Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.887
Filter
1.
Mol Biol Rep ; 51(1): 705, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824214

ABSTRACT

BACKGROUND: Quinoa seeds (Chenopodium quinoa Willd.) have gained interest due to their naturally occurring phytochemicals and antioxidants. They possess potent anticancer properties against human colorectal cancer. METHODS AND RESULTS: Fatty acids in quinoa oil were studied using gas chromatography-mass spectrometry. Rats were used to test the acute oral toxicity of the nanoemulsion loaded with sodium alginate. The DPPH radical scavenging method was employed to assess the nanoemulsion's ability to scavenge free radicals. It was examined the in vivo anticancer potential of quinoa oil nanoemulsion on rats with breast cancer induced by 7, 12-dimethylbenz (a) anthracene (DMBA). DMBA-breast cancer models received daily quinoa oil nanoemulsions for 30 days. The anticancer effect of the nanoemulsion was assessed by measuring ROS, protein carbonyl, gene expression of anti-oncogenes, and histopathological analysis. Supplying quinoa oil nanoemulsion significantly reduced the increase in serum ROS and PC levels induced in breast cancer tissue. The expression levels of antioncogenes in breast cancer tissue were decreased by the quinoa oil nanoemulsion. Nanoemulsions also improved the cellular morphology of breast tumors. CONCLUSION: The study results indicate that quinoa oil nanoemulsion has anticancer activity against breast cancer, effectively modulating oxidative stress markers, anti-oncogene expressions, and tissue architecture. It can be inferred from the results that quinoa oil nanoemulsion is a chemoprotective medication that may hinder breast cancer progression in rats.


Subject(s)
Alginates , Breast Neoplasms , Chenopodium quinoa , Emulsions , Plant Oils , Animals , Chenopodium quinoa/chemistry , Female , Rats , Plant Oils/pharmacology , Plant Oils/chemistry , Alginates/chemistry , Alginates/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Seeds/chemistry , Antineoplastic Agents/pharmacology , Oxidative Stress/drug effects , Humans
2.
Food Res Int ; 188: 114467, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823836

ABSTRACT

Cellulose-based packaging has received great attention due to its characteristics of biodegradability, sustainability, and recyclability. Natural polymer coatings are usually applied to the paper surface to enhance the barriers to water vapour and improve the mechanical properties. A chitosan-based coating for paper packaging was developed in this work to store specialty roasted coffee beans, evaluating two samples of chitosan (Sigma® and molasses chitosan), and following the physico-chemical and microbiological characteristics of coffee beans along a period of 60 days. Sensory tests (Ranking Descriptive Analysis and Preference Test) were applied to the beverage prepared with the roasted and ground coffee beans stored in each packaging. Thin chitosan films provided good coverage and adhesion on the paper. Improved mechanical properties and lower water permeability were observed in the chitosan-coated papers. The physicochemical and microbiological characteristics of the coffee beans were not influenced by the packaging along 60 days of storage. The molasses chitosan coating resulted in slightly darker roasted beans. In sensory evaluation, there is a clear difference between the chitosan samples, so that molasses chitosan-coated packaging had higher scores compared to Sigma® chitosan treatment for flavor and global impression in the preference analysis of the beverage. The molasses chitosan-coated packaging had three to four more consumers attributing the highest scores for the beverage prepared with the roasted beans stored in this type of packaging.


Subject(s)
Chitosan , Food Packaging , Paper , Chitosan/chemistry , Food Packaging/methods , Coffee/chemistry , Beverages/analysis , Seeds/chemistry , Seeds/microbiology , Humans , Taste , Coffea/chemistry , Coffea/microbiology , Consumer Behavior , Permeability
3.
Food Res Int ; 188: 114415, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823855

ABSTRACT

Several scientific studies have warned that the ingestion of dietary lipid oxidation products (LOPs) may initiate or exacerbate the development of several chronic non-communicable diseases in humans. Indeed, the constantly increasing consumption of culinary oils by larger global populations indicates the need for scientific techniques to suppress the evolution of LOPs in thermo-oxidised oils. This study employed a 600.13 MHz frequency NMR spectrometer in evaluating the effect of 10, 50, and 100 ppm concentrations of chemical compounds reported to have antioxidant properties in continuously-stirred and thermally stressed polyunsaturated fatty acid (PUFA)-rich hemp seed oil at a frying temperature of 180℃ for 180 min. Research data acquired showed that the antioxidants α- and γ-tocopherol, γ-oryzanol, ß-carotene, eugenol, resveratrol, ascorbyl palmitate, gentisic acid, and L-ascorbic acid all played a vital role in suppressing the evolution of secondary aldehydic lipid oxidation products in hemp seed oil. However, the most ineffective LOP-suppressing agent was L-lysine, an observation which may be accountable by its poor oil solubility. Nonetheless, trends deduced for compounds acting as antioxidants were mainly unique for each class of agent tested. Conversely, the antioxidant capacity of resveratrol was consistently higher, and this effect was found to be independent of its added amounts. This report provides a direct approach in developing scientific methods for the suppression of LOPs in thermo-oxidatively susceptible PUFA-rich cooking oils.


Subject(s)
Antioxidants , Cannabis , Hot Temperature , Lipid Peroxidation , Plant Oils , Antioxidants/chemistry , Plant Oils/chemistry , Cannabis/chemistry , Lipid Peroxidation/drug effects , Cooking , Seeds/chemistry , Resveratrol/chemistry , Fatty Acids, Unsaturated/analysis , Fatty Acids, Unsaturated/chemistry , Magnetic Resonance Spectroscopy , Ascorbic Acid/chemistry , Plant Extracts
4.
Food Res Int ; 188: 114500, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823879

ABSTRACT

Located in Brazil's Central Plateau, the Cerrado Savannah is an emerging coffee-growing region with significant potential for the national coffee market. This study investigated the impact of potassium fertilization on Arabica coffee quality in the Cerrado, using three potassium sources (K2SO4, KCl, and KNO3) and five cultivars (Arara, Aranãs, IPR103, Catiguá and Topázio) across two consecutive harvests. We focused on productivity, granulometry, chemical composition, and sensory characteristics. No significant difference in productivity across the cultivars studied or potassium sources as isolated factors were observed. Regarding chemical parameters, potassium sources only affected NO3- and SO42- levels in the grains. Cultivar-specific differences were noted in caffeine (CAF), citric acid (CA), and sucrose (SUC), highlighting a strong genetic influence. K2SO4 improved productivity in Arara (15 %) and IPR103 (11 %), while KNO3 reduced flat grain percentage to 70 % in Catiguá. Sensory evaluation showed that all potassium sources and cultivars produced specialty coffees, with the Arara cultivar treated with K2SO4 achieving the highest SCA score (83.3) while IPR 103 treated with KCl scored the lowest at 78. Only three treatments were below but very close to the threshold (80). Multivariate analysis indicated a trend where specific treatments correlated with higher productivity and quality. Despite the subtle differences in productivity and quality among potassium sources, a cost-benefit analysis may favor KCl due to its affordability, suggesting its viability as a potassium fertilization option in coffee cultivation. Future research is needed to confirm these trends and optimize potassium source selection to enhance coffee quality in the Cerrado.


Subject(s)
Coffea , Potassium , Brazil , Coffea/chemistry , Coffea/growth & development , Potassium/analysis , Seeds/chemistry , Seeds/growth & development , Coffee/chemistry , Taste , Fertilizers , Humans , Caffeine/analysis
5.
Carbohydr Polym ; 339: 122228, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823903

ABSTRACT

Meat products consumption is rising globally, but concerns about sustainability, fat content, and shelf life. Synthetic additives and preservatives used for extending the shelf life of meat often carry health and environmental drawbacks. Seed mucilage, natural polysaccharides, possesses unique functional properties like water holding, emulsifying, and film forming, offering potential alternatives in meat processing and preservation. This study explores the application of seed mucilage from diverse sources (e.g., flaxseed, psyllium, basil) in various meat and meat products processing and preservation. Mucilage's water-holding and emulsifying properties can potentially bind fat and decrease the overall lipid content in meat and meat-based products. Moreover, antimicrobial and film-forming properties of mucilage can potentially inhibit microbial growth and reduce oxidation, extending the shelf life. This review emphasizes the advantages of incorporating mucilage into processing and coating strategies for meat and seafood products.


Subject(s)
Food Preservation , Meat Products , Plant Mucilage , Seeds , Seeds/chemistry , Meat Products/analysis , Plant Mucilage/chemistry , Food Preservation/methods , Flax/chemistry , Biopolymers/chemistry , Polysaccharides/chemistry , Animals , Psyllium/chemistry , Food Handling/methods
6.
An Acad Bras Cienc ; 96(2): e20230043, 2024.
Article in English | MEDLINE | ID: mdl-38808874

ABSTRACT

Sesbania virgata (Cav.) Pers. seeds are protein sources with health and environmental benefits. In this research, proteins with lectin activity were identified in a protein fraction from S. virgata seeds (PFLA), as well its antioxidant and antimicrobial potentials, in addition to cytotoxic effects. To obtain PFLA, seed flour was homogenized in Glycine-NaOH (100 mM; pH 9.0; NaCl 150 mM) and precipitated in ammonium sulfate. PFLA concentrates bioactive lectins (32 HU/mL, 480 HU/gFa, 18.862 HU/mgP) and essential amino acids (13.36 g/100g protein). PFLA exerts antioxidant activity, acting as a promising metal chelating agent (~77% of activity). Analyzes of cell culture assay results suggest that antioxidant activity of PFLA may be associated with the recruitment of essential molecules to prevent the metabolic impairment of cells exposed to oxidative stress. PFLA (256 - 512 µg/mL) also exhibits antifungal activity, inhibiting the growth of Aspergillus flavus, Candida albicans, Candida tropicalis and Penicillium citrinum. Cytotoxic analysis indicates a tendency of low interference in the proliferation of 3T3 and HepG2 cells in the range of PFLA concentrations with biological activity. These findings support the notion that PFLA is a promising adjuvant to be applied in current policies on the management of metal ion chelation and fungal infections.


Subject(s)
Antifungal Agents , Antioxidants , Seeds , Sesbania , Seeds/chemistry , Antioxidants/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/chemistry , Sesbania/chemistry , Humans , Plant Proteins/pharmacology , Microbial Sensitivity Tests , Animals , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Hep G2 Cells
7.
Food Chem ; 452: 139592, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744136

ABSTRACT

Surface tension (γeq) of the seed extracts of four lupine cultivars showed values in the range 44.9-46.4 mN/m. The surface compression elasticity (E') of the adsorbed layers and foaming capacity (FC) also showed similar values (E' âˆ¼ 30 mN/m, FC âˆ¼ 100%). The effect of defatting prior to extraction at pH 8.5 depends on the solvent employed - hexane and dichloromethane improved the subsequent protein extraction yield, while ethanol reduced it. The effect of defatting on surface tension could be positive (for hexane and ethanol) or negative (for dichloromethane). Generally, defatting improved the surface compression rheological and foaming parameters. On the other hand, fractionation of the extracts obtained at pH 8.5 from hexane-defatted seeds did not improve significantly the surface activity parameters. Some improvement with respect to the unfractionated extracts was observed only for the extracts of undefatted seeds. γeq, E', E" and FC isotherms confirm the surfactant-like behavior of the lupine seed extracts.


Subject(s)
Lupinus , Plant Extracts , Seeds , Lupinus/chemistry , Seeds/chemistry , Plant Extracts/chemistry , Surface Tension
8.
Clin Nutr ESPEN ; 61: 253-265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777441

ABSTRACT

BACKGROUND: Pomegranate seed oil (PSO) and avocado seed oil (ASO) are natural polyphenols with established anti-inflammatory activity. PURPOSE: This study aimed to investigate the molecular mechanisms underlying the therapeutic efficacy of PSO and ASO in experimental ulcerative colitis (UC) with reference to sulfasalazine (SLZ). METHODS: Eighty male albino rats were divided equally into 8 groups; Normal, PSO, ASO, SLZ, UC-control, (UC + PSO), (UC + ASO) and (UC + SLZ) groups. Colitis was induced by intra-rectal injection of acetic acid. PSO (0.5ml/200g), ASO (1ml/250g) and SLZ (100 mg/kg) were administered orally once/day for 14 days, 24h after colitis induction. Colitis was evaluated by measuring disease activity index (DAI), colon weight/length ratio and histologic inflammatory score. Vascular endothelial growth factor receptor-2 (VEGFR-2), colonic macrophage migration inhibitory factor (MIF), and malondialdehyde (MDA) were determined. Colonic gene expression of TNF-α, VEGF and heme oxygenase-1 (HO-1) were also estimated. RESULTS: PSO and ASO treatments to UC rats significantly reduced DAI, weight/length ratio, VEGFR-2, and colon histologic inflammatory score versus UC-controls. ASO significantly suppressed MIF levels and TNF-α expression greater than PSO. However, PSO was more significant than ASO in reducing MDA levels and up-regulating HO-1 expression. Both oils significantly down-regulated VEGF expression. The obtained biochemical and histological changes induced by UC were nearly corrected by SLZ. CONCLUSION: The proved beneficial effect of PSO and ASO as anti-inflammatory, anti-angiogenic, and antioxidant in UC rats could be mediated by suppression of TNF-α, VEGF, and MIF and up-regulation of HO-1.


Subject(s)
Anti-Inflammatory Agents , Colitis, Ulcerative , Persea , Plant Oils , Pomegranate , Animals , Colitis, Ulcerative/drug therapy , Male , Persea/chemistry , Rats , Pomegranate/chemistry , Plant Oils/pharmacology , Anti-Inflammatory Agents/pharmacology , Macrophage Migration-Inhibitory Factors/metabolism , Malondialdehyde/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Seeds/chemistry , Colon/drug effects , Colon/pathology , Colon/metabolism , Inflammation/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Disease Models, Animal
9.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731431

ABSTRACT

An excessive inflammatory response of the gastrointestinal tract is recognized as one of the major contributors to ulcerative colitis (UC). Despite this, effective preventive approaches for UC remain limited. Rosmarinic acid (RA), an enriched fraction from Perilla frutescens, has been shown to exert beneficial effects on disease-related inflammatory disorders. However, RA-enriched perilla seed meal (RAPSM) and perilla seed (RAPS) extracts have not been investigated in dextran sulfate sodium (DSS)-induced UC in mice. RAPSM and RAPS were extracted using the solvent-partitioning method and analyzed with high-pressure liquid chromatography (HPLC). Mice with UC induced using 2.5% DSS for 7 days were pretreated with RAPSM and RAPS (50, 250, 500 mg/kg). Then, the clinical manifestation, colonic histopathology, and serum proinflammatory cytokines were determined. Indeed, DSS-induced UC mice exhibited colonic pathological defects including an impaired colon structure, colon length shortening, and increased serum proinflammatory cytokines. However, RAPSM and RAPS had a protective effect at all doses by attenuating colonic pathology in DSS-induced UC mice, potentially through the suppression of proinflammatory cytokines. Concentrations of 50 mg/kg of RAPSM and RAPS were sufficient to achieve a beneficial effect in UC mice. This suggests that RAPSM and RAPS have a preventive effect against DSS-induced UC, potentially through alleviating inflammatory responses and relieving severe inflammation in the colon.


Subject(s)
Colitis, Ulcerative , Cytokines , Dextran Sulfate , Perilla , Plant Extracts , Seeds , Animals , Dextran Sulfate/adverse effects , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/prevention & control , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cytokines/metabolism , Cytokines/blood , Seeds/chemistry , Perilla/chemistry , Disease Models, Animal , Male , Depsides/pharmacology , Depsides/chemistry , Colon/drug effects , Colon/pathology , Colon/metabolism , Cinnamates/pharmacology , Cinnamates/chemistry , Rosmarinic Acid , Perilla frutescens/chemistry
10.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731433

ABSTRACT

The aim of this study was to investigate how dietary modifications with pomegranate seed oil (PSO) and bitter melon aqueous extract (BME) affect mineral content in the spleen of rats both under normal physiological conditions and with coexisting mammary tumorigenesis. The diet of Sprague-Dawley female rats was supplemented either with PSO or with BME, or with a combination for 21 weeks. A chemical carcinogen (7,12-dimethylbenz[a]anthracene) was applied intragastrically to induce mammary tumors. In the spleen of rats, the selected elements were determined with a quadrupole mass spectrometer with inductively coupled plasma ionization (ICP-MS). ANOVA was used to evaluate differences in elemental composition among experimental groups. Multivariate statistical methods were used to discover whether some subtle dependencies exist between experimental factors and thus influence the element content. Experimental factors affected the splenic levels of macroelements, except for potassium. Both diet modification and the cancerogenic process resulted in significant changes in the content of Fe, Se, Co, Cr, Ni, Al, Sr, Pb, Cd, B, and Tl in rat spleen. Chemometric analysis revealed the greatest impact of the ongoing carcinogenic process on the mineral composition of the spleen. The obtained results may contribute to a better understanding of peripheral immune organ functioning, especially during the neoplastic process, and thus may help develop anticancer prevention and treatment strategies.


Subject(s)
Momordica charantia , Plant Extracts , Plant Oils , Pomegranate , Rats, Sprague-Dawley , Spleen , Animals , Spleen/drug effects , Spleen/metabolism , Female , Rats , Pomegranate/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Momordica charantia/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Dietary Supplements , Seeds/chemistry , Breast Neoplasms/chemically induced , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/metabolism
11.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731491

ABSTRACT

Catnip (Nepeta cataria L.) plants produce a wide array of specialized metabolites with multiple applications for human health. The productivity of such metabolites, including nepetalactones, and natural insect repellents is influenced by the conditions under which the plants are cultivated. In this study, we assessed how field-grown catnip plants, transplanted after being propagated via either single-node stem cuttings or seeds, varied regarding their phytochemical composition throughout a growing season in two distinct environmental conditions (Pittstown and Upper Deerfield) in the state of New Jersey, United States. Iridoid terpenes were quantified in plant tissues via ultra-high-performance liquid chromatography with triple quadrupole mass spectrometry (UHPLC-QqQ-MS), and phenolic compounds (phenolic acids and flavonoids) were analyzed via UHPLC with diode-array detection (UHPLC-DAD). The highest contents of total nepetalactones in Pittstown were found at 6 weeks after transplanting (WAT) for both seedlings and cuttings (1305.4 and 1223.3 mg/100 g, respectively), while in Upper Deerfield, the highest contents for both propagules were at 11 WAT (1247.7 and 997.1 mg/100 g, respectively) for seed-propagated and stem cuttings). The highest concentration of nepetalactones was associated with floral-bud to partial-flowering stages. Because plants in Pittstown accumulated considerably more biomass than plants grown in Upper Deerfield, the difference in nepetalactone production per plant was striking, with peak productivity reaching only 598.9 mg per plant in Upper Deerfield and 1833.1 mg per plant in Pittstown. Phenolic acids accumulated in higher contents towards the end of the season in both locations, after a period of low precipitation, and flavone glycosides had similar accumulation patterns to nepetalactones. In both locations, rooted stem cuttings reached their maximum nepetalactone productivity, on average, four weeks later than seed-propagated plants, suggesting that seedlings have, overall, better agronomic performance.


Subject(s)
Nepeta , Seasons , Nepeta/chemistry , Chromatography, High Pressure Liquid , Phytochemicals/chemistry , Phytochemicals/analysis , Flavonoids/analysis , Flavonoids/chemistry , Cyclopentane Monoterpenes , Seeds/chemistry , Seeds/growth & development , Plant Extracts/chemistry , Iridoids/chemistry , Pyrones
12.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731509

ABSTRACT

The aim of this study was to develop microcapsules containing juniper or black pepper essential oils, using a combination of faba bean protein and chia seed polysaccharides (in ratios of 1:1, 1:2, 2:1). By synergizing these two polymers, our goal was to enhance the efficiency of essential oil microencapsulation, opening up various applications in the food industry. Additionally, we aimed to investigate the influence of different polymer mixing ratios on the properties of the resulting microcapsules and the course of the complex coacervation process. To dissolve the essential oils and limit their evaporation, soybean and rapeseed oils were used. The powders resulting from the freeze-drying of coacervates underwent testing to assess microencapsulation efficiency (65.64-87.85%), density, flowability, water content, solubility, and hygroscopicity. Additionally, FT-IR and DSC analyses were conducted. FT-IR analysis confirmed the interactions between the components of the microcapsules, and these interactions were reflected in their high thermal resistance, especially at a protein-to-polysaccharide ratio of 2:1 (177.2 °C). The water content in the obtained powders was low (3.72-7.65%), but it contributed to their hygroscopicity (40.40-76.98%).


Subject(s)
Capsules , Drug Compounding , Oils, Volatile , Plant Proteins , Polysaccharides , Salvia , Seeds , Vicia faba , Polysaccharides/chemistry , Seeds/chemistry , Vicia faba/chemistry , Drug Compounding/methods , Oils, Volatile/chemistry , Plant Proteins/chemistry , Salvia/chemistry , Capsules/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Water/chemistry
13.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731511

ABSTRACT

Alginate films plasticized with glycerol and enriched in raspberry and/or black currant seed oils were prepared via casting solution techniques. The intention was to create active films for food packaging where antioxidants in a film would deactivate oxidants in a packed product or its surroundings, improving conditions inside packaging and extending the shelf life of such a product. The prepared materials were characterized by physicochemical, spectroscopic, mechanical, water vapor transmission (WVTR), and antioxidant activity analysis. Infrared spectra of the alginate films with oils were similar to those without the additive; the band with a maximum at about 1740 cm-1 stood out. The prepared materials with oils were thicker, contained less water, were more yellow, and were less permeable to water vapor. Moreover, the presence of the oil in the films resulted in a slightly lower Young's modulus and lower stress at break values but higher strain at break. The antioxidant capacity of raspberry seed oil itself was about five times higher than that of black currant seed oil, and a similar trend was noticed for films modified with these oils. The results indicated that both oils could be used as active substances with antioxidant properties in food packaging.


Subject(s)
Alginates , Antioxidants , Food Packaging , Plant Oils , Ribes , Rubus , Seeds , Food Packaging/methods , Alginates/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Plant Oils/chemistry , Seeds/chemistry , Rubus/chemistry , Ribes/chemistry , Steam
14.
Pak J Pharm Sci ; 37(1(Special)): 231-234, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747274

ABSTRACT

Increased levels of bad cholesterol in the body result in increasing blood pressure and weight gain. The rate of mortality in people, especially who are obese, is increasing due to absence of organic sources of fiber in their diets. Chia and fennel seeds are rich sources of fiber. The objective of this study was to evaluate the combined effect of Salvia hispanica (Chia seeds) and Foeniculum vulgare (Fennel seeds) against weight-loss and lipid profile in obese human subjects. The research was conducted on obese people aged 25 to 40 years at the Jinnah Hospital Lahore. The study design was randomized control trial (RCT). The sample size was calculated and was divided in-to two groups. With the duration of study being 3 months, pre-testing of all the participants was done. Group 1 was control group, given placebo treatment and Group 2 was an intervention group and given chia and fennel seeds. Post-testing was done and data were analyzed. Results showed that chia and fennel seeds have significant effect (p <0.05) on BMI and lipid profile hence, both are beneficial for lowering body weight and improving LDL, HDL, serum triglycerides and total cholesterol levels.


Subject(s)
Foeniculum , Obesity , Salvia , Seeds , Weight Loss , Humans , Foeniculum/chemistry , Adult , Obesity/blood , Obesity/drug therapy , Seeds/chemistry , Salvia/chemistry , Female , Male , Weight Loss/drug effects , Lipids/blood , Plant Extracts/pharmacology , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Body Mass Index , Phytotherapy
15.
J Agric Food Chem ; 72(19): 10909-10922, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38689562

ABSTRACT

Pumpkin (Cucurbita moschata) seed meal (PSM), the major byproduct of pumpkin seed oil industry, was used to prepare angiotensin-converting enzyme (ACE) inhibitory and angiotensin-converting enzyme 2 (ACE2) upregulating peptides. These peptides were isolated and purified from the PSM hydrolysate prepared using Neutrase 5.0 BG by ultrafiltration, Sephadex G-15 column chromatography, and reversed-phase high-performance liquid chromatography. Two peptides with significant ACE inhibition activity were identified as SNHANQLDFHP and PVQVLASAYR with IC50 values of 172.07 and 90.69 µM, respectively. The C-terminal tripeptides of the two peptides contained Pro, Phe, and Tyr, respectively, and PVQVLASAYR also had Val in its N-terminal tripeptide, which was a favorable structure for ACE inhibition. Molecular docking results declared that the two peptides could interact with ACE through hydrogen bonds and hydrophobic interactions. Furthermore, the two peptides performed protective function on EA.hy926 cells by decreasing the secretion of endothelin-1, increasing the release of nitric oxide, and regulating the ACE2 activity. In vitro simulated gastrointestinal digestion showed the two peptides exhibited good stability against gastrointestinal enzyme digestion. In conclusion, PSM is a promising material for preparing antihypertensive peptides.


Subject(s)
Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors , Cucurbita , Molecular Docking Simulation , Peptides , Peptidyl-Dipeptidase A , Seeds , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Cucurbita/chemistry , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Seeds/chemistry , Humans , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Up-Regulation/drug effects , Cell Line , Plant Proteins/chemistry , Plant Proteins/metabolism
16.
J Agric Food Chem ; 72(19): 11278-11291, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708781

ABSTRACT

Moringa seeds are an excellent dietary source of phytochemicals (i.e., glucosinolates, GSLs; isothiocyanates, ITCs) with health-beneficial effects. Although numerous studies have been conducted on moringa seeds, the effect of germination on the regulation of GSLs remains scarcely explored. The present study investigated the dynamic changes of GSLs in moringa seeds during germination (at 25, 30, and 35 °C for 6 days in the dark) through an untargeted metabolomics approach and compared the antioxidant capacity of ungerminated and germinated moringa seeds. Our results showed that germination significantly increased the total GSL content from 150 (day 0) to 323 µmol/g (35 °C, day 6) on a dry weight (DW) basis, especially glucomoringin (GMG), the unique glucosinolate in moringa seeds, which was significantly upregulated from 61 (day 0) to 149 µmol/g DW (35 °C, day 4). The upregulation of GMG corresponded to the metabolism of tyrosine, which might be the initial precursor for the formation of GMG. In addition, germination enhanced the total ITC content from 85 (day 0) to 239 µmol SE/g DW (35 °C, day 6), indicating that germination may have also increased the activity of myrosinase. Furthermore, germination remarkably increased the total phenolic content (109-507 mg GAE/100 g DW) and antioxidant capacity of moringa seeds. Our findings suggest that moringa sprouts could be promoted as a novel food and/or ingredient rich in GMG.


Subject(s)
Germination , Glucosinolates , Moringa , Seeds , Tyrosine , Seeds/chemistry , Seeds/metabolism , Seeds/growth & development , Tyrosine/metabolism , Tyrosine/analysis , Moringa/chemistry , Moringa/metabolism , Moringa/growth & development , Glucosinolates/metabolism , Glucosinolates/analysis , Glucosinolates/chemistry , Antioxidants/metabolism , Antioxidants/chemistry , Antioxidants/analysis
17.
J Agric Food Chem ; 72(19): 10944-10957, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38710505

ABSTRACT

Isoflavones, the major secondary metabolites of interest due to their benefits to both human and plant health, are exclusively produced by legumes. In this study, we profiled the isoflavone content in dry seeds from 211 soybean [Glycine max (L.) Merr.] accessions grown across five environments. Broad and discernible phenotypic variations were observed among accessions, regions, and years of growth. Twenty-six single-nucleotide polymorphisms (SNPs) associated with the sum of glycitein (GLE), glycitin (GL), 6″-O-acetylglycitin (AGL), and 6″-O-malonylglycitin (MGL) contents were detected in multiple environments via a genome-wide association study (GWAS). These SNPs were located on chromosome 11 (8,148,438 bp to 8,296,956 bp, renamed qGly11-01). Glyma.11g108300 (GmGLY1), a gene that encodes a P450 family protein, was identified via sequence variation analysis, functional annotation, weighted gene coexpression network analysis (WGCNA), and expression profile analysis of candidate gene, and hairy roots transformation in soybean. Overexpression of GmGLY1 increased the glycitein content (GLC) in soybean hairy roots and transgenic seeds, while CRISPR/Cas9-generated mutants exhibited decreased GLC and increased daidzein content (DAC). Haplotype analysis revealed that GmGLY1 allelic variations significantly affect the GLC accumulation. These findings enhance our understanding of genes influencing GLC in soybean and may guide breeding for lines with high and stable GLC.


Subject(s)
Genome-Wide Association Study , Glycine max , Isoflavones , Plant Proteins , Polymorphism, Single Nucleotide , Seeds , Glycine max/metabolism , Glycine max/genetics , Glycine max/chemistry , Isoflavones/metabolism , Isoflavones/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/metabolism , Seeds/genetics , Seeds/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant
18.
J Agric Food Chem ; 72(19): 10862-10878, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712687

ABSTRACT

Bama County is a world-famous longevity county in the Guangxi Province, China. Bama hemp is a traditional seed used in hemp cultivation in the Bama County. The seeds contain abundant unsaturated fatty acids, particularly linoleic acid (LA) and linolenic acid in the golden ratio. These two substances have been proven to be related to human health and the prevention of various diseases. However, the seed development and seed oil accumulation mechanisms remain unclear. This study employed a combined analysis of physiological, transcriptomic, and metabolomic parameters to elucidate the fatty acid formation patterns in Bama hemp seeds throughout development. We found that seed oil accumulated at a late stage in embryo development, with seed oil accumulation following an "S″-shaped growth curve, and positively correlated with seed size, sugar content, protein content, and starch content. Transcriptome analysis identified genes related to the metabolism of LA, α-linolenic acid (ALA), and jasmonic acid (JA). We found that the FAD2 gene was upregulated 165.26 folds and the FAD3 gene was downregulated 6.15 folds at day 21. Metabolomic changes in LA, ALA, and JA compounds suggested a competitive relationship among these substances. Our findings indicate that the peak period of substance accumulation and nutrient accumulation in Bama hemp seeds occurs during the midstage of seed development (day 21) rather than in the late stage (day 40). The results of this research will provide a theoretical basis for local cultivation and deep processing of Bama hemp.


Subject(s)
Cannabis , Gene Expression Regulation, Plant , Linoleic Acid , Metabolomics , Plant Proteins , Seeds , Transcriptome , alpha-Linolenic Acid , Seeds/metabolism , Seeds/growth & development , Seeds/genetics , Seeds/chemistry , alpha-Linolenic Acid/metabolism , Cannabis/genetics , Cannabis/growth & development , Cannabis/metabolism , Cannabis/chemistry , Linoleic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , China , Gene Expression Profiling
19.
Sci Rep ; 14(1): 10885, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740801

ABSTRACT

The squash family (Cucurbitaceae) contains some of the most important crops cultivated worldwide and has played an important ecological, economic, and cultural role for millennia. In the American tropics, squashes were among the first cultivated crop species, but little is known about how their domestication unfolded. Here, we employ direct radiocarbon dating and morphological analyses of desiccated cucurbit seeds, rinds, and stems from El Gigante Rockshelter in Honduras to reconstruct human practices of selection and cultivation of Lagenaria siceraria, Cucurbita pepo, and Cucurbita moschata. Direct radiocarbon dating indicates that humans started using Lagenaria and wild Cucurbita starting ~ 10,950 calendar years before present (cal B.P.), primarily as watertight vessels and possibly as cooking and drinking containers. A rind directly dated to 11,150-10,765 cal B.P. represents the oldest known bottle gourd in the Americas. Domesticated C. moschata subsequently appeared ~ 4035 cal B.P., followed by domesticated C. pepo ~ 2190 cal B.P. associated with increasing evidence for their use as food crops. Multivariate statistical analysis of seed size and shape show that the archaeological C. pepo assemblage exhibits significant variability, representing at least three varieties: one similar to present-day zucchini, another like present-day vegetable marrow, and a native cultivar without modern analogs. Our archaeobotanical data supports the hypothesis that Indigenous cucurbit use started in the Early Holocene, and that agricultural complexity during the Late Holocene involved selective breeding that encouraged crop diversification.


Subject(s)
Archaeology , Crops, Agricultural , Cucurbita , Humans , Cucurbita/anatomy & histology , Radiometric Dating/methods , History, Ancient , Cucurbitaceae/anatomy & histology , Domestication , Seeds/chemistry , Honduras
20.
J Microencapsul ; 41(4): 296-311, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38709162

ABSTRACT

AIMS: To construct the microemulsion delivery system (ME) loading ATSO and NA and study their physicochemical characteristics to enhance their stability and water solubility. METHODS: By plotting ternary phase diagrams, the composition and proportions of the MEs were determined. The physicochemical characteristics and stability of MEs were evaluated by mean diameter, polydispersity index (PDI), pH, electrical conductivity, transmission electron microscopy (TEM), rheological behaviour measurement, and phase inversion temperature (PIT). RESULTS: The MEs was composed with EL-40 as a surfactant and specifically with the addition of ethanol as a cosurfactant in NA-loaded ME. The mean diameters of ATSO-loaded ME and NA-loaded ME were 39.65 ± 0.24 nm and 32.90 ± 2.65 nm, and PDI were 0.49 ± 0.01 and 0.28 ± 0.14, respectively. The TEM confirmed the spherical and smooth morphology of MEs. The rheological results indicated that MEs are dilatant fluids with the advantages of low viscosity, high fluidity, and tolerance to temperature fluctuations. The mean diameter and PDI of MEs showed no significant change after storage at 25 °C for 28 days and centrifugation. CONCLUSION: The prepared microemulsions could expand the application prospects of ATSO and NA products in cosmetics, medicine, foods and other fields.


Subject(s)
Emulsions , Plant Oils , Rheology , Emulsions/chemistry , Plant Oils/chemistry , Acer/chemistry , Fatty Acids/chemistry , Seeds/chemistry , Surface-Active Agents/chemistry , Drug Stability , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...