Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.007
Filter
1.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829127

ABSTRACT

In recent years, solution processes have gained considerable traction as a cost-effective and scalable method to produce high-performance thermoelectric materials. The process entails a series of critical steps: synthesis, purification, thermal treatments, and consolidation, each playing a pivotal role in determining performance, stability, and reproducibility. We have noticed a need for more comprehensive details for each of the described steps in most published works. Recognizing the significance of detailed synthetic protocols, we describe here the approach used to synthesize and characterize one of the highest-performing polycrystalline p-type SnSe. In particular, we report the synthesis of SnSe particles in water and the subsequent surface treatment with CdSe molecular complexes that yields CdSe-SnSe nanocomposites upon consolidation. Moreover, the surface treatment inhibits grain growth through Zenner pinning of secondary phase CdSe nanoparticles and enhances defect formation at different length scales. The enhanced complexity in the CdSe-SnSe nanocomposite microstructure with respect to SnSe promotes phonon scattering and thereby significantly reduces the thermal conductivity. Such surface engineering provides opportunities in solution processing for introducing and controlling defects, making it possible to optimize the transport properties and attain a high thermoelectric figure of merit.


Subject(s)
Cadmium Compounds , Selenium Compounds , Thermal Conductivity , Selenium Compounds/chemistry , Cadmium Compounds/chemistry , Tin/chemistry , Solutions/chemistry , Surface Properties , Crystallization/methods
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731933

ABSTRACT

Despite the promising applications of the use of quantum dots (QDs) in the biomedical field, the long-lasting effects of QDs on the cell remain poorly understood. To comprehend the mechanisms underlying the toxic effects of QDs in yeast, we characterized defects associated with receptor-mediated endocytosis (RME) as well as pinocytosis using Saccharomyces cerevisiae as a model in the presence of cadmium selenide/zinc sulfide (CdSe/ZnS) QDs. Our findings revealed that QDs led to an inefficient RME at the early, intermediate, and late stages of endocytic patch maturation at the endocytic site, with the prolonged lifespan of GFP fused yeast fimbrin (Sac6-GFP), a late marker of endocytosis. The transit of FM1-43, a lipophilic dye from the plasma membrane to the vacuole, was severely retarded in the presence of QDs. Finally, QDs caused an accumulation of monomeric red fluorescent protein fused carbamoyl phosphate synthetase 1 (mRFP-Cps1), a vacuolar lumen marker in the vacuole. In summary, the present study provides novel insights into the possible impact of CdSe/ZnS QDs on the endocytic machinery, enabling a deeper comprehension of QD toxicity.


Subject(s)
Cadmium Compounds , Endocytosis , Quantum Dots , Saccharomyces cerevisiae , Selenium Compounds , Sulfides , Zinc Compounds , Quantum Dots/toxicity , Quantum Dots/chemistry , Endocytosis/drug effects , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Cadmium Compounds/toxicity , Selenium Compounds/toxicity , Sulfides/toxicity , Sulfides/metabolism , Zinc Compounds/toxicity , Vacuoles/metabolism , Vacuoles/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Cell Membrane/metabolism , Cell Membrane/drug effects
3.
ACS Appl Mater Interfaces ; 16(20): 25622-25636, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739745

ABSTRACT

Breast cancer is a malignant tumor with a high mortality rate among women. Therefore, it is necessary to develop novel therapies to effectively treat this disease. In this study, iron selenide nanorods (FeSe2 NRs) were designed for use in magnetic hyperthermic, photothermal, and chemodynamic therapy (MHT/PTT/CDT) for breast cancer. To illustrate their efficacy, FeSe2 NRs were modified with the chemotherapeutic agent methotrexate (MTX). MTX-modified FeSe2 (FeSe2-MTX) exhibited excellent controlled drug release properties. Fe2+ released from FeSe2 NRs induced the release of •OH from H2O2 via a Fenton/Fenton-like reaction, enhancing the efficacy of CDT. Under alternating magnetic field (AMF) stimulation and 808 nm laser irradiation, FeSe2-MTX exerted potent hyperthermic and photothermal effects by suppressing tumor growth in a breast cancer nude mouse model. In addition, FeSe2 NRs can be used for magnetic resonance imaging in vivo by incorporating their superparamagnetic characteristics into a single nanomaterial. Overall, we presented a novel technique for the precise delivery of functional nanosystems to tumors that can enhance the efficacy of breast cancer treatment.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Methotrexate , Mice, Nude , Nanotubes , Methotrexate/chemistry , Methotrexate/pharmacology , Animals , Nanotubes/chemistry , Mice , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Mice, Inbred BALB C , Photothermal Therapy , Iron/chemistry , Selenium Compounds/chemistry , Selenium Compounds/pharmacology , Selenium Compounds/radiation effects , Cell Line, Tumor , Infrared Rays
4.
PLoS One ; 19(5): e0304032, 2024.
Article in English | MEDLINE | ID: mdl-38787828

ABSTRACT

Heterostructure engineering is an effective technology to improve photo-electronic properties of two dimensional layered semiconductors. In this paper, based on first principles method, we studied the structure, stability, energy band, and optical properties of ZnSe/SnSe heterostructure change with film layer. Results show that all heterostructures are the type-II band arrangement, and the interlayer interaction is characterized by van der Waals. The electron concentration and charge density difference implies the electron (holes) transition from SnSe to monolayer ZnSe. By increasing the layer of SnSe films, the quantum effects are weakened leading to the band gap reduced, and eventually show metal properties. The optical properties also have obvious change, the excellent absorption ability of ZnSe/SnSe heterostructures mainly near the infrared spectroscopy. These works suggest that ZnSe/SnSe heterostructure has significant potential for future optoelectronic applications.


Subject(s)
Selenium Compounds , Zinc Compounds , Selenium Compounds/chemistry , Zinc Compounds/chemistry , Semiconductors
5.
Nano Lett ; 24(22): 6706-6713, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775232

ABSTRACT

Three-photon fluorescence microscopy (3PFM) is a promising brain research tool with submicrometer spatial resolution and high imaging depth. However, only limited materials have been developed for 3PFM owing to the rigorous requirement of the three-photon fluorescence (3PF) process. Herein, under the guidance of a band gap engineering strategy, CdTe/CdSe/ZnS quantum dots (QDs) emitting in the near-infrared window are designed for constructing 3PF probes. The formation of type II structure significantly increased the three-photon absorption cross section of QDs and caused the delocalization of electron-hole wave functions. The time-resolved transient absorption spectroscopy confirmed that the decay of biexcitons was significantly suppressed due to the appropriate band gap alignment, which further enhanced the 3PF efficiency of QDs. By utilizing QD-based 3PF probes, high-resolution 3PFM imaging of cerebral vasculature was realized excited by a 1600 nm femtosecond laser, indicating the possibility of deep brain imaging with these 3PF probes.


Subject(s)
Brain , Quantum Dots , Quantum Dots/chemistry , Brain/diagnostic imaging , Photons , Animals , Microscopy, Fluorescence, Multiphoton/methods , Cadmium Compounds/chemistry , Sulfides/chemistry , Mice , Zinc Compounds/chemistry , Tellurium/chemistry , Selenium Compounds/chemistry , Humans
6.
Adv Appl Microbiol ; 126: 63-92, 2024.
Article in English | MEDLINE | ID: mdl-38637107

ABSTRACT

Selenium (Se) is an essential trace element present as selenocysteine (SeCys) in selenoproteins, which have an important role in thyroid metabolism and the redox system in humans. Se deficiency affects between 500 and 1000 million people worldwide. Increasing Se intake can prevent from bacterial and viral infections. Se deficiency has been associated with cancer, Alzheimer, Parkinson, decreased thyroid function, and male infertility. Se intake depends on the food consumed which is directly related to the amount of Se in the soil as well as on its availability. Se is unevenly distributed on the earth's crust, being scarce in some regions and in excess in others. The easiest way to counteract the symptoms of Se deficiency is to enhance the Se status of the human diet. Se salts are the most toxic form of Se, while Se amino acids and Se-nanoparticles (SeNPs) are the least toxic and most bio-available forms. Some bacteria transform Se salts into these Se species. Generally accepted as safe selenized microorganisms can be directly used in the manufacture of selenized fermented and/or probiotic foods. On the other hand, plant growth-promoting bacteria and/or the SeNPs produced by them can be used to promote plant growth and produce crops enriched with Se. In this chapter we discuss bacterial Se metabolism, the effect of Se on human health, the applications of SeNPs and Se-enriched bacteria, as well as their effect on food fortification. Different strategies to counteract Se deficiency by enriching foods using sustainable strategies and their possible implications for improving human health are discussed.


Subject(s)
Nanoparticles , Selenium Compounds , Selenium , Humans , Selenium/chemistry , Selenium/metabolism , Salts , Bacteria/genetics , Bacteria/metabolism
7.
Biosens Bioelectron ; 257: 116324, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38669844

ABSTRACT

Exploring efficient photoactive material presents an intriguing opportunity to enhance the analytical performance of photoelectrochemical (PEC) sensor in the environmental analysis. In this work, a sandwich-structured multi-interface Co9S8@ZnIn2S4/CdSe QDs dual Z-Scheme heterojunction, derived from metal-organic framework (MOF), was synthesized as a sensing platform for chlorpyrifos detection, by integrating with enzyme-induced in situ insoluble precipitates strategy. The meticulously designed Co9S8@ZnIn2S4/CdSe QDs exhibited enhanced charge separation efficiency and was proved to be a highly effective sensing platform for the immobilization of biomolecules, attributing to the intrinsic dual Z-Scheme heterojunction and the distinctive hollow structure. The proposed PEC sensing platform combined with enzyme-induced in situ precipitate signal amplification strategy achieved superior performance for sensing of chlorpyrifos (CPF), showing in wide linear range (1.0 pg mL-1-100 ng mL-1), with a limit of detection (0.6 pg mL-1), excellent selectivity, and stability. This work offers valuable insights for the design of novel advanced photoactive materials aimed at detecting environmental pollutants with low level concentration.


Subject(s)
Biosensing Techniques , Chlorpyrifos , Electrochemical Techniques , Limit of Detection , Metal-Organic Frameworks , Quantum Dots , Chlorpyrifos/analysis , Metal-Organic Frameworks/chemistry , Electrochemical Techniques/methods , Quantum Dots/chemistry , Cadmium Compounds/chemistry , Selenium Compounds/chemistry , Cobalt/chemistry , Insecticides/analysis
8.
Anal Chem ; 96(18): 7274-7280, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38655584

ABSTRACT

Inspired by natural DNA networks, programmable artificial DNA networks have become an attractive tool for developing high-performance biosensors. However, there is still a lot of room for expansion in terms of sensitivity, atom economy, and result self-validation for current microRNA sensors. In this protocol, miRNA-122 as a target model, an ultrasensitive fluorescence (FL) and photoelectrochemical (PEC) dual-mode biosensing platform is developed using a programmable entropy-driven circuit (EDC) cascaded self-feedback DNAzyme network. The well-designed EDC realizes full utilization of the DNA strands and improves the atomic economy of the signal amplification system. The unique and rational design of the double-CdSe quantum-dot-released EDC substrate and the cascaded self-feedback DNAzyme amplification network significantly avoids high background signals and enhances sensitivity and specificity. Also, the enzyme-free, programmable EDC cascaded DNAzyme network effectively avoids the risk of signal leakage and enhances the accuracy of the sensor. Moreover, the introduction of superparamagnetic Fe3O4@SiO2-cDNA accelerates the rapid extraction of E2-CdSe QDs and E3-CdSe QDs, which greatly improves the timeliness of sensor signal reading. In addition to the strengths of linear range (6 orders of magnitude) and stability, the biosensor design with dual signal reading makes the test results self-confirming.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Electrochemical Techniques , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Entropy , Quantum Dots/chemistry , MicroRNAs/analysis , Spectrometry, Fluorescence , Photochemical Processes , Fluorescence , Humans , Cadmium Compounds/chemistry , Selenium Compounds/chemistry , Limit of Detection
9.
Anal Chem ; 96(18): 7073-7081, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38663374

ABSTRACT

A spatial-potential-color-resolved bipolar electrode electrochemiluminescence biosensor (BPE-ECL) using a CuMoOx electrocatalyst was constructed for the simultaneous detection and imaging of tetracycline (TET) and lincomycin (LIN). HOF-101 emitted peacock blue light under positive potential scanning, and CdSe quantum dots (QDs) emitted green light under negative potential scanning. CuMoOx could catalyze the electrochemical reduction of H2O2 to greatly increase the Faradic current of BPE and realize the ECL signal amplification. In channel 1, CuMoOx-Aptamer II (TET) probes were introduced into the BPE hole (left groove A) by the dual aptamer sandwich method of TET. During positive potential scanning, the polarity of BPE (left groove A) was negative, resulting in the electrochemical reduction of H2O2 catalyzed by CuMoOx, and the ECL signal of HOF-101 was enhanced for detecting TET. In channel 2, CuMoOx-Aptamer (LIN) probes were adsorbed on the MXene of the driving electrode (DVE) hole (left groove B) by hydrogen-bonding and metal-chelating interactions. LIN bound with its aptamers, causing CuMoOx to fall off. During negative potential scanning, the polarity of DVE (left groove B) was negative and the Faradic current decreased. The ECL signal of CdSe QDs was reduced for detecting LIN. Furthermore, a portable mobile phone imaging platform was built for the colorimetric (CL) detection of TET and LIN. Thus, the multiple mode-resolved detection of TET and LIN could be realized simultaneously with only one potential scan, which greatly improved detection accuracy and efficiency. This study opened a new technology of BPE-ECL sensor application and is expected to shine in microchips and point-of-care testing (POCT).


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Electrodes , Lincomycin , Luminescent Measurements , Tetracycline , Tetracycline/analysis , Tetracycline/chemistry , Biosensing Techniques/methods , Lincomycin/analysis , Electrochemical Techniques/methods , Luminescent Measurements/methods , Catalysis , Quantum Dots/chemistry , Cadmium Compounds/chemistry , Aptamers, Nucleotide/chemistry , Selenium Compounds/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry
10.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675530

ABSTRACT

The diselenide bond has attracted intense interest in redox-responsive drug delivery systems (DDSs) in tumor chemotherapy, due to its higher sensitivity than the most investigated bond, namely the disulfide bond. Here, a diselenide-bridged doxorubicin dimeric prodrug (D-DOXSeSe) was designed by coupling two doxorubicin molecules with a diselenodiacetic acid (DSeDAA) molecule via α-amidation, as a redox-triggered drug self-delivery system (DSDS) for tumor-specific chemotherapy. The drug release profiles indicated that the D-DOXSeSe could be cleaved to release the derivatives selenol (DOX-SeH) and seleninic acid (DOX-SeOOH) with the triggering of high GSH and H2O2, respectively, indicating the double-edged sword effect of the lower electronegativity of the selenide atom. The resultant solubility-controlled slow drug release performance makes it a promising candidate as a long-acting DSDS in future tumor chemotherapy. Moreover, the interaction between the conjugations in the design of self-immolation traceless linkers was also proposed for the first time as another key factor for a desired precise tumor-specific chemotherapy, besides the conjugations themselves.


Subject(s)
Carboxylic Acids , Doxorubicin , Drug Liberation , Oxidation-Reduction , Prodrugs , Prodrugs/chemistry , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Drug Delivery Systems , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemical synthesis , Selenium Compounds/chemistry , Selenium Compounds/chemical synthesis , Hydrogen Peroxide/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis
11.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673765

ABSTRACT

Quantum dots (QDs) are a novel type of nanomaterial that has unique optical and physical characteristics. As such, QDs are highly desired because of their potential to be used in both biomedical and industrial applications. However, the mass adoption of QDs usage has raised concerns among the scientific community regarding QDs' toxicity. Although many papers have reported the negative impact of QDs on a cellular level, the exact mechanism of the QDs' toxicity is still unclear. In this investigation, we study the adverse effects of QDs by focusing on one of the most important cellular processes: actin polymerization and depolymerization. Our results showed that QDs act in a biphasic manner where lower concentrations of QDs stimulate the polymerization of actin, while high concentrations of QDs inhibit actin polymerization. Furthermore, we found that QDs can bind to filamentous actin (F-actin) and cause bundling of the filament while also promoting actin depolymerization. Through this study, we found a novel mechanism in which QDs negatively influence cellular processes and exert toxicity.


Subject(s)
Actins , Cadmium Compounds , Quantum Dots , Selenium Compounds , Sulfides , Zinc Compounds , Quantum Dots/chemistry , Actins/metabolism , Zinc Compounds/chemistry , Sulfides/chemistry , Cadmium Compounds/chemistry , Selenium Compounds/chemistry , Polymerization , Animals , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/drug effects , Humans
12.
Poult Sci ; 103(5): 103541, 2024 May.
Article in English | MEDLINE | ID: mdl-38471228

ABSTRACT

The objective of this study was to investigate the protective effects and mechanisms of dietary administration of sodium humate (HNa) and its zinc and selenium chelate (Zn/Se-HNa) in mitigating Salmonella Typhimurium (S. Typhi) induced intestinal injury in broiler chickens. Following the gavage of 109 CFU S. Typhi to 240 broilers from 21-d to 23-d aged, various growth performance parameters such as body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), and feed ratio (FCR) were measured before and after infection. Intestinal morphology was assessed to determine the villus height, crypt depth, and chorionic cryptologic ratio. To evaluate intestinal barrier integrity, levels of serum diamine oxidase (DAO), D-lactic acid, tight junction proteins, and the related genes were measured in each group of broilers. An analysis was conducted on inflammatory-related cytokines, oxidase activity, and Nuclear Factor Kappa B (NF-κB) and Nuclear factor erythroid2-related factor 2 (Nrf2) pathway-related proteins and mRNA expression. The results revealed a significant decrease in BW, ADG, and FCR in S. typhi-infected broilers. HNa tended to increase FCR (P = 0.056) while the supplementation of Zn/Se-HNa significantly restored BW and ADG (P < 0.05). HNa and Zn/Se-HNa exhibit favorable and comparable effects in enhancing the levels of serum DAO, D-lactate, and mRNA and protein expression of jejunum and ileal tight junction. In comparison to HNa, Zn/Se-HNa demonstrates a greater reduction in S. Typhi shedding in feces, as well as superior efficacy in enhancing the intestinal morphology, increasing serum catalase (CAT) activity, inhibiting pro-inflammatory cytokines, and suppressing the activation of the NF-κB pathway. Collectively, Zn/Se-HNa was a more effective treatment than HNa to alleviate adverse impact of S. Typhi infection in broiler chickens.


Subject(s)
Dietary Supplements , Humic Substances , Poultry Diseases , Salmonella Infections, Animal , Selenium Compounds , Zinc Compounds , Selenium Compounds/pharmacology , Selenium Compounds/therapeutic use , Zinc Compounds/pharmacology , Zinc Compounds/therapeutic use , Chickens/microbiology , Salmonella typhimurium , Salmonella Infections, Animal/drug therapy , Salmonella Infections, Animal/prevention & control , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Growth/drug effects , Intestines/drug effects , Gastroenteritis/drug therapy , Feces/microbiology , Cytokines/metabolism , Signal Transduction/drug effects
13.
Compr Rev Food Sci Food Saf ; 23(3): e13329, 2024 05.
Article in English | MEDLINE | ID: mdl-38551194

ABSTRACT

Selenium (Se) is a naturally occurring essential micronutrient that is required for human health. Selenium supports cellular antioxidant defense and possesses bioeffects such as anti-inflammation, anti-cancer, anti-diabetic, and cardiovascular and liver protective effects arising from Se-enhanced cellular antioxidant activity. Past studies on Se have focused on elucidating Se speciation in foods, biofortification strategies to produce Se-enriched foods to address Se deficiency in the population, and the biochemical activities of Se in health. The bioavailability and toxicity of Se are closely correlated to its chemical forms and may exhibit varying effects on body physiology. Selenium exists in inorganic and organic forms, in which inorganic Se such as sodium selenite and sodium selenate is more widely available. However, it is a challenge for safe and effective supplementation considering inorganic Se low bioavailability and high cytotoxicity. Organic Se, by contrast, exhibits higher bioavailability and lower toxicity and has a more diverse composition and structure. Organic Se exists as selenoamino acids and selenoproteins, but recent research has provided evidence that it also exists as selenosugars, selenopolysaccharides, and possibly as selenoflavonoids. Different food categories contain various Se compounds, and their Se profiles vary significantly. Therefore, it is necessary to delineate Se speciation in foods to understand their impact on health. This comprehensive review documents our knowledge of the recent uncovering of the existence of selenosugars and selenopolysaccharides and the putative evidence for selenoflavonoids. The bioavailability and bioactivities of these food-derived organic Se compounds are highlighted, in addition to their composition, structural features, and structure-activity relationships.


Subject(s)
Selenium Compounds , Selenium , Trace Elements , Humans , Selenic Acid , Antioxidants
14.
Chemosphere ; 355: 141744, 2024 May.
Article in English | MEDLINE | ID: mdl-38522669

ABSTRACT

Pesticides pollute natural water reservoirs through persistent accumulation. Therefore, their toxicity and degradability are serious issues. Carbendazim (CBZ) is a pesticide used against fungal infections in agricultural crops, and its overexploitation detrimentally affects aquatic ecosystems and organisms. It is necessary to design a logical, efficient, and field-deployable method for monitoring the amount of CBZ in environmental samples. Herein, a nano-engineered bismuth selenide (Bi2Se3)/functionalized carbon nanofiber (f-CNF) nanocomposite was utilized as an electrocatalyst to fabricate an electrochemical sensing platform for CBZ. Bi2Se3/f-CNF exhibited a substantial electroactive surface area, high electrocatalytic activity, and high conductivity owing to the synergistic interaction of Bi2Se3 with f-CNF. The structural chemical compositions and morphology of the Bi2Se3/f-CNF nanocomposite were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Electrochemical analysis was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The voltammetry and impedance experiments exposed that the Bi2Se3/f-CNF-modified GCE has attained adequate electrocatalytic function with amended features of electron transportation (Rct = 35.93 Ω) and improved reaction sites (0.082 cm2) accessible by CBZ moiety along with exemplary electrochemical stability (98.92%). The Bi2Se3/f-CNF nanocomposite exhibited higher sensitivity of 0.2974 µA µM-1cm-2 and a remarkably low limit of detection (LOD) of 1.04 nM at a broad linera range 0.001-100 µM. The practicability of the nanocomposite was tested in environmental (tap and pond water) samples, which supports excellent signal amplification with satisfactory recoveries. Hence, the Bi2Se3/f-CNF nanocomposite is a promising electrode modifier for detecting CBZ.


Subject(s)
Benzimidazoles , Bismuth , Carbamates , Carbon , Nanofibers , Selenium Compounds , Carbon/chemistry , Nanofibers/chemistry , Ecosystem , Water , Electrochemical Techniques/methods , Electrodes
15.
Food Chem ; 444: 138675, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38335688

ABSTRACT

Inadequate Se intake can enhance vulnerability to certain health risks, with supplementation lessening these risks. This study investigated the bioavailability of Se and Se species in five Se compounds and in Se-rich Cardamine violifolia using in vitro digestion coupled with a Caco-2 cell monolayer model, which enabled the study of Se transport and uptake. Translocation results showed that SeCys2 and MeSeCys had high translocation rates in C. violifolia leaves (CVLs). The uptake rate of organic Se increased with time, and MeSeCys exhibited a higher uptake rate than that for SeCys2 and SeMet. The translocation mechanisms of SeMet, Se(IV), and Se(VI) were passive transport, whereas those of SeCys2 and MeSeCys were active transport. The bioavailability of organic Se was higher than that of inorganic Se, with a total Se bioavailability in CVLs of 49.11 %. This study would provide a theoretical basis for the application of C. violifolia in the functional food.


Subject(s)
Cardamine , Selenium Compounds , Selenium , Humans , Caco-2 Cells , Biological Availability , Digestion
16.
J Agric Food Chem ; 72(7): 3388-3396, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38343309

ABSTRACT

Accurately quantifying selenium (Se) speciation and transformation in Se-enriched crops is highly significant for human health. The investigation of Se species in Se-enriched crops involves assessing the enrichment of both organic and inorganic Se species, considering their plant families and edible parts. The staple crops of rice, corn, and wheat showed no or less inorganic Se with the increase of total Se; however, potatoes expressed a proportion of selenate [Se(VI)]. In addition, the organic Se proportions in Se-enriched crops of Cruciferous, Brassicaceae, and Umbelliferae plant families were relatively lower than the proportion of inorganic Se. Concurrently, the edible parts of the Se-enriched gramineous or cereal crops enriched with organic Se and crops with fruit, stem, leaf, and root as edible parts contain the maximum percentage of organic Se with a certain proportion of inorganic Se. This study contributes to a sparse body of literature by meticulously discerning appropriate Se-enriched crop selection through a comprehensive evaluation of Se speciation and its organic and inorganic accumulation potential.


Subject(s)
Selenium Compounds , Selenium , Humans , Selenic Acid , Crops, Agricultural , Edible Grain
17.
Anal Bioanal Chem ; 416(11): 2835-2848, 2024 May.
Article in English | MEDLINE | ID: mdl-38286852

ABSTRACT

This work presents the first systematic comparison of selenium (Se) speciation in plasma from cancer patients treated orally with three Se compounds (sodium selenite, SS; L-selenomethionine, SeMet; or Se-methylselenocysteine, MSC) at 400 µg/day for 28 days. The primary goal was to investigate how these chemical forms of Se affect the plasma Se distribution, aiming to identify the most effective Se compound for optimal selenoprotein expression. This was achieved using methodology based on HPLC-ICP-MS after sample preparation/fractionation approaches. Measurements of total Se in plasma samples collected before and after 4 weeks of treatment showed that median total Se levels increased significantly from 89.6 to 126.4 µg kg-1 Se (p < 0.001), particularly when SeMet was administered (190.4 µg kg-1 Se). Speciation studies showed that the most critical differences between treated and baseline samples were seen for selenoprotein P (SELENOP) and selenoalbumin after administration with MSC (p = 5.8 × 10-4) and SeMet (p = 6.8 × 10-5), respectively. Notably, selenosugar-1 was detected in all low-molecular-weight plasma fractions following treatment, particularly with MSC. Two different chromatographic approaches and spiking experiments demonstrated that about 45% of that increase in SELENOP levels (to ~ 8.8 mg L-1) with SeMet is likely due to the non-specific incorporation of SeMet into the SELENOP affinity fraction. To the authors' knowledge, this has not been reported to date. Therefore, SELENOP is probably part of both the regulated (55%) and non-regulated (45%) Se pools after SeMet administration, whereas SS and MSC mainly contribute to the regulated one.


Subject(s)
Neoplasms , Selenium Compounds , Selenium , Humans , Selenomethionine , Neoplasms/drug therapy , Biomarkers
18.
Bioelectrochemistry ; 156: 108610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38000205

ABSTRACT

An unlabeled ratiometric molecular imprinted electrochemiluminescence sensor was developed for the determination of trace uric acid, based on MXene@NaAsc nanocomposites, CdSe@ZnS quantum dots and molecularly imprinted polymer composites modified glass carbon electrode. MXene@NaAsc stably enhanced the electron transfer and improved electrochemiluminescence intensity by acting as a base platform and signal amplifier for CdSe@ZnS quantum dots. Specific molecular imprinting cavities based on electropolymerization with o-phenylenediamine were formed to specifically identify uric acid. Combining the good sensitivity of electrochemiluminescence and the excellent selectivity of molecularly imprinted polymer, the ratio of optical signal and electrical signal was used as a comprehensive signal to achieve the detection of uric acid. Based on this, uric acid was detected in the range from 1 × 10-10 to 1 × 10-4 mol/L with the LOD of 18.13 pmol/L (S/N = 3). The developed sensor with easy preparation, great selectivity and excellent sensitivity could successfully detect uric acid in human serum.


Subject(s)
Cadmium Compounds , Molecular Imprinting , Nitrites , Quantum Dots , Selenium Compounds , Transition Elements , Humans , Electrochemical Techniques , Limit of Detection , Luminescence , Molecularly Imprinted Polymers , Uric Acid
19.
Expert Opin Drug Discov ; 19(2): 139-146, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37988053

ABSTRACT

INTRODUCTION: Selenium possesses numerous advantageous properties in the field of medicine, and a variety of selenium-containing compounds have been documented to exhibit anti-HIV activity. This paper aims to categorize these compounds and conduct SAR analysis to offer guidance for drug design and optimization. AREAS COVERED: The authors present a comprehensive review of the reported SAR analysis conducted on selenium-based compounds against HIV, accompanied by a concise discussion regarding the pivotal role of selenium in drug development. EXPERT OPINION: In addition to the conventional bioisosterism strategy, advanced strategies such as covalent inhibition, fragment-based growth and drug repositioning can also be incorporated into research on selenium-containing anti-HIV drugs. Ebselen, which acts as an HIV capsid inhibitor, serves as a valuable probe compound for the discovery of novel HIV integrase inhibitors. Furthermore, it is crucial not to underestimate the potential toxicity associated with organic selenium compounds despite no reported instances of severe toxicity.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Integrase Inhibitors , Selenium Compounds , Selenium , Humans , Selenium/pharmacology , Structure-Activity Relationship , Anti-HIV Agents/adverse effects , HIV Infections/drug therapy , HIV Integrase Inhibitors/pharmacology
20.
Anal Chem ; 96(1): 471-479, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38116615

ABSTRACT

The application of selenium nanoparticle (SeNP)-based fertilizers can cause SeNPs to enter the soil environment. Considering the possible transformation of SeNPs and the species-dependent toxicity of selenium (Se), accurate analysis of SeNPs and other Se species present in the soil would help rationally assess the potential hazards of SeNPs to soil organisms. Herein, a novel method for speciation of SeNPs and other Se species in soil was established. Under the optimized conditions, SeNPs, selenite, selenate, and seleno amino acid could be simultaneously extracted from the soil with mixtures of tetrasodium pyrophosphate (5 mM) and potassium dihydrogen phosphate (1.2 µM), while inert Se species (mainly metal selenide) remained in the soil. Then, extracted SeNPs can be effectively captured by a nylon membrane (0.45 µm) and quantified by inductively coupled plasma mass spectrometry (ICP-MS). Other extracted Se species can be separated and quantified by high-performance liquid chromatography coupled with ICP-MS. Based on the difference between the total Se contents and extracted Se contents, the amount of metal selenide can be calculated. The limits of detection of the method were 0.02 µg/g for SeNPs, 0.05 µg/g for selenite, selenate, and selenocystine, and 0.25 µg/g for selenomethionine, respectively. Spiking experiments also showed that our method was applicable to real soil sample analysis. The present method contributes to understanding the speciation of Se in the soil environment and further estimating the occurrence and application risks of SeNPs.


Subject(s)
Nanoparticles , Selenium Compounds , Selenium , Selenium/analysis , Selenic Acid , Soil/chemistry , Selenium Compounds/chemistry , Selenious Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...