities and linearly decreasing their serum symmetric dimethylarginine (SDMA: P = 0.001) and cholesterol (P < 0.05). Further, dietary MSM linearly decreased chicken breast meat ultimate pH (P < 0.05) whilst linearly increasing its cooking loss (P < 0.01), drip loss (P < 0.05) and shear force (P < 0.01). In conclusion, dietary MSM compromised growth performance, carcass characteristics, and meat quality of broilers as it increased the weights of their digestive-metabolic organs.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Meat , Mucuna , Seeds , Animals , Chickens/growth & development , Chickens/physiology , Seeds/chemistry , Animal Feed/analysis , Meat/analysis , Mucuna/chemistry , Diet/veterinary , Male , Random Allocation
12.
Plant Cell Rep ; 43(10): 248, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354144

ABSTRACT

KEY MESSAGE: Embryo abortion at the heart-shaped stage is the main reason for the failure of interspecific hybridization of hydrangea, and salicylic acid plays a key role during embryo abortion. Difficulties in obtaining seeds from interspecific hybridization between Hydrangea macrophylla and H. arborescens had severely restricted the process of breeding new hydrangea varieties. To clarify the cause of reproductive barriers, an interspecific hybridization was made between H. macrophylla 'Endless Summer' (female parent) and H. arborescens 'Annabelle' (male parent). The results showed that both parents' floral organs developed normally, 'Annabelle' had high pollen viability (84.83% at 8 h after incubation), and the pollen tube could enter into the ovule of 'Endless Summer' at 72 h after pollination. Therefore, the pre-fertilization barrier was not the main reason for the failure of interspecific hybridization. However, observation of the embryo development by paraffin sections showed that the embryo was aborted at the heart-shaped stage. In addition, salicylic acid (SA) content was significantly higher (fourfold, P < 0.01) at 21 days after pollination (DAP) as compared to that of 17 DAP, which means SA may be closely correlated with embryo development. A total of 957 metabolites were detected, among which 78 were significantly different. During the embryo abortion, phenylpropanoids and polyketides were significantly down-regulated, while organic oxygen compounds were significantly up-regulated. Further analysis indicated that the metabolic pathway was enriched in the shikimic acid biosynthesis pathway, which suggests that more SA was synthesized. Taken together, it can be reasonably speculated that SA plays a key role leading to embryo abortion underlying the interspecific hybridization between Hydrangea macrophylla and H. arborescens. The result is helpful to direct the breeding of hydrangea through distant hybridization.


Subject(s)
Hybridization, Genetic , Hydrangea , Salicylic Acid , Seeds , Salicylic Acid/metabolism , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Hydrangea/genetics , Hydrangea/metabolism , Metabolomics/methods , Pollination , Pollen/genetics , Pollen/metabolism , Pollen/growth & development , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Gene Expression Regulation, Plant
13.
BMC Plant Biol ; 24(1): 918, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354351

ABSTRACT

Drought stress (DS) adversely affects a plant's development and growth by negatively altering the plant's physio-biochemical functions. Previous investigations have illustrated that seed priming with growth regulators is an accessible, affordable, and effective practice to elevate a plant's tolerance to drought stress. Melatonin (MT) is derived from the precursor tryptophan and can improve germination, biomass, and photosynthesis under stress conditions. The current study examined the effect of melatonin seed priming on two wheat cultivars (Fakhar-e-Bhakkar and Akber-19) cultivated under severe drought conditions (35% FC). There were 6 levels of melatonin (i.e., M0 = control, M1 = 1 mg L- 1, M2 = 2 mg L- 1, M3 = 3 mg L- 1, M4 = 4 mg L- 1 and M5 = mg L- 1) which were used for seed priming. Our results confirmed that seed priming with M2 = 2 mgL- 1 concentration of MT alleviates the negative effects of DS by boosting the germination rate by 54.84% in Akber-19 and 33.33% in Fakhar-e-Bhakkar. Similarly, leaf-relative water contents were enhanced by 22.38% and 13.28% in Akber-19 and Fakhar-e-Bhakkar, respectively. Melatonin pre-treatment with 2 mgL- 1 significantly enhanced fresh and dry biomass of shoot and root, leaf area, photosynthetic pigments, osmoprotectants accumulation [total soluble proteins (TSP), total free amino acids (TFAA), proline, soluble sugars, glycine betaine (GB)] and lowered the amount of malondialdehyde (MDA) and hydrogen peroxide (H2O2) production by elevating antioxidants [Ascorbic acid, catalase (CAT), Phenolics, peroxidase (POD) and superoxide dismutase (SOD)] activity under drought stress (DS). Meanwhile, under control conditions (NoDS), the melatonin treatment M1 = 1 mgL- 1 effectively enhanced all the growth-related physio-biochemical attributes in both wheat cultivars. In the future, more investigations are suggested on different crops under variable agroclimatic conditions to declare 2 mgL- 1 melatonin as an efficacious amendment to alleviate drought stress.


Subject(s)
Droughts , Germination , Melatonin , Seeds , Triticum , Melatonin/pharmacology , Melatonin/metabolism , Triticum/growth & development , Triticum/drug effects , Triticum/physiology , Triticum/metabolism , Seeds/drug effects , Seeds/growth & development , Seeds/physiology , Germination/drug effects , Antioxidants/metabolism , Plant Growth Regulators/metabolism , Photosynthesis/drug effects , Drought Resistance
14.
BMC Plant Biol ; 24(1): 916, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354389

ABSTRACT

The Andean domesticated common beans (Phaseolus vulgaris) are significant sources of phenolic compounds associated with health benefits. However, the regulation of biosynthesis of these compounds during bean seed development remains unclear. To elucidate the gene expression patterns involved in the regulation of the flavonoid pathway, we conducted a transcriptome analysis of two contrasting Chilean varieties, Negro Argel (black bean) and Coscorron (white bean), at three developmental stages associated with seed color change, as well as different flavonoid compound accumulations. Our study reveals that phenolic compound synthesis initiates during seed filling, although it exhibits desynchronization between both varieties. We identified 10,153 Differentially Expressed Genes (DEGs) across all comparisons. The KEGG pathway 'Flavonoid biosynthesis' showed enrichment of induced DEGs in Negro Argel (PV172), consistent with the accumulation of delphinidin, petunidin, and malvidin hexosides in their seeds, while catechin glucoside, procyanidin and kaempferol derivatives were predominantly detected in Coscorrón (PV24). Furthermore, while the flavonoid pathway was active in both varieties, our results suggest that enzymes involved in the final steps, such as ANS and UGT, were crucial, inducing anthocyanin formation in Negro Argel. Additionally, during active anthocyanin biosynthesis, the accumulation of reserve proteins or those related to seed protection and germination was induced. These findings provide valuable insights and serve as a guide for plant breeding aimed at enhancing the health and nutritional properties of common beans.


Subject(s)
Flavonoids , Gene Expression Profiling , Phaseolus , Seeds , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Phaseolus/genetics , Phaseolus/metabolism , Flavonoids/biosynthesis , Flavonoids/metabolism , Gene Expression Regulation, Plant , Transcriptome
15.
Ecol Lett ; 27(9): e14514, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39354913

ABSTRACT

The efficient conversion of tissues into reproductive success is a crucial aspect affecting the evolution of life histories. Masting, the interannually variable and synchronous seed production in perennial plants, is a strategy that can enhance reproductive efficiency by mitigating seed predation and pollen limitation. However, evaluating benefits is insufficient to establish whether efficiency has improved, as such assessments neglect the associated costs of masting, particularly during the critical seed-to-seedling stage. We conducted a parentage analysis of seedlings and adults in a population of 209 Sorbus aucuparia trees, monitored over 23 years, providing pioneering documentation of the effects of masting on the fitness of individual trees beyond the seed stage. Our results show high costs of interannual variation that can be mitigated by high synchrony and reveal the existence of phenotypes that appear to reap the benefits of masting while avoiding its costs through regular reproduction.


Subject(s)
Seedlings , Sorbus , Seedlings/growth & development , Seedlings/physiology , Sorbus/physiology , Reproduction , Seeds/growth & development , Seeds/physiology , Fruit/growth & development , Fruit/physiology
16.
Mymensingh Med J ; 33(4): 1002-1008, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39351717

ABSTRACT

Antibiotic resistance (AMR) represents a serious threat to public health and poses challenges in disease prevention and treatment despite various efforts to combat it. Evaluation of the in vitro antibacterial activity of aqueous extracts of black pepper seeds (Piper nigrum L.) against two infectious pathogens: Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The Department of Pharmacology and Therapeutics and the Department of Microbiology of Mymensingh Medical College conducted the study from Octy 2022 to June 2023. The antibacterial activity of Aqueous black pepper seed extract (ABPE) was evaluated at different doses using disk diffusion and broth dilution methods. The extract was prepared using 10.0% dimethyl sulfoxide (DMSO) and water as solvent. The commonly used antibiotic ciprofloxacin was used in the broth dilution method and the results were compared with those for aqueous extracts. To confirm a more precise range of antimicrobial susceptibility of the extracts, ABPE was used at seven different concentrations (100, 80, 60, 40, 20, 10 and 5 mg/mL). Selected concentrations were then used as needed. ABPE showed an inhibitory effect on the above bacteria at doses of 90 mg/ml and higher. The Minimum inhibitory concentration (MIC) values for Escherichia coli and Staphylococcus aureus were 85 and 90 mg/ml ABPE, respectively. The MIC of ciprofloxacin against Staphylococcus aureus and Escherichia coli was currently 1µg/ml. The MIC of ciprofloxacin was lowest for the organisms tested compared to the MIC of ABPE. This work clearly demonstrates the antibacterial sensitivity of Staphylococcus aureus and Escherichia coli to an aqueous extract of black pepper seeds.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Microbial Sensitivity Tests , Piper nigrum , Plant Extracts , Seeds , Staphylococcus aureus , Piper nigrum/chemistry , Plant Extracts/pharmacology , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Seeds/chemistry , Ciprofloxacin/pharmacology
17.
PeerJ ; 12: e17987, 2024.
Article in English | MEDLINE | ID: mdl-39224818

ABSTRACT

Background: Understanding the reproductive biology of weeds is crucial for managing them effectively. Diplachne fusca (Poaceae) is a widely distributed weed species that poses significant challenges to agricultural productivity. Nevertheless, it remains unclear how the soil seed bank of D. fusca responds to environmental shifts, and whether a dormancy cycle is present in this species. Methods: We investigated how seed dormancy in D. fusca is broken and how it responds to natural environmental changes. The impact of incubation temperature, light exposure, cold stratification at 4 °C, and gibberellic acid (GA3) on seed germination/dormancy-break was investigated, along with assessing seasonal changes in germinability through monthly excavation and laboratory incubation of buried seeds over 2 years. Results: Results indicated that newly ripened seeds of D. fusca were dormant, with germination facilitated by GA3, cold stratification, and after-ripening at ambient room conditions. Exposure to darkness inhibited germination. Seasonal patterns of germination were observed, with peak germination occurring in cooler months and a marked decline during the hot summer months. After 2 years of being buried, approximately 40% of the seeds remained viable. Conclusion: In summary, seeds of D. fusca exhibit non-deep physiological dormancy and maintain a persistent soil seed bank. Seeds buried in the soil undergo a yearly dormancy/non-dormancy cycle. This dormancy cycle prevents seed germination and seedling emergence in autumn, which boosts the survival of seedlings in less favorable seasons, yet it also makes it more challenging to eradicate this weed.


Subject(s)
Germination , Plant Dormancy , Plant Weeds , Seasons , Seeds , Plant Dormancy/physiology , Germination/physiology , Plant Weeds/physiology , Seeds/growth & development , Seeds/physiology , Poaceae/physiology , Gibberellins/metabolism , Temperature
18.
Carbohydr Polym ; 345: 122589, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39227113

ABSTRACT

Maturity and drying treatment are important factors affecting the processing characteristics of lotus seeds and its starch. This study aimed to investigate the effect of maturity (from low to high-M-1, M-2, M-3, M-4) on far-infrared drying kinetics of lotus seeds, and on the variation of structure, gelation and digestive properties of lotus seed starch (LSS) before and after drying. As the maturity increased, the drying time reduced from 5.8 to 1.0 h. The reduction of drying time was correlated with the decrease of initial moisture content, the increase of water freedom and the destruction of tissue structure during ripening. The increased maturity and drying process altered the multiscale structure of LSS, including an increase in amylose content, disruption of the short-range structure, and a decrease in relative crystallinity and molecular weight. The viscosity, pasting temperature and enthalpy of LSS decreased during ripening, and drying treatment caused the further decrease. The digestibility of LSS increased during ripening and drying. Lotus seeds at M-4 would be optimal for obtaining shorter drying time, lower pasting temperature and enthalpy, and higher digestibility. This study provided theoretical guidance for achieving effective drying process and screening LSS with suitable processing properties through maturity sorting.


Subject(s)
Lotus , Seeds , Starch , Seeds/chemistry , Lotus/chemistry , Starch/chemistry , Desiccation/methods , Viscosity , Amylose/chemistry , Molecular Weight , Digestion , Gels/chemistry , Water/chemistry , Temperature , Molecular Structure
19.
Braz J Biol ; 84: e279415, 2024.
Article in English | MEDLINE | ID: mdl-39230076

ABSTRACT

Salinity limits the growth and productivity of crops, to reverse these effects, natural pigments with antioxidant bioactivity can be studied, such as turmeric (Curcuma longa L.) and paprika (Capsicum annum L.). Therefore, it aimed to evaluate turmeric and paprika as possible saline stress attenuators and biostimulants during germination and initial development of smooth lettuce seedlings. In the laboratory, the seeds were treated for 1 hour with a solution of paprika and turmeric at doses 0 (negative control), 1, 2, 3 and 4 g L-1, and placed on a substrate with saline solution of sodium chloride 4 g L-1 (-0,4 Mpa), and a positive control, composed of dry seeds arranged in a substrate moistened with distilled water. Physiological quality analysis were carried out, and for the dose that showed the best result (4 g L-1), the treated seeds were grown in a greenhouse, and received weekly applications via foliar with a 4 g L-1 solution for turmeric and paprika. After the crop cycle, morphometric analyzes were performed. The turmeric and paprika solutions were analyzed by High-Performance Liquid Chromatography (HPLC) to identify the presence of bioactive substances. The turmeric doses were not efficient in overcoming the effects of salinity on seeds and seedlings, which was attributed to the low solubility of turmeric in water. Paprika, although it did not provide the biostimulant effect, was efficient in attenuating the effects of excess salt, at a concentration of 4 g L-1, promoting increases in physiological quality. In HPLC, a very low signal response was noted in relation to samples composed of turmeric and paprika solutions, indicating a low percentage of soluble compounds, which compromises bioactivity, and leads to the need for further analyses using surfactants and/or other solvents with which there is greater affinity.


Subject(s)
Antioxidants , Curcuma , Germination , Antioxidants/pharmacology , Curcuma/chemistry , Germination/drug effects , Germination/physiology , Lactuca/drug effects , Lactuca/chemistry , Lactuca/growth & development , Chromatography, High Pressure Liquid , Salinity , Seedlings/drug effects , Seedlings/growth & development , Seedlings/chemistry , Seeds/chemistry , Seeds/drug effects , Seeds/growth & development , Plant Extracts/pharmacology , Plant Extracts/chemistry , Sodium Chloride/pharmacology
20.
Braz J Biol ; 84: e286941, 2024.
Article in English | MEDLINE | ID: mdl-39230086

ABSTRACT

Seed priming with biostimulant for soybean is a promising practice contributing positively to the physiological quality and vigor of seedlings, but there are little studies regarding protocols of bioinputs, such as Ascophyllum nodosum L. seaweed extract. We aimed to evaluate the effect of doses of A. nodosum macroalgae in seed priming and its impact on germination and seedling vigor of soybean. Seeds were subjected to priming with A. nodosum extract (ANE) at doses of 0, 1, 2, 3, 4, and 5 mL kg seed-1 during 15 min. Priming with ANE did not influence the first count and seed germination. Soybean seedlings from priming with 5 mL kg-1 ANE showed higher growth and shoot and root dry biomass. We observed increase 18% for shoot dry matter with priming of 5 mL kg-1 ANE compared to untreated seeds. The responses were variable for the emergence speed index in function ANE and did not influence the photochemical processes in photosystem II. Seed priming with ANE contributed in higher chlorophyll index. ANE showed a biostimulant effect on soybean seedlings, providing better growth and biomass characteristics, being promising in seed priming, but further studies are suggested in order to increase information regarding its use protocol for soybean.


Subject(s)
Ascophyllum , Germination , Glycine max , Seedlings , Seeds , Ascophyllum/chemistry , Glycine max/growth & development , Glycine max/drug effects , Germination/physiology , Germination/drug effects , Seeds/drug effects , Seeds/growth & development , Seedlings/growth & development , Biomass , Seaweed/physiology , Plant Extracts/pharmacology , Chlorophyll/analysis
SELECTION OF CITATIONS
SEARCH DETAIL