Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.705
Filter
1.
BMC Plant Biol ; 24(1): 491, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825702

ABSTRACT

BACKGROUND: Vegetable soybean is an important vegetable crop in world. Seed size and soluble sugar content are considered crucial indicators of quality in vegetable soybean, and there is a lack of clarity on the molecular basis of grain quality in vegetable soybean. RESULTS: In this context, we performed a comprehensive comparative transcriptome analysis of seeds between a high-sucrose content and large-grain variety (Zhenong 6, ZN6) and a low-sucrose content and small-grain variety (Williams 82, W82) at three developmental stages, i.e. stage R5 (Beginning Seed), stage R6 (Full Seed), and stage R7 (Beginning Maturity). The transcriptome analysis showed that 17,107 and 13,571 differentially expressed genes (DEGs) were identified in ZN6 at R6 (vs. R5) and R7 (vs. R6), respectively, whereas 16,203 and 16,032 were detected in W82. Gene expression pattern and DEGs functional enrichment proposed genotype-specific biological processes during seed development. The genes participating in soluble sugar biosynthesis such as FKGP were overexpressed in ZN6, whereas those responsible for lipid and protein metabolism such as ALDH3 were more enhanced in W82, exhibiting different dry material accumulation between two genotypes. Furthermore, hormone-associated transcriptional factors involved in seed size regulation such as BEH4 were overrepresented in ZN6, exhibiting different seed size regulation processes between two genotypes. CONCLUSIONS: Herein, we not only discovered the differential expression of genes encoding metabolic enzymes involved in seed composition, but also identified a type of hormone-associated transcriptional factors overexpressed in ZN6, which may regulate seed size and soluble content. This study provides new insights into the underlying causes of differences in the soybean metabolites and appearance, and suggests that genetic data can be used to improve its appearance and textural quality.


Subject(s)
Gene Expression Profiling , Glycine max , Seeds , Glycine max/genetics , Glycine max/metabolism , Glycine max/growth & development , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Edible Grain/genetics , Edible Grain/metabolism , Transcriptome , Genes, Plant , Gene Expression Regulation, Plant , Genotype , Sucrose/metabolism
2.
Dev Cell ; 59(11): 1361-1362, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834032

ABSTRACT

The ability to germinate, develop, and thrive underwater is key to efficient rice cultivation. In this issue of Developmental Cell, Wang et al. (2024) illuminate a hormone synthesis and inactivation cascade that promotes germination of submerged rice seeds and may allow improved germination in the field.


Subject(s)
Germination , Oryza , Oryza/growth & development , Oryza/metabolism , Germination/physiology , Seeds/growth & development , Seeds/metabolism , Plant Growth Regulators/metabolism , Water/metabolism
3.
BMC Plant Biol ; 24(1): 487, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824521

ABSTRACT

Soil salinity is a significant challenge in agriculture, particularly in arid and semi-arid regions such as Pakistan, leading to soil degradation and reduced crop yields. The present study assessed the impact of different salinity levels (0, 25, and 50 mmol NaCl) and biochar treatments (control, wheat-straw biochar, rice-husk biochar, and sawdust biochar applied @ 1% w/w) on the germination and growth performance of wheat. Two experiments: a germination study and a pot experiment (grown up to maturity), were performed. The results showed that NaCl-stress negatively impacted the germination parameters, grain, and straw yield, and agronomic and soil parameters. Biochar treatments restored these parameters compared to control (no biochar), but the effects were inconsistent across NaCl levels. Among the different biochars, wheat-straw biochar performed better than rice-husk and sawdust-derived biochar regarding germination and agronomic parameters. Biochar application notably increased soil pHs and electrical conductivity (ECe). Imposing NaCl stress reduced K concentrations in the wheat shoot and grains with concomitant higher Na concentrations in both parts. Parameters like foliar chlorophyll content (a, b, and total), stomatal and sub-stomatal conductance, and transpiration rate were also positively influenced by biochar addition. The study confirmed that biochar, particularly wheat-straw biochar, effectively mitigated the adverse effects of soil salinity, enhancing both soil quality and wheat growth. The study highlighted that biochar application can minimize the negative effects of salinity stress on wheat. Specifically, the types and dosages of biochar have to be optimized for different salinity levels under field conditions.


Subject(s)
Charcoal , Chlorophyll , Germination , Potassium , Salt Stress , Sodium , Triticum , Triticum/growth & development , Triticum/metabolism , Triticum/drug effects , Triticum/physiology , Germination/drug effects , Charcoal/pharmacology , Chlorophyll/metabolism , Potassium/metabolism , Sodium/metabolism , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Soil/chemistry , Edible Grain/growth & development , Edible Grain/drug effects , Edible Grain/metabolism , Pakistan , Salinity
4.
Sci Rep ; 14(1): 12729, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830906

ABSTRACT

Sorghum germplasm showed grain Fe and Zn genetic variability, but a few varieties were biofortified with these minerals. This work contributes to narrowing this gap. Fe and Zn concentrations along with 55,068 high-quality GBS SNP data from 140 sorghum accessions were used in this study. Both micronutrients exhibited good variability with respective ranges of 22.09-52.55 ppm and 17.92-43.16 ppm. Significant marker-trait associations were identified on chromosomes 1, 3, and 5. Two major effect SNPs (S01_72265728 and S05_58213541) explained 35% and 32% of Fe and Zn phenotypic variance, respectively. The SNP S01_72265728 was identified in the cytochrome P450 gene and showed a positive effect on Fe accumulation in the kernel, while S05_58213541 was intergenic near Sobic.005G134800 (zinc-binding ribosomal protein) and showed negative effect on Zn. Tissue-specific in silico expression analysis resulted in higher levels of Sobic.003G350800 gene product in several tissues such as leaf, root, flower, panicle, and stem. Sobic.005G188300 and Sobic.001G463800 were expressed moderately at grain maturity and anthesis in leaf, root, panicle, and seed tissues. The candidate genes expressed in leaves, stems, and grains will be targeted to improve grain and stover quality. The haplotypes identified will be useful in forward genetics breeding.


Subject(s)
Genome-Wide Association Study , Iron , Polymorphism, Single Nucleotide , Sorghum , Zinc , Sorghum/genetics , Sorghum/metabolism , Zinc/metabolism , Iron/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Gene Expression Regulation, Plant , Phenotype , Quantitative Trait Loci , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Genes, Plant
5.
Sci Rep ; 14(1): 10556, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719847

ABSTRACT

Fertilization with nickel (Ni) can positively affect plant development due to the role of this micronutrient in nitrogen (N) metabolism, namely, through urease and NiFe-hydrogenase. Although the application of Ni is an emerging practice in modern agriculture, its effectiveness strongly depends on the chosen application method, making further research in this area essential. The individual and combined effects of different Ni application methods-seed treatment, leaf spraying and/or soil fertilization-were investigated in soybean plants under different edaphoclimatic conditions (field and greenhouse). Beneficial effects of the Soil, Soil + Leaf and Seed + Leaf treatments were observed, with gains of 7 to 20% in biological nitrogen fixation, 1.5-fold in ureides, 14% in shoot dry weight and yield increases of up to 1161 kg ha-1. All the Ni application methods resulted in a 1.1-fold increase in the SPAD index, a 1.2-fold increase in photosynthesis, a 1.4-fold increase in nitrogenase, and a 3.9-fold increase in urease activity. Edaphoclimatic conditions exerted a significant influence on the treatments. The integrated approaches, namely, leaf application in conjunction with soil or seed fertilization, were more effective for enhancing yield in soybean cultivation systems. The determination of the ideal method is crucial for ensuring optimal absorption and utilization of this micronutrient and thus a feasible and sustainable management technology. Further research is warranted to establish official guidelines for the application of Ni in agricultural practices.


Subject(s)
Fertilizers , Glycine max , Nickel , Soil , Glycine max/growth & development , Glycine max/drug effects , Glycine max/metabolism , Fertilizers/analysis , Soil/chemistry , Urease/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/drug effects , Nitrogen Fixation/drug effects , Nitrogen/metabolism , Photosynthesis/drug effects , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Agriculture/methods
6.
Food Res Int ; 186: 114335, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729717

ABSTRACT

Germination holds the key to nutritional equilibrium in plant grains. In this study, the effect of soybean germination on the processing of soymilk (SM) and glucono-δ-lactone (GDL) induced soymilk gel (SG) was investigated. Germination promoted soybean sprout (SS) growth by activating the energy metabolism system. The energy metabolism was high during the three-day germination and was the most vigorous on the second day of germination. After germination, protein dissolution was improved in SM, and endogenous enzymes produced small molecule proteins. Small molecule proteins were more likely to aggregate to produce SM protein particles. Germination increased the water-holding capacity of SG induced by GDL but weakened the strength. Furthermore, the dynamic fluctuations in isoflavone content were closely monitored throughout the processing of soybean products, including SS, SM, and SG. Although the total amount of isoflavones in SM and SG processed from germinated soybeans decreased, a significant enrichment in the content of aglycone isoflavones was observed. The content of aglycone isoflavones in SG processed from germinated soybeans on the second day of germination was 736.17 ± 28.49 µg/g DW, which was 83.19 % higher than that of the control group. This study demonstrates that germination can enhance the nutritional value of soybean products, providing innovative opportunities for the development of health-promoting soybean-based products.


Subject(s)
Gels , Germination , Glycine max , Isoflavones , Soy Milk , Isoflavones/analysis , Isoflavones/metabolism , Soy Milk/chemistry , Soy Milk/metabolism , Glycine max/growth & development , Glycine max/chemistry , Glycine max/metabolism , Food Handling/methods , Nutritive Value , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Energy Metabolism , Lactones/metabolism , Lactones/analysis
7.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726824

ABSTRACT

Mitochondrial alternative oxidase (AOX) is an important protein that can help in regulating reactive oxygen species and nitric oxide in plants. The role of AOX in regulation of nitro-oxidative stress in chickpea is not known. Using germinating chickpea as a model system, we investigated the role of AOX in nitro-oxidative stress tolerance. NaCl treatment was used as an inducer of nitro-oxidative stress. Treatment of germinating seeds with 150 mM NaCl led to reduced germination and radicle growth. The AOX inhibitor SHAM caused further inhibition of germination, and the AOX inducer pyruvate improved growth of the radicle under NaCl stress. Isolated mitochondria from germinated seeds under salt stress not only increased AOX capacity but also enhanced AOX protein expression. Measurement of superoxide levels revealed that AOX inhibition by SHAM can enhance superoxide levels, whereas the AOX inducer pyruvate reduced superoxide levels. Measurement of NO by gas phase chemiluminescence revealed enhanced NO generation in response to NaCl treatment. Upon NaCl treatment there was enhanced tyrosine nitration, which is an indicator of nitrosative stress response. Taken together, our results revealed that AOX induced under salinity stress in germinating chickpea can help in mitigating nitro-oxidative stress, thereby improving germination.


Subject(s)
Cicer , Germination , Mitochondria , Mitochondrial Proteins , Nitric Oxide , Oxidative Stress , Oxidoreductases , Plant Proteins , Superoxides , Cicer/growth & development , Cicer/drug effects , Cicer/metabolism , Plant Proteins/metabolism , Germination/drug effects , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Stress/drug effects , Nitric Oxide/metabolism , Oxidoreductases/metabolism , Superoxides/metabolism , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Reactive Oxygen Species/metabolism , Sodium Chloride/pharmacology , Gene Expression Regulation, Plant/drug effects , Pyruvic Acid/metabolism
8.
BMC Plant Biol ; 24(1): 377, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38714916

ABSTRACT

BACKGROUND: European beech (Fagus sylvatica L.) trees produce seeds irregularly; therefore, it is necessary to store beech seeds for forestation. Despite the acquisition of desiccation tolerance during development, beech seeds are classified as intermediate because they lose viability during long-term storage faster than typical orthodox seeds. In this study, beech seeds stored for short (3 years) or long (20 years) periods under optimal conditions and displaying 92 and 30% germination capacity, respectively, were compared. RESULTS: Aged seeds displayed increased membrane damage, manifested as electrolyte leakage and lipid peroxidation levels. Analyses have been based on embryonic axes, which contained higher levels of reactive oxygen species (ROS) and higher levels of protein-bound methionine sulfoxide (MetO) in aged seeds. Using label-free quantitative proteomics, 3,949 proteins were identified, of which 2,442 were reliably quantified pointing to 24 more abundant proteins and 35 less abundant proteins in beech seeds under long-term storage conditions. Functional analyses based on gene ontology annotations revealed that nucleic acid binding activity (molecular function), ribosome organization or biogenesis and transmembrane transport (cellular processes), translational proteins (protein class) and membranous anatomical entities (cellular compartment) were affected in aged seeds. To verify whether MetO, the oxidative posttranslational modification of proteins that can be reversed via the action of methionine sulfoxide reductase (Msr) enzymes, is involved in the aging of beech seeds, we identified and quantified 226 MetO-containing proteins, among which 9 and 19 exhibited significantly up- and downregulated MetO levels, respectively, in beech seeds under long-term storage conditions. Several Msr isoforms were identified and recognized as MsrA1-like, MsrA4, MsrB5 and MsrB5-like in beech seeds. Only MsrA1-like displayed decreased abundance in aged seeds. CONCLUSIONS: We demonstrated that the loss of membrane integrity reflected in the elevated abundance of membrane proteins had a higher impact on seed aging progress than the MetO/Msr system. Proteome analyses enabled us to propose protein Sec61 and glyceraldehyde-3-phosphate dehydrogenase as potential longevity modulators in beech seeds.


Subject(s)
Fagus , Methionine , Plant Proteins , Proteomics , Seeds , Fagus/metabolism , Methionine/metabolism , Methionine/analogs & derivatives , Seeds/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Germination , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant
9.
PLoS One ; 19(5): e0303040, 2024.
Article in English | MEDLINE | ID: mdl-38713652

ABSTRACT

In the present study, we attempted to use melatonin combined with germination treatment to remove pesticide residues from contaminated grains. High levels of pesticide residues were detected in soybean seeds after soaking with chlorothalonil (10 mM) and malathion (1 mM) for 2 hours. Treatment with 50 µM melatonin for 5 days completely removed the pesticide residues, while in the control group, only 61-71% of pesticide residues were removed from soybean sprouts. Compared with the control, melatonin treatment for 7 days further increased the content of ascorbic acid (by 48-66%), total phenolics (by 52-68%), isoflavones (by 22-34%), the total antioxidant capacity (by 37-40%), and the accumulated levels of unsaturated fatty acids (C18:1, C18:2, and C18:3) (by 17-30%) in soybean sprouts. Moreover, melatonin treatment further increased the accumulation of ten components of phenols and isoflavones in soybean sprouts relative to those in the control. The ability of melatonin to accelerate the degradation of pesticide residues and promote the accumulation of antioxidant metabolites might be related to its ability to trigger the glutathione detoxification system in soybean sprouts. Melatonin promoted glutathione synthesis (by 49-139%) and elevated the activities of glutathione-S-transferase (by 24-78%) and glutathione reductase (by 38-61%). In summary, we report a new method in which combined treatment by melatonin and germination rapidly degrades pesticide residues in contaminated grains and improves the nutritional quality of food.


Subject(s)
Antioxidants , Germination , Glycine max , Melatonin , Nutritive Value , Pesticide Residues , Seeds , Melatonin/pharmacology , Germination/drug effects , Pesticide Residues/analysis , Seeds/drug effects , Seeds/chemistry , Seeds/metabolism , Seeds/growth & development , Glycine max/drug effects , Glycine max/growth & development , Glycine max/metabolism , Glycine max/chemistry , Antioxidants/metabolism , Edible Grain/drug effects , Edible Grain/metabolism , Phenols/analysis , Food Contamination/analysis , Glutathione/metabolism
10.
Physiol Plant ; 176(3): e14325, 2024.
Article in English | MEDLINE | ID: mdl-38715548

ABSTRACT

Boosting plant immunity by priming agents can lower agrochemical dependency in plant production. Levan and levan-derived oligosaccharides (LOS) act as priming agents against biotic stress in several crops. Additionally, beneficial microbes can promote plant growth and protect against fungal diseases. This study assessed possible synergistic effects caused by levan, LOS and five levan- and LOS-metabolizing Bacillaceae (Bacillus and Priestia) strains in tomato and wheat. Leaf and seed defense priming assays were conducted in non-soil (semi-sterile substrate) and soil-based systems, focusing on tomato-Botrytis cinerea and wheat-Magnaporthe oryzae Triticum (MoT) pathosystems. In the non-soil system, seed defense priming with levan, the strains (especially Bacillus velezensis GA1), or their combination significantly promoted tomato growth and protection against B. cinerea. While no growth stimulatory effects were observed for wheat, disease protective effects were also observed in the wheat-MoT pathosystem. When grown in soil and subjected to leaf defense priming, tomato plants co-applied with levan and the bacterial strains showed increased resistance to B. cinerea compared with plants treated with levan or single strains, and these effects were synergistic in some cases. For seed defense priming in soil, more synergistic effects on disease tolerance were observed in a non-fertilized soil as compared to a fertilized soil, suggesting that potential prebiotic effects of levan are more prominent in poor soils. The potential of using combinations of Bacilliaceae and levan in sustainable agriculture is discussed.


Subject(s)
Bacillus , Fructans , Plant Diseases , Solanum lycopersicum , Triticum , Fructans/metabolism , Triticum/microbiology , Triticum/metabolism , Triticum/immunology , Triticum/growth & development , Solanum lycopersicum/microbiology , Solanum lycopersicum/immunology , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Plant Diseases/microbiology , Plant Diseases/immunology , Bacillus/physiology , Botrytis , Plant Immunity , Disease Resistance , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Leaves/immunology , Oligosaccharides/metabolism , Oligosaccharides/pharmacology , Seeds/growth & development , Seeds/metabolism , Seeds/microbiology , Seeds/immunology , Ascomycota
11.
J Agric Food Chem ; 72(20): 11480-11492, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38733562

ABSTRACT

Food-derived peptides with an inhibitory effect on dipeptidyl peptidase IV (DPP-IV) can be used as an additive treatment for type 2 diabetes. The inhibitory potential of food depends on technological protein hydrolysis and gastrointestinal digestion, as the peptides only act after intestinal resorption. The effect of malting as a hydrolytic step on the availability of these peptides in grains has yet to be investigated. In this study, quinoa was malted under systematic temperature, moisture, and time variations. In the resulting malts, the DPP-IV inhibition reached a maximum of 45.02 (±10.28) %, whereas the highest overall concentration of literature-known inhibitory peptides was 4.07 µmol/L, depending on the malting parameters. After in vitro gastrointestinal digest, the inhibition of most malts, as well as the overall concentration of inhibitory peptides, could be increased significantly. Additionally, the digested malts showed higher values in both the inhibition and the peptide concentration than the unmalted quinoa. Concerning the malting parameters, germination time had the highest impact on the inhibition and the peptide concentration after digest. An analysis of the protein sizes before and after malting gave first hints toward the origin of these peptides, or their precursors, in quinoa.


Subject(s)
Chenopodium quinoa , Dipeptidyl-Peptidase IV Inhibitors , Peptides , Chenopodium quinoa/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/chemistry , Food Handling , Germination , Plant Proteins/chemistry , Plant Proteins/metabolism , Hydrolysis , Seeds/chemistry , Seeds/metabolism , Humans , Digestion
12.
BMC Genomics ; 25(1): 510, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783193

ABSTRACT

Domesticated safflower (Carthamus tinctorius L.) is a widely cultivated edible oil crop. However, despite its economic importance, the genetic basis underlying key traits such as oil content, resistance to biotic and abiotic stresses, and flowering time remains poorly understood. Here, we present the genome assembly for C. tinctorius variety Jihong01, which was obtained by integrating Oxford Nanopore Technologies (ONT) and BGI-SEQ500 sequencing results. The assembled genome was 1,061.1 Mb, and consisted of 32,379 protein-coding genes, 97.71% of which were functionally annotated. Safflower had a recent whole genome duplication (WGD) event in evolution history and diverged from sunflower approximately 37.3 million years ago. Through comparative genomic analysis at five seed development stages, we unveiled the pivotal roles of fatty acid desaturase 2 (FAD2) and fatty acid desaturase 6 (FAD6) in linoleic acid (LA) biosynthesis. Similarly, the differential gene expression analysis further reinforced the significance of these genes in regulating LA accumulation. Moreover, our investigation of seed fatty acid composition at different seed developmental stages unveiled the crucial roles of FAD2 and FAD6 in LA biosynthesis. These findings offer important insights into enhancing breeding programs for the improvement of quality traits and provide reference resource for further research on the natural properties of safflower.


Subject(s)
Carthamus tinctorius , Fatty Acid Desaturases , Fatty Acids, Unsaturated , Genome, Plant , Carthamus tinctorius/genetics , Carthamus tinctorius/metabolism , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Genomics/methods , Gene Expression Regulation, Plant , Molecular Sequence Annotation
13.
Arch Microbiol ; 206(6): 282, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38806859

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) offer an eco-friendly alternative to agrochemicals for better plant growth and development. Here, we evaluated the plant growth promotion abilities of actinobacteria isolated from the tea (Camellia sinensis) rhizosphere of Darjeeling, India. 16 S rRNA gene ribotyping of 28 isolates demonstrated the presence of nine different culturable actinobacterial genera. Assessment of the in vitro PGP traits revealed that Micrococcus sp. AB420 exhibited the highest level of phosphate solubilization (i.e., 445 ± 2.1 µg/ml), whereas Kocuria sp. AB429 and Brachybacterium sp. AB440 showed the highest level of siderophore (25.8 ± 0.1%) and IAA production (101.4 ± 0.5 µg/ml), respectively. Biopriming of maize seeds with the individual actinobacterial isolate revealed statistically significant growth in the treated plants compared to controls. Among them, treatment with Paenarthrobacter sp. AB416 and Brachybacterium sp. AB439 exhibited the highest shoot and root length. Biopriming has also triggered significant enzymatic and non-enzymatic antioxidative defense reactions in maize seedlings both locally and systematically, providing a critical insight into their possible role in the reduction of reactive oxygen species (ROS) burden. To better understand the role of actinobacterial isolates in the modulation of plant defense, three selected actinobacterial isolates, AB426 (Brevibacterium sp.), AB427 (Streptomyces sp.), and AB440 (Brachybacterium sp.) were employed to evaluate the dynamics of induced systemic resistance (ISR) in maize. The expression profile of five key genes involved in SA and JA pathways revealed that bio-priming with actinobacteria (Brevibacterium sp. AB426 and Brachybacterium sp. AB440) preferably modulates the JA pathway rather than the SA pathway. The infection studies in bio-primed maize plants resulted in a delay in disease progression by the biotrophic pathogen Ustilago maydis in infected maize plants, suggesting the positive efficacy of bio-priming in aiding plants to cope with biotic stress. Conclusively, this study unravels the intrinsic mechanisms of PGPR-mediated ISR dynamics in bio-primed plants, offering a futuristic application of these microorganisms in the agricultural fields as an eco-friendly alternative.


Subject(s)
Actinobacteria , Camellia sinensis , Rhizosphere , Seeds , Soil Microbiology , Zea mays , Zea mays/microbiology , Zea mays/growth & development , Zea mays/metabolism , Actinobacteria/genetics , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Seeds/microbiology , Seeds/growth & development , Seeds/metabolism , Camellia sinensis/microbiology , Camellia sinensis/growth & development , Camellia sinensis/genetics , Camellia sinensis/metabolism , India , Plant Roots/microbiology , Plant Roots/growth & development , Signal Transduction , RNA, Ribosomal, 16S/genetics , Plant Growth Regulators/metabolism , Indoleacetic Acids/metabolism , Siderophores/metabolism
14.
Physiol Plant ; 176(3): e14372, 2024.
Article in English | MEDLINE | ID: mdl-38812077

ABSTRACT

Rape (Brassica napus L.; AACC) is an important oil-bearing crop worldwide. Temperature significantly affects the production of oil crops; however, the mechanisms underlying temperature-promoted oil biosynthesis remain largely unknown. In this study, we found that a temperature-sensitive cultivar (O) could accumulate higher seed oil content under low nighttime temperatures (LNT,13°C) compared with a temperature-insensitive cultivar (S). We performed an in-depth transcriptome analysis of seeds from both cultivars grown under different nighttime temperatures. We found that low nighttime temperatures induced significant changes in the transcription patterns in the seeds of both cultivars. In contrast, the expression of genes associated with fatty acid and lipid pathways was higher in the O cultivar than in the S cultivar under low nighttime temperatures. Among these genes, we identified 14 genes associated with oil production, especially BnLPP and ACAA1, which were remarkably upregulated in the O cultivar in response to low nighttime temperatures compared to S. Further, a WGCNA analysis and qRT-PCR verification revealed that these genes were mainly regulated by five transcription factors, WRKY20, MYB86, bHLH144, bHLH95, and NAC12, whose expression was also increased in O compared to S under LNT. These results allowed the elucidation of the probable molecular mechanism of oil accumulation under LNT conditions in the O cultivar. Subsequent biochemical assays verified that BnMYB86 transcriptionally activated BnLPP expression, contributing to oil accumulation. Meanwhile, at LNT, the expression levels of these genes in the O plants were higher than at high nighttime temperatures, DEGs (SUT, PGK, PK, GPDH, ACCase, SAD, KAS II, LACS, FAD2, FAD3, KCS, KAR, ECR, GPAT, LPAAT, PAP, DGAT, STERO) related to lipid biosynthesis were also upregulated, most of which are used in oil accumulation.


Subject(s)
Brassica napus , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Oils , Brassica napus/genetics , Brassica napus/metabolism , Brassica napus/physiology , Plant Oils/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome/genetics , Cold Temperature , Seeds/genetics , Seeds/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Fatty Acids/metabolism
15.
Sci Rep ; 14(1): 12368, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811671

ABSTRACT

Iron, a crucial micronutrient, is an integral element of biotic vitality. The scarcity of iron in the soil creates agronomic challenges and has a detrimental impact on crop vigour and chlorophyll formation. Utilizing iron oxide nanoparticles (IONPs) via nanopriming emerges as an innovative method to enhance agricultural efficiency and crop health. The objective of this study was to synthesize biogenic IONPs from Glycyrrhiza glabra (G. glabra) plant extract using green chemistry and to evaluate their nanopriming effects on rice seed iron levels and growth. The synthesized IONPs were analyzed using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDX) techniques. The UV-Vis peak at 280 nm revealed the formation of IONPs. SEM and TEM showed that the nanoparticles were spherical and had an average diameter of 23.8 nm. Nanopriming resulted in a substantial enhancement in growth, as seen by a 9.25% and 22.8% increase in shoot lengths for the 50 ppm and 100 ppm treatments, respectively. The yield metrics showed a positive correlation with the concentrations of IONPs. The 1000-grain weight and spike length observed a maximum increase of 193.75% and 97.73%, respectively, at the highest concentration of IONPs. The study indicates that G. glabra synthesized IONPs as a nanopriming agent significantly increased rice seeds' growth and iron content. This suggests that there is a relationship between the dosage of IONPs and their potential for improving agricultural biofortification.


Subject(s)
Biofortification , Glycyrrhiza , Oryza , Seeds , Oryza/growth & development , Oryza/metabolism , Seeds/growth & development , Seeds/metabolism , Seeds/chemistry , Glycyrrhiza/chemistry , Glycyrrhiza/growth & development , Glycyrrhiza/metabolism , Plant Extracts/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Green Chemistry Technology/methods , Iron/metabolism , Iron/chemistry , Ferric Compounds/chemistry , Spectroscopy, Fourier Transform Infrared
16.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791167

ABSTRACT

Polyethylene glycol can abrogate plant seed dormancy and alleviate salt-alkali stress damage to plants, but its role in embryonic dormancy abrogation and germination in Sorbus pohuashanensis is not yet clear. The mechanism by which polyethylene glycol promotes the release of embryonic dormancy may be related to the synthesis and metabolism of endogenous hormones, reactive oxygen species and reactive nitrogen. In this article, germination in indoor culture dishes was used, and the most suitable conditions for treating S. pohuashanensis embryos, with polyethylene glycol (PEG) and sodium carbonate (Na2CO3), were selected. Germination was observed and recorded, and related physiological indicators such as endogenous hormones, reactive oxygen species and reactive nitrogen were measured and analyzed to elucidate the mechanism of polyethylene glycol in alleviating salt-alkali stress in S. pohuashanensis embryos. The results showed that soaking seeds in 5% PEG for 5 days is the best condition to promote germination, which can increase the germination rate of embryos under salt-alkali stress by 1-2 times and improve indicators such as germination speed and the germination index. Polyethylene glycol led to an increase in gibberellin (GA), indole-3-acetic acid (IAA), ethylene (ETH), cytokinin (CTK), nitric oxide (NO), soluble protein and soluble sugar in the embryos under salt-alkali stress; increased activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), nitrate reductase (NR) and nitric oxide synthase (NOS) in the embryos; a reduction in the accumulation of abscisic acid (ABA), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Therefore, it is suggested that the inhibitory effect of polyethylene glycol on the salt-alkali-stress-induced germination of S. pohuashanensis embryos is closely related to the response of endogenous hormones, reactive oxygen species and nitric oxide signalling.


Subject(s)
Germination , Nitric Oxide , Plant Growth Regulators , Polyethylene Glycols , Reactive Oxygen Species , Seeds , Polyethylene Glycols/pharmacology , Germination/drug effects , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Plant Growth Regulators/metabolism , Seeds/metabolism , Seeds/drug effects , Seeds/growth & development , Stress, Physiological , Alkalies , Plant Dormancy/drug effects
17.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791407

ABSTRACT

Transcription factors (TFs) regulate gene expression by binding to specific sequences on DNA through their DNA-binding domain (DBD), a universal process. This update conveys information about the diverse roles of TFs, focusing on the NACs (NAM-ATAF-CUC), in regulating target-gene expression and influencing various aspects of plant biology. NAC TFs appeared before the emergence of land plants. The NAC family constitutes a diverse group of plant-specific TFs found in mosses, conifers, monocots, and eudicots. This update discusses the evolutionary origins of plant NAC genes/proteins from green algae to their crucial roles in plant development and stress response across various plant species. From mosses and lycophytes to various angiosperms, the number of NAC proteins increases significantly, suggesting a gradual evolution from basal streptophytic green algae. NAC TFs play a critical role in enhancing abiotic stress tolerance, with their function conserved in angiosperms. Furthermore, the modular organization of NACs, their dimeric function, and their localization within cellular compartments contribute to their functional versatility and complexity. While most NAC TFs are nuclear-localized and active, a subset is found in other cellular compartments, indicating inactive forms until specific cues trigger their translocation to the nucleus. Additionally, it highlights their involvement in endoplasmic reticulum (ER) stress-induced programmed cell death (PCD) by activating the vacuolar processing enzyme (VPE) gene. Moreover, this update provides a comprehensive overview of the diverse roles of NAC TFs in plants, including their participation in ER stress responses, leaf senescence (LS), and growth and development. Notably, NACs exhibit correlations with various phytohormones (i.e., ABA, GAs, CK, IAA, JA, and SA), and several NAC genes are inducible by them, influencing a broad spectrum of biological processes. The study of the spatiotemporal expression patterns provides insights into when and where specific NAC genes are active, shedding light on their metabolic contributions. Likewise, this review emphasizes the significance of NAC TFs in transcriptional modules, seed reserve accumulation, and regulation of seed dormancy and germination. Overall, it effectively communicates the intricate and essential functions of NAC TFs in plant biology. Finally, from an evolutionary standpoint, a phylogenetic analysis suggests that it is highly probable that the WRKY family is evolutionarily older than the NAC family.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Seeds , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Multigene Family , Evolution, Molecular , Stress, Physiological , Phylogeny , Plants/genetics , Plants/metabolism
18.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791463

ABSTRACT

Mitochondrial protein homeostasis is crucially regulated by protein degradation processes involving both mitochondrial proteases and cytosolic autophagy. However, it remains unclear how plant cells regulate autophagy in the scenario of lacking a major mitochondrial Lon1 protease. In this study, we observed a notable downregulation of core autophagy proteins in Arabidopsis Lon1 knockout mutant lon1-1 and lon1-2, supporting the alterations in the relative proportions of mitochondrial and vacuolar proteins over total proteins in the plant cells. To delve deeper into understanding the roles of the mitochondrial protease Lon1 and autophagy in maintaining mitochondrial protein homeostasis and plant development, we generated the lon1-2atg5-1 double mutant by incorporating the loss-of-function mutation of the autophagy core protein ATG5, known as atg5-1. The double mutant exhibited a blend of phenotypes, characterized by short plants and early senescence, mirroring those observed in the individual single mutants. Accordingly, distinct transcriptome alterations were evident in each of the single mutants, while the double mutant displayed a unique amalgamation of transcriptional responses. Heightened severity, particularly evident in reduced seed numbers and abnormal embryo development, was observed in the double mutant. Notably, aberrations in protein storage vacuoles (PSVs) and oil bodies were evident in the single and double mutants. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of genes concurrently downregulated in lon1-2, atg5-1, and lon1-2atg5-1 unveiled a significant suppression of genes associated with brassinosteroid (BR) biosynthesis and homeostasis. This downregulation likely contributes to the observed abnormalities in seed and embryo development in the mutants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Autophagy , Brassinosteroids , Gene Expression Regulation, Plant , Mitochondria , Seeds , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Autophagy/genetics , Seeds/growth & development , Seeds/genetics , Seeds/metabolism , Mitochondria/metabolism , Brassinosteroids/metabolism , ATP-Dependent Proteases/metabolism , ATP-Dependent Proteases/genetics , Mutation , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Down-Regulation , Phenotype , Serine Endopeptidases
19.
Sci Rep ; 14(1): 12195, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806561

ABSTRACT

High temperature stress influences plant growth, seed yield, and fatty acid contents by causing oxidative damage. This study investigated the potential of thiourea (TU) to mitigate oxidative stress and restoring seed oil content and quality in canola. The study thoroughly examined three main factors: (i) growth conditions-control and high temperature stress (35 °C); (ii) TU supplementation (1000 mg/L)-including variations like having no TU, water application at the seedling stage, TU application at seedling stage (BBCH Scale-39), water spray at anthesis stage, and TU application at anthesis stage (BBCH Scale-60); (iii) and two canola genotypes, 45S42 and Hiola-401, were studied separately. High temperature stress reduced growth and tissue water content, as plant height and relative water contents were decreased by 26 and 36% in 45S42 and 27 and 42% Hiola-401, respectively, resulting in a substantial decrease in seed yield per plant by 36 and 38% in 45S42 and Hiola-401. Seed oil content and quality parameters were also negatively affected by high temperature stress as seed oil content was reduced by 32 and 35% in 45S42 and Hiola-401. High-temperature stress increased the plant stress indicators like malondialdehyde, H2O2 content, and electrolyte leakage; these indicators were increased in both canola genotypes as compared to control. Interestingly, TU supplementation restored plant performance, enhancing height, relative water content, foliar chlorophyll (SPAD value), and seed yield per plant by 21, 15, 30, and 28% in 45S42; 19, 13, 26, and 21% in Hiola-401, respectively, under high temperature stress as compared to control. In addition, seed quality, seed oil content, linoleic acid, and linolenic acid were improved by 16, 14, and 22% in 45S42, and 16, 11, and 23% in Hiola-401, as compared to control. The most significant improvements in canola seed yield per plant were observed when TU was applied at the anthesis stage. Additionally, the research highlighted that canola genotype 45S42 responded better to TU applications and exhibited greater resilience against high temperature stress compared to genotype Hiola-401. This interesting study revealed that TU supplementation, particularly at the anthesis stage, improved high temperature stress tolerance, seed oil content, and fatty acid profile in two canola genotypes.


Subject(s)
Antioxidants , Brassica napus , Seeds , Thiourea , Brassica napus/genetics , Brassica napus/drug effects , Brassica napus/growth & development , Brassica napus/metabolism , Thiourea/pharmacology , Thiourea/analogs & derivatives , Antioxidants/metabolism , Seeds/drug effects , Seeds/metabolism , Seeds/growth & development , Hot Temperature , Oxidative Stress/drug effects , Genotype , Heat-Shock Response/drug effects , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism
20.
BMC Plant Biol ; 24(1): 466, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807068

ABSTRACT

BACKGROUND: Nanotechnology has demonstrated its vital significance in all aspects of daily life. Our research was conducted to estimate the potential of primed seed with chitosan nanoparticles in seed growth and yield by inducing plant secondary metabolism of Pancratium maritimum L. one of the important medicinal plants. Petri dish and pot experiments were carried out. Seeds of Pancratium maritimum L. were soaked in Nano solution (0.1, 0.5, 1 mg/ ml) for 4, 8, 12 h. Germination parameters (germination percentage, germination velocity, speed of germination, germination energy, germination index, mean germination time, seedling shoot and root length, shoot root ratio, seedling vigor index, plant biomass and water content), alkaloids and antioxidant activity of Pancratium maritimum L. were recorded and compared between coated and uncoated seeds. RESULTS: Our results exhibited that chitosan nanopriming had a positive effect on some growth parameters, while it fluctuated on others. However, the data showed that most germination parameters were significantly affected in coated seeds compared to uncoated seeds. GC-MS analysis of Pancratium maritimum L. with different nanopriming treatments showed that the quantity of alkaloids decreased, but the amount of pancratistatin, lycorine and antioxidant content increased compared with the control. CONCLUSIONS: Applying chitosan nanoparticles in priming seeds might be a simple and effective way to improve the quantity of secondary metabolites of Pancratium maritimum L. valuable medicinal plant.


Subject(s)
Chitosan , Germination , Nanoparticles , Seeds , Chitosan/pharmacology , Germination/drug effects , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism , Alkaloids/metabolism , Antioxidants/metabolism , Secondary Metabolism/drug effects , Amaryllidaceae/growth & development , Amaryllidaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...