Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.690
Filter
1.
Reprod Domest Anim ; 59(6): e14588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822558

ABSTRACT

Semen cryopreservation is one of the most important reproduction techniques in the livestock and poultry industry. Cryopreservation induces cold stress, generating reactive oxygen species (ROS) and oxidative stress causing structural and biochemical damages in sperm. In this study, we evaluated the effects of the hydroxytyrosol (HT), as an antioxidant, at the concentrations of 0, 25, 50, and 100 µg/mL on post-thaw semen quality metrics in rooster. Semen samples were collected twice a week from 10 roosters (29 weeks), processed and frozen according to experimental groups. Different quality parameters, including total motility, progressive motility, viability, morphology, membrane integrity, and malondialdehyde were measured after thawing. Results showed that 25 and 50 µg/mL of HT produced the highest percentage of total motility (51.01 ± 2.19 and 50.15 ± 2.19, respectively) and progressive motility (35.74 ± 1.34 and 35.15 ± 1.34, respectively), membrane integrity (48.00 ± 2.18 and 46.75 ± 2.18, respectively) as well as viability (53.00 ± 2.17 and 52.50 ± 2.17, respectively) compared with the other groups (p < .05). The group with 25 µg/mL of HT showed the lowest significant (p < .05) MDA concentration (1.81 ± 0.25). Our results showed that the effect of HT was not dose-dependent and optimum concentration of HT could improve functional parameters of rooster sperm after freezing-thawing. These findings suggest that HT may have protective effects on the rooster sperm during the freezing-thawing process.


Subject(s)
Antioxidants , Chickens , Cryopreservation , Phenylethyl Alcohol , Semen Preservation , Sperm Motility , Spermatozoa , Animals , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Male , Cryopreservation/veterinary , Cryopreservation/methods , Semen Preservation/veterinary , Semen Preservation/methods , Spermatozoa/drug effects , Sperm Motility/drug effects , Antioxidants/pharmacology , Semen Analysis/veterinary , Cryoprotective Agents/pharmacology , Malondialdehyde/analysis
2.
Reprod Domest Anim ; 59(5): e14570, 2024 May.
Article in English | MEDLINE | ID: mdl-38700367

ABSTRACT

The cryopreservation process induces alterations in cellular parameters and epigenetic patterns in bull sperm, which can be prevented by adding cryoprotectants in the freezing extenders. The purpose of this study was to compare the protective effects of two extenders based on soybean lecithin (SLE) and egg yolk (EYE) on epigenetic patterns and quality parameters of sperm such as motility parameters, mitochondrial membrane integrity, DNA fragmentation, viability, and apoptotic-like changes of bull sperm after cryopreservation. Results demonstrated that cryopreservation significantly (p < .05) reduced the level of DNA global methylation, H3K9 histone acetylation, and H3K4 histone methylation in both frozen groups compared to the fresh sperm. Also, the level of H3K9 acetylation was lower in the frozen SLE group (21.2 ± 1.86) compared to EYE group (15.2 ± 1.86). In addition, the SLE frozen group had a higher percentage of viability, progressive motility, and linearity (LIN) in SLE frozen group compared to EYE frozen group. However, no difference was observed in mitochondrial membrane integrity and DNA fragmentation between SLE and EYE frozen groups. While soybean-lecithin-based extender showed some initial positive impacts of epigenetics and semen parameters, further investigations can provide useful information for better freezing.


Subject(s)
Cryopreservation , Cryoprotective Agents , DNA Fragmentation , DNA Methylation , Epigenesis, Genetic , Semen Preservation , Sperm Motility , Spermatozoa , Male , Cryopreservation/veterinary , Animals , Cattle , Spermatozoa/drug effects , Spermatozoa/physiology , Semen Preservation/veterinary , Semen Preservation/methods , Sperm Motility/drug effects , Cryoprotective Agents/pharmacology , DNA Methylation/drug effects , Egg Yolk/chemistry , Lecithins/pharmacology , Histones/metabolism , Histones/genetics , Glycine max/chemistry , Semen Analysis/veterinary , Acetylation
3.
Reprod Domest Anim ; 59(5): e14569, 2024 May.
Article in English | MEDLINE | ID: mdl-38715435

ABSTRACT

The effects of an aqueous extract of Scabiosa atropurpurea L. (AES) on the reproduction potential of Queue Fine de l'Ouest rams were evaluated over 9 weeks. Eighteen mature (4-6 years old) rams (52.8 ± 2.6 kg) were divided into three groups. The control (C) group was fed oat hay ad libitum with 700 g of concentrate and the other two groups were fed the same diet supplemented with AES at 1 and 2 mg/kg body weight (AES1 and AES2, respectively). Ram sperm was collected with an artificial vagina (2 × 2 days/week) to evaluate sperm production and quality, antioxidant activity, the adenosine triphosphate (ATP) and calcium concentrations. Sexual behaviour and plasma testosterone concentrations were also investigated. The administration of AES improved sexual behaviour (the duration of contact and the number of lateral approaches). The addition of AES also improved individual spermatozoa motility (C: 71.7% ± 6.3%; AES1: 78.3% ± 4.9%; AES2: 83.8% ± 4.4%), the sperm concentration (C: 5.6 ± 0.36; AES1: 6.4 ± 0.81; AES2: 6.7 ± 0.52 × 109 spermatozoa/mL), the ATP ratio (C: 1 ± 0.08; AES1: 2.1 ± 0.08; AES2: 3.3 ± 0.08) and the calcium concentration (C: 5.6 ± 0.24; AES1: 7.7 ± 0.21; AES2: 8.1 ± 0.24 mmol/L). AES treatment decreased the percentage of abnormal sperm (C: 18.5% ± 1.2%; AES1: 16.2% ± 1.1%; AES2: 14.8% ± 0.94%) and DNA damage (C: 62%; AES1: 27%; AES2: 33%) and was associated with elevated seminal fluid antioxidant activity (C: 22 ± 0.27; AES1: 27.1 ± 1.08 and AES2: 27.5 ± 0.36 mmol Trolox equivalents/L) and plasma testosterone (C: 8.3 ± 0.7; AES1: 11.7 ± 0.4; AES2: 15 ± 0.7 ng/L). In conclusion, our study suggests that S. atropurpurea may be potentially useful to enhance libido and sperm production and quality in ram.


Subject(s)
Plant Extracts , Sexual Behavior, Animal , Spermatozoa , Male , Animals , Spermatozoa/drug effects , Sexual Behavior, Animal/drug effects , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Testosterone/blood , Semen Analysis/veterinary , Sperm Motility/drug effects , Dietary Supplements , Antioxidants/pharmacology , Diet/veterinary , Sperm Count , Calcium/analysis , Calcium/blood , Sheep, Domestic , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/analysis
4.
Reprod Domest Anim ; 59(5): e14573, 2024 May.
Article in English | MEDLINE | ID: mdl-38712666

ABSTRACT

The aim of this study was to assess the addition of 2% sodium caseinate in a commercial egg yolk-based medium in frozen ovine semen. Eight Dorper males were used for the study. The ejaculate was divided into two portions and frozen without (G1) or with the addition of 2% sodium caseinate (G2). Kinetic parameters were evaluated using CASA (computer-assisted sperm analysis), and membrane and acrosome integrity as well as oxidative stress were assessed using flow cytometry. After thawing, a thermoresistance test was conducted at time points T0 and T90. For the fertility test, 100 ewes were inseminated with semen from two rams selected based on in vitro parameters, one with good post-thaw quality (+70% total motility) and the other with low post-thaw quality (-55% total motility). For the fertility test, the females were divided into 4 groups for insemination: low-quality ram without caseinate (GBS = 25) and with caseinate (GBC = 25), and high-quality ram without caseinate (GAS = 25) and with caseinate (GAC = 25). Regarding the results of sperm kinetics, there was a statistically significant difference in the parameters of average path velocity (VAP) and curvilinear velocity (VCL) between the group frozen with BotuBov and the group with added caseinate. At time point T90, straight-line velocity maintained a trend (p < .06), with BotuBov® (BB group) being superior to caseinate this time, and in the linearity parameter, caseinate was superior to BotuBov®. Flow cytometry analysis showed no difference between any of the evaluated tests. In the fertility test, there was no statistically significant difference in the pregnancy rate between the BotuBOV® group (23%, 11/48) and the sodium caseinate group (BC group) (33%, 17/52), and no differences were observed in the male versus diluent interaction (p = .70). In conclusion, sodium caseinate supplementation did not influence sperm kinetic parameters and the fertility of sheep.


Subject(s)
Caseins , Cryopreservation , Insemination, Artificial , Semen Analysis , Semen Preservation , Sperm Motility , Animals , Semen Preservation/veterinary , Semen Preservation/methods , Male , Female , Cryopreservation/veterinary , Cryopreservation/methods , Insemination, Artificial/veterinary , Caseins/pharmacology , Semen Analysis/veterinary , Pregnancy , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/physiology , Cryoprotective Agents/pharmacology , Semen/drug effects , Fertility/drug effects , Sheep , Sheep, Domestic
5.
Reprod Fertil Dev ; 362024 May.
Article in English | MEDLINE | ID: mdl-38753960

ABSTRACT

Context Several polymorphisms in the melatonin receptor 1A gene (MTNR1A ) have been related to reproductive performance in ovine. Aims To investigate the effect of the Rsa I and Mnl I polymorphisms on ram seminal quality. Methods Eighteen Rasa Aragonesa rams were genotyped for the Rsa I (C/C, C/T, T/T) and Mnl I (G/G, G/A, A/A) allelic variants of the MTNR1A gene. Individual ejaculates were analysed once a month throughout the whole year. Sperm motility, morphology, membrane integrity, levels of reactive oxygen species (ROS), phosphatidylserine (PS) inversion, DNA fragmentation and capacitation status were assessed. The effect of the season and polymorphisms on seminal quality was evaluated by mixed ANOVA. Key results Both polymorphisms had an effect on membrane integrity and viable spermatozoa with low levels of ROS and without PS translocation, and Rsa I also on motile and DNA-intact spermatozoa. An interaction between both polymorphisms was found, pointing to a negative effect on seminal quality of carrying the T or A allele in homozygosity. Differences were higher in the reproductive than in the non-reproductive season. Conclusions Mutations substituting C by T and G by A at Rsa I and Mnl I polymorphic sites, respectively, in the MTNR1A gene in rams could decrease the seminal quality. Implications Genotyping of rams based on melatonin receptor 1A could be a powerful tool in sire selection.


Subject(s)
Receptor, Melatonin, MT1 , Sperm Motility , Spermatozoa , Male , Animals , Receptor, Melatonin, MT1/genetics , Receptor, Melatonin, MT1/metabolism , Spermatozoa/metabolism , Sperm Motility/genetics , Sheep/genetics , Genotype , Semen Analysis/veterinary , Polymorphism, Genetic , Reactive Oxygen Species/metabolism , DNA Fragmentation , Polymorphism, Single Nucleotide
6.
Reprod Domest Anim ; 59(5): e14585, 2024 May.
Article in English | MEDLINE | ID: mdl-38745503

ABSTRACT

The study investigated midpiece defects in sperm from a 5-year-old Brangus bull with a high rate of semen batch rejection, due to morphologically abnormal sperm, with no reduction in sperm kinematics. A comprehensive evaluation was conducted over a 16-month period, involving 28 ejaculates. Notably, despite the high proportion of midpiece defects (average 37.73%, from 3% to 58%), the study revealed stable sperm production, with no discernible differences in the kinematic data before and after cryopreservation. Electron microscopy identified discontinuities in the mitochondrial sheath, characteristic of midpiece aplasia (MPA). The anomalies were attributed to be of genetic origin, as other predisposing factors were absent. Additionally, the electron microscopy unveiled plasma membrane defects, vacuoles and chromatin decondensation, consistent with previous findings linking acrosome abnormalities with midpiece defects. The findings underscored the necessity of conducting thorough laboratory evaluations before releasing cryopreserved semen for commercialization. Despite substantial morphological alterations, the initial semen evaluation data indicated acceptable levels of sperm kinematics, emphasizing the resilience of sperm production to severe morphological changes. This case report serves as a contribution to the understanding of midpiece defects in bull sperm, emphasizing the need for meticulous evaluation and quality control in semen processing and commercialization.


Subject(s)
Cryopreservation , Semen Analysis , Semen Preservation , Spermatozoa , Male , Animals , Cryopreservation/veterinary , Cattle , Semen Preservation/veterinary , Semen Analysis/veterinary , Spermatozoa/abnormalities , Spermatozoa/physiology , Biomechanical Phenomena , Sperm Midpiece , Sperm Motility , Acrosome
7.
Reprod Fertil Dev ; 362024 May.
Article in English | MEDLINE | ID: mdl-38769680

ABSTRACT

Context Conventional sperm quality tests may not be sufficient to predict the fertilising ability of a given ejaculate; thus, rapid, reliable and sensitive tests are necessary to measure sperm function. Aims This study sought to address whether a cluster analysis approach based on flow cytometry variables could provide more information about sperm function. Methods Spermatozoa were exposed to either isotonic (300mOsm/kg) or hypotonic (180mOsm/kg) media for 5 and 20min, and were then stained with SYBR14 and propidium iodide (PI). Based on flow cytometry dot plots, spermatozoa were classified as either viable (SYBR14+ /PI- ) or with different degrees of plasma membrane alteration (SYBR14+ /PI+ and SYBR14- /PI+ ). Moreover, individual values of electronic volume (EV), side scattering (SS), green (FL1) and red (FL3) fluorescence were recorded and used to classify sperm cells through cluster analysis. Two strategies of this approach were run. The first one was based on EV and the FL3/FL1 quotient, and the second was based on EV, SS and the FL3/FL1 quotient. Key results The two strategies led to the identification of more than three sperm populations. In the first strategy, EV did not differ between membrane-intact and membrane-damaged sperm, but it was significantly (P P P Conclusions Cluster analysis based on flow cytometry variables provides more information about sperm function than conventional assessment does. Implications Combining flow cytometry with cluster analysis is a more robust approach for sperm evaluation.


Subject(s)
Flow Cytometry , Osmotic Pressure , Semen Analysis , Spermatozoa , Flow Cytometry/methods , Male , Spermatozoa/physiology , Semen Analysis/methods , Semen Analysis/veterinary , Cluster Analysis , Cell Membrane/physiology , Sperm Motility/physiology , Animals
8.
Anim Reprod Sci ; 265: 107493, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701639

ABSTRACT

Not all boar sperm samples survive cryopreservation well. A method of eliminating damaged sperm might enable more cryopreserved boar semen to be used for pig breeding. In this study we investigated the use of Magnetic Activated Cell sorting (MACS) to eliminate damaged sperm from thawed boar semen samples. The thawed samples were mixed with Dead cell removal particles and were applied to the column in a SuperMACS II. Different fractions were collected: Original sample (O), Flow-through (FT), and Eluate (E). Sperm membrane integrity, mitochondrial membrane potential and reactive oxygen species were evaluated by flow cytometry after staining with SYBR 14 and propidium iodide, or 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazolylcarbocyanine iodide, or hydroethidine and dichlorodihydrofluorescein diacetate, respectively. The FT samples had increased membrane integrity, a greater proportion of sperm with high mitochondrial membrane potential and a greater proportion of sperm negative for hydrogen peroxide than O samples (P<0.0001), which in turn had increased membrane integrity than E samples (P <0.0001). However, differences were seen between boars. The FT samples had increased values of live, superoxide positive sperm than O samples (P <0.0001) and O samples had greater values than E samples (P <0.0001), while there was no effect of boar. Sperm quality was best in the FT fraction, comprising approximately 32% of the sperm sample. In conclusion, although there were differences between boars, MACS separation can improve sperm quality in thawed semen samples. It would be interesting to see if this improvement is reflected in fertility outcomes.


Subject(s)
Cryopreservation , Semen Preservation , Spermatozoa , Animals , Male , Spermatozoa/physiology , Swine/physiology , Semen Preservation/veterinary , Semen Preservation/methods , Cryopreservation/veterinary , Cryopreservation/methods , Cell Membrane/physiology , Membrane Potential, Mitochondrial/physiology , Cell Separation/veterinary , Cell Separation/methods , Flow Cytometry/veterinary , Reactive Oxygen Species/metabolism , Semen Analysis/veterinary
9.
Anim Reprod Sci ; 265: 107487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723402

ABSTRACT

Cryopreservation of small ruminant's semen is an effective strategy for distributing spermatozoa for reproductive programs, but this process decreases the fertility potential of post-thawed spermatozoa. The aim of this research was to assess the effect of different concentrations of CoQ10 in soybean lecithin (SL)-based extender on buck semen quality during cryopreservation process. Semen samples were collected from five bucks, twice a week, then diluted in the SL-based extender containing different concentrations of CoQ10 as follows: extender containing 0 µM (control, Q0), 0.1 µM (Q0.1), 1 µM (Q1), 10 µM (Q10) and 100 µM (Q100) CoQ10. Motion characteristics, membrane functionality, abnormal morphology, mitochondrial activity, acrosome integrity, viability, apoptotic-like changes, lipid peroxidation, DNA fragmentation and ROS concentration were evaluated after freeze-thawing process. The Q10 resulted in greater (P≤0.05) total motility, progressive motility, average path velocity, membrane integrity, mitochondrial activity, acrosome integrity and viability compared to the other groups. Furthermore, supplementation of freezing extender with 10 µM of CoQ10 presented lower (P≤0.05) apoptotic-like changes, lipid peroxidation, DNA fragmentation and ROS concentration compared to the other groups. Regarding to the protective effect of CoQ10 supplement during cryopreservation process, it could be explored as a potent antioxidant for cryopreservation of buck semen as it preserved the post-thawed buck sperm quality.


Subject(s)
Cryopreservation , Cryoprotective Agents , Goats , Semen Analysis , Semen Preservation , Spermatozoa , Ubiquinone , Ubiquinone/pharmacology , Ubiquinone/analogs & derivatives , Male , Cryopreservation/veterinary , Cryopreservation/methods , Semen Preservation/veterinary , Semen Preservation/methods , Animals , Semen Analysis/veterinary , Cryoprotective Agents/pharmacology , Spermatozoa/drug effects , Spermatozoa/physiology , Goats/physiology , Sperm Motility/drug effects , Glycine max/chemistry
10.
Reprod Domest Anim ; 59(5): e14618, 2024 May.
Article in English | MEDLINE | ID: mdl-38798164

ABSTRACT

This study investigated the effects of storage conditions on the quality of chilled ram semen stored at 4°C for 48 h, comparing aerobic and anaerobic conditions. Ejaculates from INRA180 rams were collected and stored under both conditions, with assessments at 0-, 24-, and 48-h intervals. Various sperm parameters were examined, including motility, velocity, viability, morphology, membrane integrity, and lipid peroxidation. Results showed that storage duration significantly impacted sperm quality, leading to a gradual decline from 0 to 24 h and 24 to 48 h. Notably, after the initial 24 h, progressive motility (PM) and membrane integrity (MI) demonstrated distinct responses to storage conditions. Anaerobic storage consistently improved PM and MI values compared to aerobic storage between 24 and 48 h. Anaerobic conditions also enhanced viability and reduced abnormality at the 48-h mark. Total motility remained stable throughout storage. Velocity parameters (VCL: curvilinear velocity; VSL: straight velocity and VAP: velocity average path) exhibited differences between the 24- and 48-h intervals, with anaerobic storage resulting in higher VAP and VSL values. Moreover, lipid peroxidation exhibited a progressive increase from 0 to 24 h and 24 to 48 h, independent of storage conditions. Remarkably, anaerobic storage consistently yielded lower lipid peroxidation levels compared to aerobic storage, regardless of storage duration. In conclusion, this study highlights that the anaerobic storage proved advantageous for chilled ram semen quality, particularly after the initial 24 h.


Subject(s)
Lipid Peroxidation , Oxygen , Semen Analysis , Semen Preservation , Sperm Motility , Spermatozoa , Semen Preservation/veterinary , Semen Preservation/methods , Animals , Male , Semen Analysis/veterinary , Spermatozoa/physiology , Anaerobiosis , Sheep, Domestic , Sheep/physiology , Semen/physiology , Cell Survival
11.
Cryo Letters ; 45(4): 194-211, 2024.
Article in English | MEDLINE | ID: mdl-38809784

ABSTRACT

This comprehensive review delves into the evolving landscape of assisted reproductive technologies (ARTs) in bovine species, particularly focusing on the pivotal roles of semen additives in the cryopreservation of buffalo and cattle semen. In developing nations, where ARTs are still emerging, these techniques significantly influence bovine reproductive strategies. In contrast, developed regions have embraced them as primary approaches for dairy buffalo and cattle breeding. Semen cryopreservation, while offering advantages like extended storage and genetic propagation, also presents challenges. These include diminished sperm quality due to reactive oxygen species (ROS) production, alterations in sperm structure, and temperature fluctuations. Further, the effect of cryopreservation differs between cattle and buffaloes, with the latter exhibiting poorer semen viability and fertility due to inherent lipid composition susceptibilities. The generation and implications of ROS, especially hydrogen peroxide, contribute significantly to sperm DNA damage and functional impairments. To counteract these challenges, research has intensified on semen additives, aiming to bolster semen quality and protect against oxidative stress-induced damage. As the field advances, the review emphasizes the need for optimized cryopreservation techniques and tailored antioxidant strategies to harness the full potential of ARTs in bovine breeding programs. Doi.org/10.54680/fr24410110112.


Subject(s)
Buffaloes , Cryopreservation , Cryoprotective Agents , Semen Preservation , Cattle , Animals , Cryopreservation/methods , Cryopreservation/veterinary , Semen Preservation/methods , Semen Preservation/veterinary , Male , Buffaloes/physiology , Cryoprotective Agents/pharmacology , Semen , Reactive Oxygen Species/metabolism , Semen Analysis/veterinary , Semen Analysis/methods , Spermatozoa/physiology , Oxidative Stress/drug effects , Reproductive Techniques, Assisted/veterinary , DNA Damage/drug effects , Antioxidants/pharmacology , Sperm Motility/drug effects
12.
Sci Rep ; 14(1): 10214, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702489

ABSTRACT

Sperm membrane composition and biophysical characteristics play a pivotal role in many physiological processes (i.e. sperm motility, capacitation, acrosome reaction and fusion with the oocyte) as well as in semen processing (e.g. cryopreservation). The aim of this study was to characterize the fatty acid content and biophysical characteristics (anisotropy, generalized polarization) of the cell membrane of domestic cat spermatozoa. Semen was collected from 34 adult male cats by urethral catheterization. After a basic semen evaluation, the fatty acid content of some of the samples (n = 11) was evaluated by gas chromatography. Samples from other individuals (n = 23) were subjected to biophysical analysis: membrane anisotropy (which is inversely proportional to membrane fluidity) and generalized polarization (describing lipid order); both measured by fluorimetry at three temperature points: 38 °C, 25 °C and 5 °C. Spermatozoa from some samples (n = 10) were cryopreserved in TRIS egg yolk-glycerol extender and underwent the same biophysical analysis after thawing. Most fatty acids in feline spermatozoa were saturated (69.76 ± 24.45%), whereas the polyunsaturated fatty acid (PUFA) content was relatively low (6.12 ± 5.80%). Lowering the temperature caused a significant decrease in membrane fluidity and an increase in generalized polarization in fresh spermatozoa, and these effects were even more pronounced following cryopreservation. Anisotropy at 38 °C in fresh samples showed strong positive correlations with viability and motility parameters after thawing. In summary, feline spermatozoa are characterized by a very low PUFA content and a low ratio of unsaturated:saturated fatty acids, which may contribute to low oxidative stress. Cryopreservation alters the structure of the sperm membrane, increasing the fluidity of the hydrophobic portion of the bilayer and the lipid order in the hydrophilic portion. Because lower membrane fluidity in fresh semen was linked with better viability and motility after cryopreservation, this parameter may be considered an important factor in determination of sperm cryoresistance.


Subject(s)
Cell Membrane , Cryopreservation , Fatty Acids , Membrane Fluidity , Spermatozoa , Animals , Male , Cats , Spermatozoa/metabolism , Spermatozoa/physiology , Fatty Acids/metabolism , Fatty Acids/analysis , Cell Membrane/metabolism , Cryopreservation/methods , Sperm Motility/physiology , Semen Preservation/methods , Semen Preservation/veterinary , Semen Analysis/veterinary
13.
Cryo Letters ; 45(4): 257-268, 2024.
Article in English | MEDLINE | ID: mdl-38809790

ABSTRACT

BACKGROUND: Little is known about the effects of different seasons on the cryopreservation success of buffalo sperm in terms of kinematics and sperm functional parameters. OBJECTIVE: To study the effect of three seasons (winter, comfort and summer) and cryopreservation on sperm kinematics and functional properties in buffalo bulls. MATERIALS AND METHODS: Semen ejaculates (n = 90) collected during three seasons i.e. winter (n = 30), comfort (n = 30), summer (n = 30) were evaluated for sperm kinematics and functional properties. RESULTS: Sperm kinematics with respect to total (TM), progressive (PM) and rapid motility (RM) was higher (P < 0.05) in fresh sperm compared to sperm that had been frozen-thawed. Similarly, all kinematic parameters [viz. average path velocity (VAP), straight linear velocity (VSL), curvilinear velocity (VCL), beats cross frequency (BCF), lateral head displacement (ALH), linearity (LIN) and straightness (STR)] were higher (P < 0.01) at the fresh stage. With respect to season, frozen-thawed semen TM (57.67 ± 115 %), PM (50.2 ± 1.15 %) and RM (51.6 ± 1.19 %) were higher (P < 0.01) when using sperm collected during winter. The stage of cryopreservation (i.e., equilibration and freeze-thawing) also showed significant effects (P < 0.01) on mitochondrial superoxide positive status (MSPS), mitochondrial membrane potential (MMP), acrosome status and intra-cellular calcium status. CONCLUSION: The season of sperm collection and cryopreservation have significant effects on buffalo bull sperm kinematics and functional properties. Doi.org/10.54680/fr24410110612.


Subject(s)
Acrosome , Buffaloes , Calcium , Cryopreservation , Mitochondria , Semen Preservation , Sperm Motility , Spermatozoa , Animals , Cryopreservation/veterinary , Cryopreservation/methods , Male , Buffaloes/physiology , Semen Preservation/veterinary , Semen Preservation/methods , Spermatozoa/physiology , Calcium/metabolism , Mitochondria/metabolism , Biomechanical Phenomena , Seasons , Membrane Potential, Mitochondrial , Semen Analysis/veterinary
14.
Theriogenology ; 224: 26-33, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723471

ABSTRACT

Pigs are usually bred through artificial insemination with liquid semen preserved at 15-20 °C. While this method of preservation brings many benefits, including a greater reproductive performance compared to frozen-thawed sperm, the period of storage is a limiting factor. As the mitochondrion regulates many facets of sperm physiology, modulating its activity could have an impact on their lifespan. Aligned with this hypothesis, the present study sought to investigate whether inhibition of voltage-dependent anion channels (VDACs), which reside in the outer mitochondrial membrane and regulate the flux of ions between mitochondria and the cytosol in somatic cells, influences the resilience of pig sperm to liquid preservation at 17 °C. For this purpose, semen samples (N = 7) were treated with two different concentrations of TRO19622 (5 µM and 50 µM), an inhibitor of VDACs, and stored at 17 °C for 10 days. At days 0, 4 and 10, sperm quality and functionality parameters were evaluated by flow cytometry and computer-assisted sperm analysis (CASA). The effects of inhibiting VDACs depended on the concentration of the inhibitor. On the one hand, the greatest concentration of TRO19622 (50 µM) led to a decrease in sperm motility, viability and mitochondrial membrane potential, which could be related to the observed intracellular Ca2+ increase. In contrast, total sperm motility was higher in samples treated with 5 µM TRO19622 than in the control, suggesting that when VDACs channels are inhibited by the lowest concentration of the blocking agent the resilience of pig sperm to liquid storage increases. In conclusion, the current research indicates that mitochondrial function, as regulated by ion channels in the outer mitochondrial membrane like VDACs, is related to the sperm resilience to liquid preservation and may influence cell lifespan.


Subject(s)
Semen Analysis , Semen Preservation , Spermatozoa , Voltage-Dependent Anion Channels , Animals , Male , Semen Preservation/veterinary , Semen Preservation/methods , Swine/physiology , Spermatozoa/physiology , Spermatozoa/drug effects , Semen Analysis/veterinary , Sperm Motility/drug effects , Membrane Potential, Mitochondrial/drug effects , Cryopreservation/veterinary , Cryopreservation/methods
15.
Reprod Domest Anim ; 59(5): e14613, 2024 May.
Article in English | MEDLINE | ID: mdl-38812417

ABSTRACT

Spermatozoa can experience negative changes when subjected to freezing and thawing, including lowered motility, viability and acrosome response. Herein, the effects of different concentrations of soybean lecithin nanoparticles on cryopreserved Holstein bull semen were examined. Semen was collected, cryopreserved and utilized for sperm kinetic parameter analysis following dilution, equilibration and thawing with 0.5% soybean lecithin (E1), the control extender, and 0.75% (E2), 0.5% (E3), 0.25% (E4) and 0.125% (E5) of lecithin nanoparticles. Results revealed that following dilution, the progressive motility (PM) at E3, E4 and E5 of lecithin nanoparticles was higher (p < .05) than it was for E2. After equilibration, compared to the E1, E2, and E3 values, the PM, vitality, normal morphology, membrane integrity and intact acrosome values at the E5 were consistently greater (p < .05). Comparing the percentages of intact acrosome and membrane integrity at E2 and E3 to E4 and E5, a substantial decrease (p < .05) was seen. Following thawing, the percentage of PM improved at E2 and E5, even though their mean PM values were similar (p > .05) compared to E1, E3 and E4. Vigour and progression parameters of sperm (DAP, DCL, DSL, VAP, VCL, VSL and STR) at E5 were higher (p < .05) than those at E1, E2, E3 and E4. In conclusion, the cryopreserved sperm from Holstein bulls revealed outstanding properties both after equilibration and after thawing with 0.125% lecithin nanoparticles, and they were sensitive to high dosages.


Subject(s)
Cryopreservation , Cryoprotective Agents , Glycine max , Lecithins , Nanoparticles , Semen Preservation , Sperm Motility , Spermatozoa , Animals , Male , Cattle , Cryopreservation/veterinary , Cryopreservation/methods , Semen Preservation/veterinary , Semen Preservation/methods , Lecithins/pharmacology , Sperm Motility/drug effects , Glycine max/chemistry , Cryoprotective Agents/pharmacology , Spermatozoa/drug effects , Spermatozoa/physiology , Semen Analysis/veterinary , Acrosome/drug effects , Semen/drug effects
16.
Reprod Fertil Dev ; 362024 May.
Article in English | MEDLINE | ID: mdl-38713807

ABSTRACT

Context Seasonal microclimatic fluctuations can cause changes in sperm quality even in dairy bulls bred under temperate climate. These changes can vary between sires of different age and affect sperm freezability. Aims We aimed to evaluate the modulating effect of bull age and equilibration time before freezing on the seasonal pattern of sperm viability and DNA integrity post-thaw. Methods In the frame of systematic sperm quality control, we assessed the integrity of sperm plasma membrane and acrosome (PMAI) in 15,496 cryopreserved bovine batches, and the percentage of sperm with high DNA fragmentation index (%DFI) after 0h and 3h incubation at 38°C post-thaw (3h) in 3422 batches. Semen was equilibrated for 24h before freezing if collected on Monday or Wednesday and 72h if produced on Friday. We investigated the effect of season, bull age, equilibration, and temperature-humidity index (THI) on the day of semen collection on sperm traits using mixed-effects linear models. Key results PMAI and %DFI (0h and 3h) deteriorated with increasing THI. The effect of THI on %DFI was detected with a 30-day time lag. Seasonal fluctuations of sperm quality were similar between young, mature, and older sires. Prolonged equilibration did not affect PMAI but was linked to elevated %DFI (3h) in summer. Conclusions Extending equilibration from 24 to 72h is compatible with commercial standards of bovine sperm quality post-thaw; however, it could interfere with the seasonal pattern of the latter. Implications Systematic monitoring of bovine sperm quality enables the prompt detection of stress factors related to microclimate and semen processing.


Subject(s)
Cryopreservation , DNA Fragmentation , Seasons , Semen Analysis , Semen Preservation , Spermatozoa , Animals , Cattle , Male , Cryopreservation/veterinary , Semen Preservation/veterinary , Semen Preservation/methods , Spermatozoa/drug effects , Spermatozoa/physiology , Semen Analysis/veterinary , DNA Fragmentation/drug effects , Cell Survival/drug effects , Microclimate , Age Factors , Sperm Motility/drug effects
17.
Reprod Domest Anim ; 59(4): e14556, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38566398

ABSTRACT

Scrotal surface thermography is a non-invasive method for assessing testicular thermoregulation in stallions; however, few studies have explored the application of this technique concerning the thermal physiology of equine reproductive systems. This study aimed to evaluate the consistency of testicular thermoregulation in stallions over a year using thermography to measure the scrotal surface temperature (SST). Moreover, we assessed the best region for measuring the surface body temperature compared with the SST. Ten light-breed stallions were used in the experiment. Thermographic images of the scrotal and body surfaces (neck and abdomen) were captured. Fresh, cooled and frozen-thawed semen samples were evaluated to verify the impact of thermoregulation on semen quality. Testicular thermoregulation was maintained throughout the year in stallions amidst changes in the external temperature, as evidenced by the weak correlation between the SST and ambient temperature. A lower correlation was observed between the environmental temperature and body surface temperature (BTS) obtained from the abdomen (BTS-A; R = .4772; p < .0001) than with that obtained from the neck (BTS-N; R = .7259; p < .0001). Moreover, both BTS-A and SST were simultaneously captured in a single image. The consistent quality of the fresh, cooled and frozen semen suggests efficient thermoregulation in stallions throughout the year.


Subject(s)
Semen Analysis , Thermography , Animals , Horses , Male , Temperature , Thermography/veterinary , Thermography/methods , Semen Analysis/veterinary , Scrotum/physiology , Testis/physiology , Semen/physiology
18.
Reprod Domest Anim ; 59(4): e14562, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38591843

ABSTRACT

Melatonin is an intracellular antioxidant of sperm membrane that protects the cells from lipid peroxidation. Yet, its role as an antioxidant on semen quality of buffalo bulls is still obscure. The present study was undertaken to assess the effect of exogenous melatonin implant (18 mg/50 kg bodyweight) on post-thaw sperm characteristics, oxidative stress, endocrinological profiles and fertility of buffalo bulls. Six apparently healthy breeding Murrah buffalo bulls were randomly selected at bull farm, Guru Angad Dev Veterinary and Animal Sciences University for the present study and divided into two groups viz. control (n = 3) and melatonin implanted group (n = 3). A total of 120 ejaculates were collected from bulls of both groups (n = 60 each) throughout the study period. Most beneficial effects of melatonin implants were observed during post-implantation period. The percentages of post-thaw sperm total and progressive motility, viability and mitochondrial membrane potential were higher (p < .05) in melatonin implanted buffalo bulls compared to controls during post-implantation period. Following melatonin implantation, MDA production in post-thaw semen was lower (p < .05) in melatonin implanted group than in control group. Plasma melatonin and testosterone concentrations were higher (p < .05) in buffalo bulls implanted with melatonin as compared to their control counterparts. No differences (p > .05) in plasma LH concentrations were observed in both groups. First service pregnancy rate was 43.3% using semen of melatonin implanted bulls and 30.0% with semen of controls (p > .05). Thus, melatonin was able to protect sperm membrane against oxidative damage and improve post-thaw semen quality, thereby resulting in higher fertilizing potential of spermatozoa.


Subject(s)
Bison , Melatonin , Semen Preservation , Humans , Pregnancy , Female , Male , Animals , Cattle , Semen Analysis/veterinary , Semen , Buffaloes , Melatonin/pharmacology , Antioxidants/pharmacology , Sperm Motility , Cryopreservation/veterinary , Cryopreservation/methods , Semen Preservation/veterinary , Semen Preservation/methods , Spermatozoa
19.
Anim Reprod Sci ; 264: 107472, 2024 May.
Article in English | MEDLINE | ID: mdl-38598888

ABSTRACT

Although cryopreservation is a reliable method used in assisted reproduction to preserve genetic materials, it can stimulate the occurrence of oxidative stress, which affects sperm structure and function. This research was conducted to explore the effects of quinoa seed extracts (QSE) on ram sperm quality, oxidative biomarkers, and the gene expression of frozen-thawed ram sperm. Semen samples were diluted in extenders supplemented with 0 (QSE0), 250 (QSE1), 500 (QSE2), 750 (QSE3), and 1000 (QSE4) µg of QSE /mL, and then frozen according to the typical procedure. The findings indicate that the QSE3 and QSE4 groups provided the optimal results in terms of sperm viability and progressive motility. Sperm kinematics were considerably enhanced in the QSE3 group compared to the other groups (P<0.01). QSE (500-1000 µg/mL) significantly decreased the apoptosis-like changes (higher viable and lower apoptotic sperm) in ram sperm (P<0.001). The percentage of live sperm with intact acrosomes was significantly increased, while the percentage of detached and intact acrosomes in live and dead sperm were significantly decreased respectively by the QSE addition (P<0.001). All QSE groups had higher TAC and lower MDA and H2O2 levels than the control group (P<0.001). The expressions of SOD1, CAT, GABPB1, and GPX1 genes in sperm samples were significantly increased, while the CASP3 gene was significantly decreased in all QSE-supplemented samples. Our data suggest that QSE has beneficial effects on sperm quality of cryopreserved ram semen, which are achieved by promoting sperm antioxidant-related genes and reducing apoptosis-related gene.


Subject(s)
Chenopodium quinoa , Cryopreservation , Plant Extracts , Seeds , Semen Analysis , Semen Preservation , Spermatozoa , Male , Cryopreservation/veterinary , Cryopreservation/methods , Animals , Sheep/physiology , Semen Preservation/veterinary , Semen Preservation/methods , Seeds/chemistry , Semen Analysis/veterinary , Spermatozoa/drug effects , Spermatozoa/physiology , Plant Extracts/pharmacology , Chenopodium quinoa/chemistry
20.
Reprod Domest Anim ; 59(4): e14568, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38646997

ABSTRACT

Sperm cryopreservation is one of the main methods for preserving rooster sperm for artificial insemination (AI) in commercial flocks. Yet, rooster sperm is extremely susceptible to reactive oxygen species (ROS) produced during the freezing process. Oxidative stress could be prevented by using nanoparticles containing antioxidants. The present study was conducted to investigate the effect of zinc oxide nanoparticles (ZnONP) in rooster semen freezing extender on quality parameters and fertility potential. For this aim, semen samples were collected and diluted in Lake extenders as follows: control: Lake without ZnONP, ZnO100: Lake with 100-µg zinc oxide (ZnO), ZnONP50: Lake with 50-µg ZnONP, ZnONP100: Lake with 100-µg ZnONP and ZnONP200: Lake with 200-µg ZnONP. After freezing and thawing, sperm motility, viability, membrane integrity, morphology, mitochondrial activity, acrosome integrity, DNA fragmentation, lipid peroxidation and ROS, as well as fertility and hatchability were assessed. According to the current results, higher rates of motility, membrane integrity, mitochondrial activity, acrosome integrity and live cells were detected in the ZnO100, ZnONP50 and ZnONP100 groups compared to other groups (p ≤ .05). Yet, the percentage of dead cells, DNA fragmentation, lipid peroxidation and ROS levels were lower in the mentioned groups (p ≤ .05). Furthermore, a higher percentage of fertility was observed in the ZnO100 and ZnONP100 groups than in the control group (p ≤ .05). In conclusion, the use of 100-µg ZnO and 50- to 100-µg ZnONP represents a valuable and safe additive material that could be used to improve the quality and fertility potential of rooster sperm under cryopreservation conditions.


Subject(s)
Chickens , Cryopreservation , Fertility , Reactive Oxygen Species , Semen Preservation , Sperm Motility , Spermatozoa , Zinc Oxide , Male , Animals , Zinc Oxide/pharmacology , Cryopreservation/veterinary , Cryopreservation/methods , Spermatozoa/drug effects , Spermatozoa/physiology , Reactive Oxygen Species/metabolism , Semen Preservation/veterinary , Semen Preservation/methods , Fertility/drug effects , Sperm Motility/drug effects , DNA Fragmentation/drug effects , Lipid Peroxidation/drug effects , Nanoparticles , Cryoprotective Agents/pharmacology , Semen Analysis/veterinary , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...