Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
J Neurosci ; 42(5): 909-921, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34916257

ABSTRACT

Acquiring new memories is a multistage process. Numerous studies have convincingly demonstrated that initially acquired memories are labile and are stabilized only by later consolidation processes. These multiple phases of memory formation are known to involve modification of both cellular excitability and synaptic connectivity, which in turn change neuronal activity at both the single neuron and ensemble levels. However, the specific mapping between the known phases of memory and the changes in neuronal activity at different organizational levels-the single-neuron, population representations, and ensemble-state dynamics-remains unknown. Here we address this issue in the context of conditioned taste aversion learning by continuously tracking gustatory cortex neuronal taste responses in alert male and female rats during the 24 h following a taste-malaise pairing. We found that the progression of activity changes depends on the neuronal organizational level: whereas the population response changed continuously, the population mean response amplitude and the number of taste-responsive neurons only increased during the acquisition and consolidation phases. In addition, the known quickening of the ensemble-state dynamics associated with the faster rejection of harmful foods appeared only after consolidation. Overall, these results demonstrate how complex dynamics in the different representational levels of cortical activity underlie the formation and stabilization of memory within the cortex.SIGNIFICANCE STATEMENT Memory formation is a multiphased process; early acquired memories are labile and consolidate to their stable forms over hours and days. The progression of memory is assumed to be supported by changes in neuronal activity, but the mapping between memory phases and neuronal activity changes remains elusive. Here we tracked cortical neuronal activity over 24 h as rats acquired and consolidated a taste-malaise association memory, and found specific differences between the progression at the single-neuron and populations levels. These results demonstrate how balanced changes on the single-neuron level lead to changes in the network-level representation and dynamics required for the stabilization of memories.


Subject(s)
Memory Consolidation , Neurons/physiology , Sensorimotor Cortex/physiology , Taste Perception , Animals , Association Learning , Female , Male , Rats , Rats, Long-Evans , Sensorimotor Cortex/cytology
2.
Nat Commun ; 12(1): 6638, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789730

ABSTRACT

Understanding brain function requires monitoring local and global brain dynamics. Two-photon imaging of the brain across mesoscopic scales has presented trade-offs between imaging area and acquisition speed. We describe a flexible cellular resolution two-photon microscope capable of simultaneous video rate acquisition of four independently targetable brain regions spanning an approximate five-millimeter field of view. With this system, we demonstrate the ability to measure calcium activity across mouse sensorimotor cortex at behaviorally relevant timescales.


Subject(s)
Microscopy, Fluorescence, Multiphoton/instrumentation , Neurons/physiology , Optical Imaging/instrumentation , Animals , Calcium/metabolism , Equipment Design , Mice , Neurons/cytology , Sensorimotor Cortex/cytology , Sensorimotor Cortex/physiology
3.
Physiol Rep ; 9(18): e15028, 2021 09.
Article in English | MEDLINE | ID: mdl-34558220

ABSTRACT

In situations involving fatigue, the increase in fatigue levels and the apparent decrease in motivation levels are thought to suppress mental and physical performance to avoid disrupting homeostasis and aid recovery; however, the ultimate source of information on which the brain depends to perceive fatigue and/or a loss of motivation for protection remains unknown. In this study, we found that, as assessed by magnetoencephalography, electromagnetic cortical neuronal activity while performing cognitive tasks was associated with a decrease in motivation caused by the tasks in healthy participants, suggesting the possibility that the brain utilizes information that reflects the invested amount of neural activity to suppress performance. To our knowledge, this is the first report to provide clues for the missing link between neural investments and the resulting activation of the biological alarms that suppress performance.


Subject(s)
Fatigue/physiopathology , Motivation , Sensorimotor Cortex/physiology , Cognition , Humans , Magnetoencephalography , Male , Neurons/physiology , Sensorimotor Cortex/cytology , Sensorimotor Cortex/physiopathology , Young Adult
4.
J Comp Neurol ; 529(11): 2970-2986, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33719029

ABSTRACT

The brain regions that control the learning and production of song and other learned vocalizations in songbirds exhibit some of the largest sex differences in the brain known in vertebrates and are associated with sex differences in singing behavior. Song learning takes place through multiple stages: an early sensory phase when song models are memorized, followed by a sensorimotor phase in which auditory feedback is used to modify song output through subsong, plastic song, to adult crystalized song. However, how patterns of neurogenesis in these brain regions change through these learning stages, and differ between the sexes, is little explored. We collected brains from 63 young male and female zebra finches (Taeniopygia guttata) over four stages of song learning. Using neurogenesis markers for cell division (proliferating cell nuclear antigen), neuron migration (doublecortin), and mature neurons (neuron-specific nuclear protein), we demonstrate that there are sex-specific changes in neurogenesis over song development that differ between the caudal motor pathway and anterior forebrain pathway of the vocal control circuit. In many of these regions, sex differences emerged very early in development, by 25 days post hatch, at the beginning of song learning. The emergence of sex differences in other components of the system was more gradual and had specific trajectories depending on the brain region and its function. In conclusion, we found that sex differences occurred early and continued during song learning. Moreover, transitions from the different phases of song development do not seem to depend on large changes in neurogenesis in the vocal control areas measured.


Subject(s)
Nerve Net/physiology , Neurogenesis/physiology , Sensorimotor Cortex/physiology , Sex Characteristics , Vocalization, Animal/physiology , Animals , Cell Proliferation/physiology , Female , Finches , Learning/physiology , Male , Nerve Net/cytology , Sensorimotor Cortex/cytology , Songbirds
5.
J Neurosci ; 41(15): 3432-3445, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33637562

ABSTRACT

Locomotion, scratching, and stabilization of the body orientation in space are basic motor functions which are critically important for animal survival. Their execution requires coordinated activity of muscles located in the left and right halves of the body. Commissural interneurons (CINs) are critical elements of the neuronal networks underlying the left-right motor coordination. V0 interneurons (characterized by the early expression of the transcription factor Dbx1) contain a major class of CINs in the spinal cord (excitatory, V0V; inhibitory, V0D), and a small subpopulation of excitatory ipsilaterally projecting interneurons. The role of V0 CINs in left-right coordination during forward locomotion was demonstrated earlier. Here, to reveal the role of glutamatergic V0 and other V0 subpopulations in control of backward locomotion, scratching, righting behavior, and postural corrections, kinematics of these movements performed by wild-type mice and knock-out mice with glutamatergic V0 or all V0 interneurons ablated were compared. Our results suggest that the functional effect of excitatory V0 neurons during backward locomotion and scratching is inhibitory, and that the execution of scratching involves active inhibition of the contralateral scratching central pattern generator mediated by excitatory V0 neurons. By contrast, other V0 subpopulations are elements of spinal networks generating postural corrections. Finally, all V0 subpopulations contribute to the generation of righting behavior. We found that different V0 subpopulations determine left-right coordination in the anterior and posterior parts of the body during a particular behavior. Our study shows a differential contribution of V0 subpopulations to diverse motor acts that provides new insight to organization of motor circuits.SIGNIFICANCE STATEMENT Commissural interneurons with their axons crossing the midline of the nervous system are critical elements of the neuronal networks underlying the left-right motor coordination. For the majority of motor behaviors, the neuronal mechanisms underlying left-right coordination are unknown. Here, we demonstrate the functional role of excitatory V0 neurons and other subpopulations of V0 interneurons in control of a number of basic motor behaviors-backward locomotion, scratching, righting behavior, and postural corrections-which are critically important for animal survival. We have shown that different subpopulations of V0 neurons determine left-right coordination in the context of different behaviors as well as in the anterior and posterior parts of the body during a particular behavior.


Subject(s)
Interneurons/physiology , Locomotion , Periodicity , Sensorimotor Cortex/cytology , Animals , Excitatory Postsynaptic Potentials , Functional Laterality , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Interneurons/metabolism , Mice , Mice, Inbred C57BL , Postural Balance , Pyramidal Tracts/cytology , Pyramidal Tracts/physiology , Sensorimotor Cortex/physiology
6.
Brain Res Bull ; 160: 8-23, 2020 07.
Article in English | MEDLINE | ID: mdl-32298779

ABSTRACT

Constraint-induced movement therapy (CIMT) has proven to be an effective way to restore functional deficits following stroke in human and animal studies, but its underlying neural plasticity mechanism remains unknown. Accumulating evidence indicates that rehabilitation after stroke is closely associated with synaptic plasticity. We therefore investigated the impact of CIMT on synaptic plasticity in ipsilateral and contralateral brain of rats following stroke. Rats were subjected to 90 minutes of transient middle cerebral artery occlusion (MCAO). CIMT was performed from 7 days after stroke and lasted for two weeks. Modified Neurology Severity Score (mNSS) and the ladder rung walking task tests were conducted at 7,14 and 21 days after stroke. Golgi-Cox staining was used to observe the plasticity changes of dendrites and dendritic spines. The expression of glutamate receptors (GluR1, GluR2 and NR1) were examined by western blot. Our data suggest that the dendrites and dendritic spines are damaged to varying degrees in bilateral sensorimotor cortex and hippocampus after acute stroke. CIMT treatment enhances the plasticity of dendrites and dendritic spines in the ipsilateral and contralateral sensorimotor cortex, increases the expression of synaptic GluR2 in ipsilateral sensorimotor cortex, which may be mechanisms for CIMT to improve functional recovery after ischemic stroke.


Subject(s)
Hippocampus/physiology , Ischemic Stroke/rehabilitation , Neuronal Plasticity/physiology , Recovery of Function/physiology , Restraint, Physical/physiology , Sensorimotor Cortex/physiology , Animals , Dendrites/physiology , Exercise Therapy/methods , Hippocampus/cytology , Ischemic Stroke/physiopathology , Male , Rats , Rats, Sprague-Dawley , Restraint, Physical/methods , Sensorimotor Cortex/cytology
7.
Elife ; 92020 01 17.
Article in English | MEDLINE | ID: mdl-31951197

ABSTRACT

GABAergic interneurons can be subdivided into three subclasses: parvalbumin positive (PV), somatostatin positive (SOM) and serotonin positive neurons. With principal cells (PCs) they form complex networks. We examine PCs and PV responses in mouse anterior lateral motor cortex (ALM) and barrel cortex (S1) upon PV photostimulation in vivo. In ALM layer five and S1, the PV response is paradoxical: photoexcitation reduces their activity. This is not the case in ALM layer 2/3. We combine analytical calculations and numerical simulations to investigate how these results constrain the architecture. Two-population models cannot explain the results. Four-population networks with V1-like architecture account for the data in ALM layer 2/3 and layer 5. Our data in S1 can be explained if SOM neurons receive inputs only from PCs and PV neurons. In both four-population models, the paradoxical effect implies not too strong recurrent excitation. It is not evidence for stabilization by inhibition.


Subject(s)
GABAergic Neurons/physiology , Interneurons/physiology , Nerve Net/physiology , Optogenetics/methods , Sensorimotor Cortex/physiology , Animals , Female , Male , Mice , Sensorimotor Cortex/cytology
8.
J Neurosci ; 39(45): 8916-8928, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31541020

ABSTRACT

Our perceptual experience of sound depends on the integration of multiple sensory and cognitive domains, however the networks subserving this integration are unclear. Connections linking different cortical domains have been described, but we do not know the extent to which connections also exist between multiple cortical domains and subcortical structures. Retrograde tracing in adult male rats (Rattus norvegicus) revealed that the inferior colliculus, the auditory midbrain, receives dense descending projections not only, as previously established, from the auditory cortex, but also from the visual, somatosensory, motor, and prefrontal cortices. While all these descending connections are bilateral, those from sensory areas show a more pronounced ipsilateral dominance than those from motor and prefrontal cortices. Injections of anterograde tracers into the cortical areas identified by retrograde tracing confirmed those findings and revealed cortical fibers terminating in all three subdivisions of the inferior colliculus. Immunolabeling showed that cortical terminals target both GABAergic inhibitory, and putative glutamatergic excitatory neurons. These findings demonstrate that auditory perception and behavior are served by a network that includes extensive descending connections to the midbrain from sensory, behavioral, and executive cortices.SIGNIFICANCE STATEMENT Making sense of what we hear depends not only on the analysis of sound, but also on information from other senses together with the brain's predictions about the properties and significance of the sound. Previous work suggested that this interplay between the senses and the predictions from higher cognitive centers occurs within the cerebral cortex. By tracing neural connections in rat, we show that the inferior colliculus, the subcortical, midbrain center for hearing, receives extensive connections from areas of the cerebral cortex concerned with vision, touch, movement, and cognitive function, in addition to areas representing hearing. These findings demonstrate that wide-ranging cortical feedback operates at an earlier stage of the hearing pathway than previously recognized.


Subject(s)
Auditory Pathways/cytology , Mesencephalon/physiology , Sensorimotor Cortex/physiology , Animals , Auditory Pathways/physiology , Evoked Potentials, Auditory, Brain Stem , Male , Mesencephalon/cytology , Neuroanatomical Tract-Tracing Techniques , Neurons/classification , Neurons/physiology , Rats , Sensorimotor Cortex/cytology
9.
IEEE Trans Biomed Eng ; 66(5): 1372-1379, 2019 05.
Article in English | MEDLINE | ID: mdl-30281433

ABSTRACT

OBJECTIVE: Directly modulating targeted cortical function, brain stimulation provides promising techniques for stroke intervention. However, the cellular level mechanisms underlying preserved neurovascular function remains unclear. Optogenetics provides a cell-specific approach to modulate the neuronal activity. This study aims to investigate whether the exclusive excitation of sensorimotor neurons using optogenetics in an acute stroke can protect neurovascular function and reduce infarct size. METHODS: Sensorimotor neurons were transfected with channelrhodopsin-2 and excited by a 473-nm laser. The photothrombotic stroke was induced in the ipsilateral parietal cortex and the targeted area for modulation remained intact. Optogenetic stimulation was carried out within 2 h after stroke in the modulation group. Using a laser speckle contrast imaging technique, we measured the cerebral blood flow at baseline, 0, 2, and 24 h after stroke, and analyzed the hemodynamic changes in both modulation (n = 12) and control (n = 9) groups. Also, the neurovascular response was measured 24 h after stroke. RESULTS: We found that neuronal-specific excitation of an ipsilesional sensorimotor cortex at an acute stage could reduce the expansion of an ischemic area and promote the neurovascular response at 24 h after stroke. The histological and behavioral results consolidate the protective effects of optogenetic-guided neuronal modulation in acute stroke. CONCLUSION: Excitatory stimulation of ipsilesional sensorimotor neurons in an acute stroke could protect neurovascular function and reduces the expansion of ischemic area. SIGNIFICANCE: For the first time, this work demonstrates that specific neuronal modulation in the acute stroke is neuroprotective and reduces the infarct size.


Subject(s)
Brain Ischemia , Optical Imaging/methods , Optogenetics/methods , Sensorimotor Cortex , Stroke , Animals , Brain/blood supply , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Brain Ischemia/diagnostic imaging , Brain Ischemia/physiopathology , Cerebrovascular Circulation/physiology , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Male , Neuroprotection , Rats , Rats, Sprague-Dawley , Sensorimotor Cortex/cytology , Sensorimotor Cortex/metabolism , Sensorimotor Cortex/physiology , Stroke/diagnostic imaging , Stroke/physiopathology
10.
F1000Res ; 72018.
Article in English | MEDLINE | ID: mdl-30109024

ABSTRACT

The cerebellum is the focus of an emergent series of debates because its circuitry is now thought to encode an unexpected level of functional diversity. The flexibility that is built into the cerebellar circuit allows it to participate not only in motor behaviors involving coordination, learning, and balance but also in non-motor behaviors such as cognition, emotion, and spatial navigation. In accordance with the cerebellum's diverse functional roles, when these circuits are altered because of disease or injury, the behavioral outcomes range from neurological conditions such as ataxia, dystonia, and tremor to neuropsychiatric conditions, including autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder. Two major questions arise: what types of cells mediate these normal and abnormal processes, and how might they accomplish these seemingly disparate functions? The tiny but numerous cerebellar granule cells may hold answers to these questions. Here, we discuss recent advances in understanding how the granule cell lineage arises in the embryo and how a stem cell niche that replenishes granule cells influences wiring when the postnatal cerebellum is injured. We discuss how precisely coordinated developmental programs, gene expression patterns, and epigenetic mechanisms determine the formation of synapses that integrate multi-modal inputs onto single granule cells. These data lead us to consider how granule cell synaptic heterogeneity promotes sensorimotor and non-sensorimotor signals in behaving animals. We discuss evidence that granule cells use ultrafast neurotransmission that can operate at kilohertz frequencies. Together, these data inspire an emerging view for how granule cells contribute to the shaping of complex animal behaviors.


Subject(s)
Cerebellum/cytology , Neurons/cytology , Animals , Cerebellum/embryology , Embryonic Development , Humans , Sensorimotor Cortex/cytology
11.
J Neurophysiol ; 120(1): 149-161, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29589813

ABSTRACT

Optogenetic manipulations are widely used for investigating the contribution of genetically identified cell types to behavior. Simultaneous electrophysiological recordings are less common, although they are critical for characterizing the specific impact of optogenetic manipulations on neural circuits in vivo. This is at least in part because combining photostimulation with large-scale electrophysiological recordings remains technically challenging, which also poses a limitation for performing extracellular identification experiments. Currently available interfaces that guide light of the appropriate wavelength into the brain combined with an electrophysiological modality suffer from various drawbacks such as a bulky size, low spatial resolution, heat dissipation, or photovoltaic artifacts. To address these challenges, we have designed and fabricated an integrated ultrathin neural interface with 12 optical outputs and 24 electrodes. We used the device to measure the effect of localized stimulation in the anterior olfactory cortex, a paleocortical structure involved in olfactory processing. Our experiments in adult mice demonstrate that because of its small dimensions, our novel tool causes far less tissue damage than commercially available devices. Moreover, optical stimulation and recording can be performed simultaneously, with no measurable electrical artifact during optical stimulation. Importantly, optical stimulation can be confined to small volumes with approximately single-cortical layer thickness. Finally, we find that even highly localized optical stimulation causes inhibition at more distant sites. NEW & NOTEWORTHY In this study, we establish a novel tool for simultaneous extracellular recording and optogenetic photostimulation. Because the device is built using established microchip technology, it can be fabricated with high reproducibility and reliability. We further show that even very localized stimulation affects neural firing far beyond the stimulation site. This demonstrates the difficulty in predicting circuit-level effects of optogenetic manipulations and highlights the importance of closely monitoring neural activity in optogenetic experiments.


Subject(s)
Brain-Computer Interfaces , Evoked Potentials , Neurons/physiology , Optogenetics/methods , Sensorimotor Cortex/physiology , Animals , Electrodes , Female , Mice , Mice, Inbred C57BL , Optogenetics/instrumentation , Sensorimotor Cortex/cytology
12.
J Neurophysiol ; 120(1): 226-238, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29589815

ABSTRACT

Spike-field coherence (SFC) is widely used to assess cortico-cortical interactions during sensorimotor behavioral tasks by measuring the consistency of the relative phases between the spike train of a neuron and the concurrent local field potentials (LFPs). Interpretations of SFC as a measure of functional connectivity are complicated by theoretical work suggesting that estimates of SFC depend on overall neuronal activity. We evaluated the dependence of SFC on neuronal firing rates, LFP power, and behavior in the primary motor (MIo) and primary somatosensory (SIo) areas of the orofacial sensorimotor cortex of monkeys ( Macaca mulatta) during performance of a tongue-protrusion task. Although we occasionally observed monotonically increasing linear relationships between coherence and firing rate, we most often found highly complex, nonmonotonic relationships in both SIo and MIo and sometimes even found that coherence decreased with increasing firing rate. The lack of linear relationships was also true for both LFP power and tongue-protrusive force. Moreover, the ratio between maximal firing rate and the firing rate at peak coherence deviated significantly from unity, indicating that MIo and SIo neurons achieved maximal SFC at a submaximal level of spiking. Overall, these results point to complex relationships of SFC to firing rates, LFP power, and behavior during sensorimotor cortico-cortical interactions: coherence is a measure of functional connectivity whose magnitude is not a mere monotonic reflection of changes in firing rate, LFP power, or the relevantly controlled behavioral parameter. NEW & NOTEWORTHY The concern that estimates of spike-field coherence depend on the firing rates of single neurons has influenced analytical methods employed by experimental studies investigating the functional interactions between cortical areas. Our study shows that the overwhelming majority of the estimated spike-field coherence exhibited complex relations with firing rates of neurons in the orofacial sensorimotor cortex. The lack of monotonic relations was also evident after testing the influence of local field potential power and force on spike-field coherence.


Subject(s)
Action Potentials , Neurons/physiology , Sensorimotor Cortex/physiology , Animals , Cortical Excitability , Macaca mulatta , Male , Sensorimotor Cortex/cytology , Tongue/innervation , Tongue/physiology
13.
J Neurophysiol ; 119(6): 2307-2333, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29537917

ABSTRACT

Interactions between the body and the environment occur within the peripersonal space (PPS), the space immediately surrounding the body. The PPS is encoded by multisensory (audio-tactile, visual-tactile) neurons that possess receptive fields (RFs) anchored on the body and restricted in depth. The extension in depth of PPS neurons' RFs has been documented to change dynamically as a function of the velocity of incoming stimuli, but the underlying neural mechanisms are still unknown. Here, by integrating a psychophysical approach with neural network modeling, we propose a mechanistic explanation behind this inherent dynamic property of PPS. We psychophysically mapped the size of participant's peri-face and peri-trunk space as a function of the velocity of task-irrelevant approaching auditory stimuli. Findings indicated that the peri-trunk space was larger than the peri-face space, and, importantly, as for the neurophysiological delineation of RFs, both of these representations enlarged as the velocity of incoming sound increased. We propose a neural network model to mechanistically interpret these findings: the network includes reciprocal connections between unisensory areas and higher order multisensory neurons, and it implements neural adaptation to persistent stimulation as a mechanism sensitive to stimulus velocity. The network was capable of replicating the behavioral observations of PPS size remapping and relates behavioral proxies of PPS size to neurophysiological measures of multisensory neurons' RF size. We propose that a biologically plausible neural adaptation mechanism embedded within the network encoding for PPS can be responsible for the dynamic alterations in PPS size as a function of the velocity of incoming stimuli. NEW & NOTEWORTHY Interactions between body and environment occur within the peripersonal space (PPS). PPS neurons are highly dynamic, adapting online as a function of body-object interactions. The mechanistic underpinning PPS dynamic properties are unexplained. We demonstrate with a psychophysical approach that PPS enlarges as incoming stimulus velocity increases, efficiently preventing contacts with faster approaching objects. We present a neurocomputational model of multisensory PPS implementing neural adaptation to persistent stimulation to propose a neurophysiological mechanism underlying this effect.


Subject(s)
Adaptation, Physiological , Models, Neurological , Neurons/physiology , Perception , Personal Space , Adult , Female , Humans , Male , Sensorimotor Cortex/cytology , Sensorimotor Cortex/physiology , Visual Fields
14.
Cereb Cortex ; 27(12): 5716-5726, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29028940

ABSTRACT

To understand how information from different cortical areas is integrated and processed through the cortico-basal ganglia pathways, we used optogenetics to systematically stimulate the sensorimotor cortex and examined basal ganglia activity. We utilized Thy1-ChR2-YFP transgenic mice, in which channelrhodopsin 2 is robustly expressed in layer V pyramidal neurons. We applied light spots to the sensorimotor cortex in a grid pattern and examined neuronal responses in the globus pallidus (GP) and entopeduncular nucleus (EPN), which are the relay and output nuclei of the basal ganglia, respectively. Light stimulation typically induced a triphasic response composed of early excitation, inhibition, and late excitation in GP/EPN neurons. Other response patterns lacking 1 or 2 of the components were also observed. The distribution of the cortical sites whose stimulation induced a triphasic response was confined, whereas stimulation of the large surrounding areas induced early and late excitation without inhibition. Our results suggest that cortical inputs to the GP/EPN are organized in a "local inhibitory and global excitatory" manner. Such organization seems to be the neuronal basis for information processing through the cortico-basal ganglia pathways, that is, releasing and terminating necessary information at an appropriate timing, while simultaneously suppressing other unnecessary information.


Subject(s)
Basal Ganglia/physiology , Pyramidal Cells/physiology , Sensorimotor Cortex/physiology , Action Potentials , Animals , Basal Ganglia/cytology , Brain Mapping , Electric Stimulation , Female , Male , Mice, Transgenic , Neural Inhibition/physiology , Neural Pathways/cytology , Neural Pathways/physiology , Optogenetics , Photic Stimulation , Pyramidal Cells/cytology , Sensorimotor Cortex/cytology , Signal Processing, Computer-Assisted
15.
J Neurophysiol ; 118(6): 3215-3229, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28931615

ABSTRACT

Mirror neurons (MirNs) are sensorimotor neurons that fire both when an animal performs a goal-directed action and when the same animal observes another agent performing the same or a similar transitive action. It has been claimed that the observation of intransitive actions does not activate MirNs in a monkey's brain. Prompted by recent evidence indicating that the discharge of MirNs is modulated also by non-object-directed actions, we investigated thoroughly the efficacy of intransitive actions to trigger MirNs' discharge. Using representational similarity analysis, we also studied whether the elements constituting the visual scene presented to the monkey during the observation of actions (both transitive and intransitive) are represented in the discharge of MirNs. For this purpose, the moving hand was modeled by its kinematics and the object by features of its geometry. We found that MirNs respond to the observation of both transitive and intransitive actions and that the discharge differences evoked by the observation of object- and non-object-directed actions are correlated more with the kinematic differences of these actions than with the differences of the objects' features. These findings support the view that observed action kinematics contribute to action mirroring.NEW & NOTEWORTHY Mirror neurons in the monkey brain are thought to respond exclusively to the observation of object-directed actions. Here, we show that mirror neurons also respond to the observation of intransitive actions and that the kinematics of the observed movements are represented in their discharge. This finding supports the view that mirror neurons provide also a kinematics-based representation of actions.


Subject(s)
Movement , Neurons/physiology , Sensorimotor Cortex/physiology , Animals , Biomechanical Phenomena , Evoked Potentials, Motor , Female , Hand/physiology , Macaca mulatta , Psychomotor Performance , Sensorimotor Cortex/cytology
16.
Neuroscience ; 358: 300-315, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28687313

ABSTRACT

The vast majority of functional studies investigating mirror neurons (MNs) explored their properties in relation to hand actions, and very few investigated how MNs respond to mouth actions or communicative gestures. Since hand and mouth MNs were recorded in two partially overlapping sectors of the ventral precentral cortex of the macaque monkey, there is a general assumption that they share a same neuroanatomical network, with the parietal cortex as a main source of visual information. In the current review, we challenge this perspective and describe the connectivity pattern of mouth MN sector. The mouth MNs F5/opercular region is connected with premotor, parietal areas mostly related to the somatosensory and motor representation of the face/mouth, and with area PrCO, involved in processing gustatory and somatosensory intraoral input. Unlike hand MNs, mouth MNs do not receive their visual input from parietal regions. Such information related to face/communicative behaviors could come from the ventrolateral prefrontal cortex. Further strong connections derive from limbic structures involved in encoding emotional facial expressions and motivational/reward processing. These brain structures include the anterior cingulate cortex, the anterior and mid-dorsal insula, orbitofrontal cortex and the basolateral amygdala. The mirror mechanism is therefore composed and supported by at least two different anatomical pathways: one is concerned with sensorimotor transformation in relation to reaching and hand grasping within the traditional parietal-premotor circuits; the second one is linked to the mouth/face motor control and is connected with limbic structures, involved in communication/emotions and reward processing.


Subject(s)
Face/innervation , Hand/innervation , Limbic System/cytology , Mirror Neurons/physiology , Neural Pathways/physiology , Sensorimotor Cortex/cytology , Animals , Humans , Limbic System/physiology , Sensorimotor Cortex/physiology
17.
J Neurophysiol ; 118(3): 1472-1487, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28592690

ABSTRACT

Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate.NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also demonstrate, for the first time in humans, a mechanism through which the premotor and sensory cortices are functionally connected to the STN.


Subject(s)
Movement , Neurons/physiology , Sensorimotor Cortex/physiology , Subthalamic Nucleus/physiology , Aged , Beta Rhythm , Cortical Synchronization , Female , Gamma Rhythm , Humans , Male , Middle Aged , Sensorimotor Cortex/cytology , Subthalamic Nucleus/cytology
18.
Curr Biol ; 27(10): 1521-1528.e4, 2017 May 22.
Article in English | MEDLINE | ID: mdl-28502656

ABSTRACT

Neuronal stem cell lineages are the fundamental developmental units of the brain, and neuronal circuits are the fundamental functional units of the brain. Determining lineage-circuitry relationships is essential for deciphering the developmental logic of circuit assembly. While the spatial distribution of lineage-related neurons has been investigated in a few brain regions [1-9], an important, but unaddressed question is whether temporal information that diversifies neuronal progeny within a single lineage also impacts circuit assembly. Circuits in the sensorimotor system (e.g., spinal cord) are thought to be assembled sequentially [10-14], making this an ideal brain region for investigating the circuit-level impact of temporal patterning within a lineage. Here, we use intersectional genetics, optogenetics, high-throughput behavioral analysis, single-neuron labeling, connectomics, and calcium imaging to determine how a set of bona fide lineage-related interneurons contribute to sensorimotor circuitry in the Drosophila larva. We show that Even-skipped lateral interneurons (ELs) are sensory processing interneurons. Late-born ELs contribute to a proprioceptive body posture circuit, whereas early-born ELs contribute to a mechanosensitive escape circuit. These data support a model in which a single neuronal stem cell can produce a large number of interneurons with similar functional capacity that are distributed into different circuits based on birth timing. In summary, these data establish a link between temporal specification of neuronal identity and circuit assembly at the single-cell level.


Subject(s)
Cell Lineage , Drosophila melanogaster/cytology , Drosophila melanogaster/growth & development , Neurons/cytology , Sensorimotor Cortex/metabolism , Animals , Behavior, Animal , Drosophila melanogaster/metabolism , Embryo, Nonmammalian/cytology , Larva/cytology , Larva/metabolism , Mechanotransduction, Cellular , Neurons/metabolism , Sensorimotor Cortex/cytology
19.
Curr Biol ; 27(9): 1288-1302, 2017 May 08.
Article in English | MEDLINE | ID: mdl-28434864

ABSTRACT

A fundamental question in neurobiology is how animals integrate external sensory information from their environment with self-generated motor and sensory signals in order to guide motor behavior and adaptation. The cerebellum is a vertebrate hindbrain region where all of these signals converge and that has been implicated in the acquisition, coordination, and calibration of motor activity. Theories of cerebellar function postulate that granule cells encode a variety of sensorimotor signals in the cerebellar input layer. These models suggest that representations should be high-dimensional, sparse, and temporally patterned. However, in vivo physiological recordings addressing these points have been limited and in particular have been unable to measure the spatiotemporal dynamics of population-wide activity. In this study, we use both calcium imaging and electrophysiology in the awake larval zebrafish to investigate how cerebellar granule cells encode three types of sensory stimuli as well as stimulus-evoked motor behaviors. We find that a large fraction of all granule cells are active in response to these stimuli, such that representations are not sparse at the population level. We find instead that most responses belong to only one of a small number of distinct activity profiles, which are temporally homogeneous and anatomically clustered. We furthermore identify granule cells that are active during swimming behaviors and others that are multimodal for sensory and motor variables. When we pharmacologically change the threshold of a stimulus-evoked behavior, we observe correlated changes in these representations. Finally, electrophysiological data show no evidence for temporal patterning in the coding of different stimulus durations.


Subject(s)
Cerebellum/cytology , Cerebellum/physiology , Cytoplasmic Granules/physiology , Motor Activity/physiology , Sensorimotor Cortex/physiology , Zebrafish/physiology , Animals , Calcium/metabolism , Larva/cytology , Larva/physiology , Neurons/cytology , Neurons/physiology , Sensorimotor Cortex/cytology , Zebrafish/growth & development
20.
BMC Neurosci ; 18(1): 31, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28279169

ABSTRACT

BACKGROUND: Increased motor activity or social interactions through enriched environment are strong stimulators of grey and white matter plasticity in the adult rodent brain. In the present study we evaluated whether specific reaching training of the dominant forelimb (RT) and stimulation of unspecific motor activity through enriched environment (EE) influence the generation of distinct oligodendrocyte subpopulations in the sensorimotor cortex and corpus callosum of the adult rat brain. Animals were placed in three different housing conditions: one group was transferred to an EE, a second group received daily RT, whereas a third group remained in the standard cage. Bromodeoxyuridine (BrdU) was applied at days 2-6 after start of experiments and animals were allowed to survive for 10 and 42 days. RESULTS: Enriched environment and daily reaching training of the dominant forelimb significantly increased the number of newly differentiated GSTπ+ oligodendrocytes at day 10 and newly differentiated CNPase+ oligodendrocytes in the sensorimotor cortex at day 42. The myelin level as measured by CNPase expression was increased in the frontal cortex at day 42. Distribution of newly differentiated NG2+ subpopulations changed between 10 and 42 days with an increase of GSTπ+ subtypes and a decrease of NG2+ cells in the sensorimotor cortex and corpus callosum. Analysis of neuronal marker doublecortin (DCX) showed that more than half of NG2+ cells express DCX in the cortex. The number of new DCX+NG2+ cells was reduced by EE at day 10. CONCLUSIONS: Our results indicate for the first time that specific and unspecific motor training conditions differentially alter the process of differentiation from oligodendrocyte subpopulations, in particular NG2+DCX+ cells, in the sensorimotor cortex and corpus callosum.


Subject(s)
Corpus Callosum/physiology , Housing, Animal , Motor Skills/physiology , Oligodendroglia/physiology , Practice, Psychological , Sensorimotor Cortex/physiology , 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism , Animals , Antigens/metabolism , Bromodeoxyuridine , Corpus Callosum/cytology , Doublecortin Domain Proteins , Doublecortin Protein , Forelimb/physiology , Frontal Lobe/cytology , Frontal Lobe/physiology , Male , Microtubule-Associated Proteins/metabolism , Models, Animal , Neurogenesis/physiology , Neuropeptides/metabolism , Oligodendroglia/cytology , Proteoglycans/metabolism , Random Allocation , Rats, Wistar , Reaction Time , Sensorimotor Cortex/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...