Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.977
Filter
1.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38777611

ABSTRACT

Homeostatic plasticity stabilizes firing rates of neurons, but the pressure to restore low activity rates can significantly alter synaptic and cellular properties. Most previous studies of homeostatic readjustment to complete activity silencing in rodent forebrain have examined changes after 2 d of deprivation, but it is known that longer periods of deprivation can produce adverse effects. To better understand the mechanisms underlying these effects and to address how presynaptic as well as postsynaptic compartments change during homeostatic plasticity, we subjected mouse cortical slice cultures to a more severe 5 d deprivation paradigm. We developed and validated a computational framework to measure the number and morphology of presynaptic and postsynaptic compartments from super-resolution light microscopy images of dense cortical tissue. Using these tools, combined with electrophysiological miniature excitatory postsynaptic current measurements, and synaptic imaging at the electron microscopy level, we assessed the functional and morphological results of prolonged deprivation. Excitatory synapses were strengthened both presynaptically and postsynaptically. Surprisingly, we also observed a decrement in the density of excitatory synapses, both as measured from colocalized staining of pre- and postsynaptic proteins in tissue and from the number of dendritic spines. Overall, our results suggest that cortical networks deprived of activity progressively move toward a smaller population of stronger synapses.


Subject(s)
Excitatory Postsynaptic Potentials , Neocortex , Neuronal Plasticity , Synapses , Animals , Neuronal Plasticity/physiology , Synapses/physiology , Neocortex/physiology , Excitatory Postsynaptic Potentials/physiology , Mice, Inbred C57BL , Sensory Deprivation/physiology , Male , Mice , Female , Dendritic Spines/physiology
2.
Science ; 384(6696): 652-660, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38723089

ABSTRACT

Nasal chemosensation is considered the evolutionarily oldest mammalian sense and, together with somatosensation, is crucial for neonatal well-being before auditory and visual pathways start engaging the brain. Using anatomical and functional approaches in mice, we reveal that odor-driven activity propagates to a large part of the cortex during the first postnatal week and enhances whisker-evoked activation of primary whisker somatosensory cortex (wS1). This effect disappears in adult animals, in line with the loss of excitatory connectivity from olfactory cortex to wS1. By performing neonatal odor deprivation, followed by electrophysiological and behavioral work in adult animals, we identify a key transient regulation of nasal chemosensory information necessary for the development of wS1 sensory-driven dynamics and somatosensation. Our work uncovers a cross-modal critical window for nasal chemosensation-dependent somatosensory functional maturation.


Subject(s)
Nose , Olfactory Cortex , Somatosensory Cortex , Animals , Mice , Animals, Newborn , Mice, Inbred C57BL , Nose/physiology , Nose/anatomy & histology , Odorants , Olfactory Cortex/growth & development , Olfactory Cortex/physiology , Olfactory Cortex/ultrastructure , Sensory Deprivation/physiology , Smell/physiology , Somatosensory Cortex/growth & development , Somatosensory Cortex/physiology , Somatosensory Cortex/ultrastructure , Vibrissae/physiology
3.
NeuroRehabilitation ; 54(3): 435-448, 2024.
Article in English | MEDLINE | ID: mdl-38607770

ABSTRACT

BACKGROUND: Patients with stroke depend on visual information due to balance deficits. Therefore, it is believed that appropriate visual deprivation training could have an impact on improving balance abilities. OBJECTIVE: The purpose of this study was to compare the effects of balance training performed in visual deprivation and feedback conditions on balance in stroke survivors. METHODS: The 39 participants were randomly assigned to either the Visual Deprivation Group (VDG; n = 13), the Visual Feedback Group (VFG; n = 13), or the Control Group (CG; n = 13). The training sessions were conducted five times a week for three weeks. Participants completed the Berg Balance Scale (BBS), Timed Up and Go test (TUG), Four Square Step Test (FSST), and Limit of Stability (LOS) assessments. RESULTS: The VDG showed significant improvements in BBS, FSST, TUG, and LOS. In VFG, significant improvements were observed in BBS and TUG. There were statistically significant differences among the groups in all variables related to balance. CONCLUSION: The results of this study suggest that balance training under visual deprivation is effective in improving static and dynamic balance and gait in patients with stroke. In other words, patients with stroke need to reduce their over-reliance on visual information.


Subject(s)
Feedback, Sensory , Postural Balance , Stroke Rehabilitation , Stroke , Humans , Postural Balance/physiology , Male , Female , Middle Aged , Stroke Rehabilitation/methods , Stroke/physiopathology , Stroke/complications , Feedback, Sensory/physiology , Aged , Sensory Deprivation/physiology , Adult , Treatment Outcome , Exercise Therapy/methods
4.
J Neurosci ; 44(19)2024 May 08.
Article in English | MEDLINE | ID: mdl-38538145

ABSTRACT

A classic example of experience-dependent plasticity is ocular dominance (OD) shift, in which the responsiveness of neurons in the visual cortex is profoundly altered following monocular deprivation (MD). It has been postulated that OD shifts also modify global neural networks, but such effects have never been demonstrated. Here, we use wide-field fluorescence optical imaging (WFOI) to characterize calcium-based resting-state functional connectivity during acute (3 d) MD in female and male mice with genetically encoded calcium indicators (Thy1-GCaMP6f). We first establish the fundamental performance of WFOI by computing signal to noise properties throughout our data processing pipeline. Following MD, we found that Δ band (0.4-4 Hz) GCaMP6 activity in the deprived visual cortex decreased, suggesting that excitatory activity in this region was reduced by MD. In addition, interhemispheric visual homotopic functional connectivity decreased following MD, which was accompanied by a reduction in parietal and motor homotopic connectivity. Finally, we observed enhanced internetwork connectivity between the visual and parietal cortex that peaked 2 d after MD. Together, these findings support the hypothesis that early MD induces dynamic reorganization of disparate functional networks including the association cortices.


Subject(s)
Mice, Inbred C57BL , Nerve Net , Sensory Deprivation , Visual Cortex , Animals , Mice , Male , Female , Sensory Deprivation/physiology , Visual Cortex/physiology , Nerve Net/physiology , Neuronal Plasticity/physiology , Dominance, Ocular/physiology , Critical Period, Psychological , Visual Pathways/physiology
5.
Ophthalmic Physiol Opt ; 44(3): 564-575, 2024 May.
Article in English | MEDLINE | ID: mdl-38317572

ABSTRACT

Short-term monocular deprivation (MD) shifts sensory eye balance in favour of the previously deprived eye. The effect of MD on eye balance is significant but brief in adult humans. Recently, researchers and clinicians have attempted to implement MD in clinical settings for adults with impaired binocular vision. Although the effect of MD has been studied in detail in single-session protocols, what is not known is whether the effect of MD on eye balance deteriorates after repeated periods of MD (termed 'perceptual deterioration'). An answer to this question is relevant for two reasons. Firstly, the effect of MD (i.e., dose-response) should not decrease with repeated use if MD is to be used therapeutically (e.g., daily for weeks). Second, it bears upon the question of whether the neural basis of the effects of MD and contrast adaptation, a closely related phenomenon, is the same. The sensory change from contrast adaptation depends on recent experience. If the observer has recently experienced the same adaptation multiple times for consecutive days, then the adaptation effect will be smaller because contrast adaptation exhibits perceptual deterioration, so it is of interest to know if the effects of MD follow suit. This study measured the effect of 2-h MD for seven consecutive days on binocular balance of 15 normally sighted adults. We found that the shift in eye balance from MD stayed consistent, showing no signs of deterioration after subjects experienced multiple periods of MD. This finding shows no loss of effectiveness of repeated daily doses of MD if used therapeutically to rebalance binocular vision in otherwise normal individuals. Furthermore, ocular dominance plasticity, which is the basis of the effects of short-term MD, does not seem to share the property of 'perceptual deterioration' with contrast adaptation, suggesting different neural bases for these two related phenomena.


Subject(s)
Visual Cortex , Adult , Humans , Visual Cortex/physiology , Sensory Deprivation/physiology , Vision, Ocular , Vision, Binocular/physiology , Dominance, Ocular , Vision, Monocular/physiology
6.
eNeuro ; 11(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38195533

ABSTRACT

Activity-dependent neuronal plasticity is crucial for animals to adapt to dynamic sensory environments. Traditionally, it has been investigated using deprivation approaches in animal models primarily in sensory cortices. Nevertheless, emerging evidence emphasizes its significance in sensory organs and in subcortical regions where cranial nerves relay information to the brain. Additionally, critical questions started to arise. Do different sensory modalities share common cellular mechanisms for deprivation-induced plasticity at these central entry points? Does the deprivation duration correlate with specific plasticity mechanisms? This study systematically reviews and meta-analyzes research papers that investigated visual, auditory, or olfactory deprivation in rodents of both sexes. It examines the consequences of sensory deprivation in homologous regions at the first central synapse following cranial nerve transmission (vision - lateral geniculate nucleus and superior colliculus; audition - ventral and dorsal cochlear nucleus; olfaction - olfactory bulb). The systematic search yielded 91 papers (39 vision, 22 audition, 30 olfaction), revealing substantial heterogeneity in publication trends, experimental methods, measures of plasticity, and reporting across the sensory modalities. Despite these differences, commonalities emerged when correlating plasticity mechanisms with the duration of sensory deprivation. Short-term deprivation (up to 1 d) reduced activity and increased disinhibition, medium-term deprivation (1 d to a week) involved glial changes and synaptic remodeling, and long-term deprivation (over a week) primarily led to structural alterations. These findings underscore the importance of standardizing methodologies and reporting practices. Additionally, they highlight the value of cross-modal synthesis for understanding how the nervous system, including peripheral, precortical, and cortical areas, respond to and compensate for sensory inputs loss.


Subject(s)
Hearing , Rodentia , Male , Animals , Female , Synaptic Transmission/physiology , Synapses/physiology , Vision, Ocular , Neuronal Plasticity/physiology , Sensory Deprivation/physiology
7.
Eur J Ophthalmol ; 34(2): 408-418, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37437134

ABSTRACT

OBJECTIVE: The expression of early growth responsive gene-1 (Egr-1) in the lateral geniculate body in the normal kittens and those affected with amblyopia caused by monocular visual deprivation was compared to explore the potential significance of Egr-1 in the pathogenesis of amblyopia. METHODS: A total of 30 healthy kittens were equally and randomly divided into the control (n = 15) and the deprivation group (n = 15). The kittens were raised in natural light and the right eyes of the deprived kittens were covered with a black opaque covering. Pattern visual evoked potential (PVEP) was measured before and 1, 3, and 5 weeks after covering. Five kittens from each group were randomly selected and euthanized with 2% sodium pentobarbital (100 mg/kg) during the 1st, 3rd and 5th week after covering. The expression of Egr-1 in the lateral geniculate body in the two groups was compared by performing immunohistochemistry and in situ hybridization. RESULTS: After three weeks of covering, PVEP detection indicated that the P100 wave latency in the deprivation group was significantly higher than that in the control group (P < 0.05), whereas the amplitude decreased markedly (P < 0.05). The number of the positive cells (P < 0.05) and mean optical density (P < 0.05) of Egr-1 protein expression in the lateral geniculate body of the deprivation group were found to be substantially lower in comparison to the normal group, as well as the number (P < 0.05) and mean optical density of Egr-1 mRNA-positive cells (P < 0.05). However, with increase of age, positive expression of Egr-1 in the control group showed an upward trend (P < 0.05), but this trend was not noted in the deprivation group (P > 0.05). CONCLUSIONS: Monocular form deprivation can lead to substantially decreased expressions of Egr-1 protein and mRNA in the lateral geniculate body, which in turn can affect the normal expression of neuronal functions in the lateral geniculate body, thereby promoting the occurrence and development of amblyopia.


Subject(s)
Amblyopia , Animals , Female , Cats , Amblyopia/genetics , Evoked Potentials, Visual , Geniculate Bodies/metabolism , Geniculate Bodies/pathology , Neurons/metabolism , RNA, Messenger/genetics , Sensory Deprivation/physiology
8.
Curr Biol ; 33(20): R1038-R1040, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37875073

ABSTRACT

Primary visual cortex (V1) retains a form of plasticity in adult humans: a brief period of monocular deprivation induces an enhanced response to the deprived eye, which can stabilize into a consolidated plastic change1,2 despite unaltered thalamic input3. This form of homeostatic plasticity in adults is thought to act through neuronal competition between the representations of the two eyes, which are still separate in primary visual cortex4,5. During monocular occlusion, neurons of the deprived eye are thought to increase response gain given the absence of visual input, leading to the post-deprivation enhancement. If the decrease of reliability of the monocular response is crucial to establish homeostatic plasticity, this could be induced in several different ways. There is increasing evidence that V1 processing is affected by voluntary action, allowing it to take into account the visual effects of self-motion6, important for efficient active vision7. Here we asked whether ocular dominance homeostatic plasticity could be elicited without degrading the quality of monocular visual images but simply by altering their role in visuomotor control by introducing a visual delay in one eye while participants actively performed a visuomotor task; this causes a discrepancy between what the subject sees and what he/she expects to see. Our results show that homeostatic plasticity is gated by the consistency between the monocular visual inputs and a person's actions, suggesting that action not only shapes visual processing but may also be essential for plasticity in adults.


Subject(s)
Dominance, Ocular , Visual Cortex , Female , Humans , Adult , Reproducibility of Results , Vision, Monocular/physiology , Visual Cortex/physiology , Neuronal Plasticity/physiology , Sensory Deprivation/physiology
9.
J Physiol ; 601(18): 4105-4120, 2023 09.
Article in English | MEDLINE | ID: mdl-37573529

ABSTRACT

An interlude of dark exposure for about 1 week is known to shift excitatory/inhibitory (E/I) balance of the mammalian visual cortex, promoting plasticity and accelerating visual recovery in animals that have experienced cortical lesions during development. However, the translational impact of our understanding of dark exposure from animal studies to humans remains elusive. Here, we used magnetic resonance spectroscopy as a probe for E/I balance in the primary visual cortex (V1) to determine the effect of 60 min of dark exposure, and measured binocular combination as a behavioural assay to assess visual plasticity in 14 normally sighted human adults. To induce neuroplastic changes in the observers, we introduced 60 min of monocular deprivation, which is known to temporarily shift sensory eye balance in favour of the previously deprived eye. We report that prior dark exposure for 60 min strengthens local excitability in V1 and boosts visual plasticity in normal adults. However, we show that it does not promote plasticity in amblyopic adults. Nevertheless, our findings are surprising, given the fact that the interlude is very brief. Interestingly, we find that the increased concentration of the excitatory neurotransmitter is not strongly correlated with the enhanced functional plasticity. Instead, the absolute degree of change in its concentration is related to the boost, suggesting that the dichotomy of cortical excitation and inhibition might not explain the physiological basis of plasticity in humans. We present the first evidence that an environmental manipulation that shifts cortical E/I balance can also act as a metaplastic facilitator for visual plasticity in humans. KEY POINTS: A brief interlude (60 min) of dark exposure increased the local concentration of glutamine/glutamate but not that of GABA in the visual cortex of adult humans. After dark exposure, the degree of the shift in sensory eye dominance in favour of the previously deprived eye from short-term monocular deprivation was larger than that from only monocular deprivation. The neurochemical and behavioural measures were associated: the magnitude of the shift in the concentration of glutamine/glutamate was correlated with the boost in perceptual plasticity after dark exposure. Surprisingly, the increase in the concentration of glutamine/glutamate was not correlated with the perceptual boost after dark exposure, suggesting that the physiological mechanism of how E/I balance regulates plasticity is not deterministic. In other words, an increased excitation did not unilaterally promote plasticity.


Subject(s)
Glutamine , Visual Cortex , Animals , Humans , Adult , Visual Cortex/physiology , Dominance, Ocular , Neuronal Plasticity/physiology , Sensory Deprivation/physiology , Mammals
10.
eNeuro ; 10(7)2023 Jul.
Article in English | MEDLINE | ID: mdl-37414551

ABSTRACT

Neuroplasticity is maximal during development and declines in adulthood, especially for sensory cortices. On the other hand, the motor and prefrontal cortices retain plasticity throughout the lifespan. This difference has led to a modular view of plasticity in which different brain regions have their own plasticity mechanisms that do not depend or translate on others. Recent evidence shows that visual and motor plasticity share common neural mechanisms (e.g., GABAergic inhibition), indicating a possible link between these different forms of plasticity, however, the interaction between visual and motor plasticity has never been tested directly. Here, we show that when visual and motor plasticity are elicited at the same time in adult humans, visual plasticity is impaired, while motor plasticity is spared. Moreover, simultaneous activation of working memory and visual plasticity also leads to impairment in visual plasticity. These unilateral interactions between visual, working memory, and motor plasticity demonstrate a clear link between these three forms of plasticity. We conclude that local neuroplasticity in separate systems might be regulated globally, to preserve overall homeostasis in the brain.


Subject(s)
Dominance, Ocular , Sensory Deprivation , Humans , Adult , Sensory Deprivation/physiology , Inhibition, Psychological , Brain , Neuronal Plasticity/physiology , Memory, Short-Term
11.
Cereb Cortex ; 33(15): 9303-9312, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37279562

ABSTRACT

Experience dependent plasticity in the visual cortex is a key paradigm for the study of mechanisms underpinning learning and memory. Despite this, studies involving manipulating visual experience have largely been limited to the primary visual cortex, V1, across various species. Here we investigated the effects of monocular deprivation (MD) on the ocular dominance (OD) and orientation selectivity of neurons in four visual cortical areas in the mouse: the binocular zone of V1 (V1b), the putative "ventral stream" area LM and the putative "dorsal stream" areas AL and PM. We employed two-photon calcium imaging to record neuronal responses in young adult mice before MD, immediately after MD, and following binocular recovery. OD shifts following MD were greatest in LM and smallest in AL and PM; in LM and AL, these shifts were mediated primarily through a reduction of deprived-eye responses, in V1b and LM through an increase in response through the non-deprived eye. The OD index recovered to pre-MD levels within 2 weeks in V1 only. MD caused a reduction in orientation selectivity of deprived-eye responses in V1b and LM only. Our results suggest that changes in OD in higher visual areas are not uniformly inherited from V1.


Subject(s)
Neuronal Plasticity , Visual Cortex , Mice , Animals , Neuronal Plasticity/physiology , Mice, Inbred C57BL , Visual Cortex/physiology , Dominance, Ocular , Learning , Sensory Deprivation/physiology
12.
J Comp Neurol ; 531(12): 1244-1260, 2023 08.
Article in English | MEDLINE | ID: mdl-37139534

ABSTRACT

During a critical period of postnatal life, monocular deprivation (MD) by eyelid closure reduces the size of neurons in layers of the dorsal lateral geniculate nucleus (dLGN) connected to the deprived eye and shifts cortical ocular dominance in favor of the non-deprived eye. Temporary inactivation of the non-deprived eye can promote superior recovery from the effects of long-term MD compared to conventional occlusion therapy. In the current study, we assessed the modification of neuron size in the dLGN as a means of measuring the impact of a brief period of monocular inactivation (MI) imposed at different postnatal ages. The biggest impact of MI was observed when it occurred at the peak of the critical period. Unlike the effect of MD, structural plasticity following MI was observed in both the binocular and monocular segments of the dLGN. With increasing age, the capacity for inactivation to alter postsynaptic cell size diminished but was still significant beyond the critical period. In comparison to MD, inactivation produced effects that were about double in magnitude and exhibited efficacy at older ages. Notwithstanding the large neural alterations precipitated by MI, its effects were remediated with a short period of binocular experience, and vision through the previously inactivated eye fully recovered. These results demonstrate that MI is a potent means of modifying the visual pathway and does so at ages when occlusion is ineffective. The efficacy and longevity of inactivation to elicit plasticity highlight its potential to ameliorate disorders of the visual system such as amblyopia.


Subject(s)
Geniculate Bodies , Vision, Ocular , Neurons , Dominance, Ocular , Sensory Deprivation/physiology , Vision, Monocular/physiology
13.
Neuroimage ; 274: 120141, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37120043

ABSTRACT

A brief period of monocular deprivation (MD) induces short-term plasticity of the adult visual system. Whether MD elicits neural changes beyond visual processing is yet unclear. Here, we assessed the specific impact of MD on neural correlates of multisensory processes. Neural oscillations associated with visual and audio-visual processing were measured for both the deprived and the non-deprived eye. Results revealed that MD changed neural activities associated with visual and multisensory processes in an eye-specific manner. Selectively for the deprived eye, alpha synchronization was reduced within the first 150 ms of visual processing. Conversely, gamma activity was enhanced in response to audio-visual events only for the non-deprived eye within 100-300 ms after stimulus onset. The analysis of gamma responses to unisensory auditory events revealed that MD elicited a crossmodal upweight for the non-deprived eye. Distributed source modeling suggested that the right parietal cortex played a major role in neural effects induced by MD. Finally, visual and audio-visual processing alterations emerged for the induced component of the neural oscillations, indicating a prominent role of feedback connectivity. Results reveal the causal impact of MD on both unisensory (visual and auditory) and multisensory (audio-visual) processes and, their frequency-specific profiles. These findings support a model in which MD increases excitability to visual events for the deprived eye and audio-visual and auditory input for the non-deprived eye.


Subject(s)
Visual Cortex , Adult , Humans , Visual Cortex/physiology , Visual Perception , Sensory Deprivation/physiology , Neuronal Plasticity/physiology , Vision, Monocular/physiology
14.
Commun Biol ; 6(1): 408, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055505

ABSTRACT

Studies of primary visual cortex have furthered our understanding of amblyopia, long-lasting visual impairment caused by imbalanced input from the two eyes during childhood, which is commonly treated by patching the dominant eye. However, the relative impacts of monocular vs. binocular visual experiences on recovery from amblyopia are unclear. Moreover, while sleep promotes visual cortex plasticity following loss of input from one eye, its role in recovering binocular visual function is unknown. Using monocular deprivation in juvenile male mice to model amblyopia, we compared recovery of cortical neurons' visual responses after identical-duration, identical-quality binocular or monocular visual experiences. We demonstrate that binocular experience is quantitatively superior in restoring binocular responses in visual cortex neurons. However, this recovery was seen only in freely-sleeping mice; post-experience sleep deprivation prevented functional recovery. Thus, both binocular visual experience and subsequent sleep help to optimally renormalize bV1 responses in a mouse model of amblyopia.


Subject(s)
Amblyopia , Visual Cortex , Male , Animals , Mice , Amblyopia/therapy , Visual Acuity , Sensory Deprivation/physiology , Visual Cortex/physiology , Disease Models, Animal , Sleep
15.
PLoS Biol ; 21(4): e3002096, 2023 04.
Article in English | MEDLINE | ID: mdl-37083549

ABSTRACT

Abnormal visual experience during a developmental critical period degrades cortical responsiveness. Yet how experience-dependent plasticity alters the response properties of individual neurons and composition of visual circuitry is unclear. Here, we measured with calcium imaging in alert mice how monocular deprivation (MD) during the developmental critical period affects tuning for binocularity, orientation, and spatial frequency for neurons in primary visual cortex. MD of the contralateral eye did not uniformly shift ocular dominance (OD) of neurons towards the fellow ipsilateral eye but reduced the number of monocular contralateral neurons and increased the number of monocular ipsilateral neurons. MD also impaired matching of preferred orientation for binocular neurons and reduced the percentage of neurons responsive at most spatial frequencies for the deprived contralateral eye. Tracking the tuning properties for several hundred neurons before and after MD revealed that the shift in OD is complex and dynamic, with many previously monocular neurons becoming binocular and binocular neurons becoming monocular. Binocular neurons that became monocular were more likely to lose responsiveness to the deprived contralateral eye if they were better matched for orientation prior to deprivation. In addition, the composition of visual circuitry changed as population of neurons more responsive to the deprived eye were exchanged for neurons with tuning properties more similar to the network of responsive neurons altered by MD. Thus, plasticity during the critical period adapts to recent experience by both altering the tuning of responsive neurons and recruiting neurons with matching tuning properties.


Subject(s)
Visual Cortex , Mice , Animals , Visual Cortex/physiology , Neurons/physiology , Sensory Deprivation/physiology , Neuronal Plasticity/physiology , Photic Stimulation
16.
Proc Natl Acad Sci U S A ; 120(3): e2214833120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36634145

ABSTRACT

We have previously shown that recovery of visual responses to a deprived eye during the critical period in mouse primary visual cortex requires phosphorylation of the TrkB receptor for BDNF [M. Kaneko, J. L. Hanover, P. M. England, M. P. Stryker, Nat. Neurosci. 11, 497-504 (2008)]. We have now studied the temporal relationship between the production of mature BDNF and the recovery of visual responses under several different conditions. Visual cortical responses to an eye whose vision has been occluded for several days during the critical period and is then re-opened recover rapidly during binocular vision or much more slowly following reverse occlusion, when the previously intact fellow eye is occluded in a model of "patch therapy" for amblyopia. The time to recovery of visual responses differed by more than 18 h between these two procedures, but in each, the production of mature BDNF preceded the physiological recovery. These findings suggest that a spurt of BDNF production is permissive for the growth of connections serving the deprived eye to restore visual responses. Attenuation of recovery of deprived-eye responses by interference with TrkB receptor activation or reduction of BDNF production by interference with homeostatic synaptic scaling had effects consistent with this suggestion.


Subject(s)
Amblyopia , Visual Cortex , Mice , Animals , Brain-Derived Neurotrophic Factor/metabolism , Receptor, trkB/metabolism , Visual Cortex/physiology , Vision, Ocular , Sensory Deprivation/physiology , Neuronal Plasticity/physiology
17.
Cereb Cortex ; 33(9): 5636-5645, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36396729

ABSTRACT

Neural dynamics are altered in the primary visual cortex (V1) during critical period monocular deprivation (MD). Synchronization of neural oscillations is pertinent to physiological functioning of the brain. Previous studies have reported chronic disruption of V1 functional properties such as ocular dominance, spatial acuity, and binocular matching after long-term monocular deprivation (LTMD). However, the possible neuromodulation and neural synchrony has been less explored. Here, we investigated the difference between juvenile and adult experience-dependent plasticity in mice from intracellular calcium signals with fluorescent indicators. We also studied alterations in local field potentials power bands and phase-amplitude coupling (PAC) of specific brain oscillations. Our results showed that LTMD in juveniles causes higher neuromodulatory changes as seen by high-intensity fluorescent signals from the non-deprived eye (NDE). Meanwhile, adult mice showed a greater response from the deprived eye (DE). LTMD in juvenile mice triggered alterations in the power of delta, theta, and gamma oscillations, followed by enhancement of delta-gamma PAC in the NDE. However, LTMD in adult mice caused alterations in the power of delta oscillations and enhancement of delta-gamma PAC in the DE. These markers are intrinsic to cortical neuronal processing during LTMD and apply to a wide range of nested oscillatory markers.


Subject(s)
Vision, Monocular , Visual Cortex , Animals , Mice , Vision, Monocular/physiology , Sensory Deprivation/physiology , Visual Cortex/physiology , Dominance, Ocular , Neurons/physiology , Neuronal Plasticity/physiology
18.
Somatosens Mot Res ; 40(4): 133-140, 2023 12.
Article in English | MEDLINE | ID: mdl-36565289

ABSTRACT

PURPOSE/AIM: Rett (RTT) syndrome, a neurodevelopmental disorder, results from loss-of-function mutations in methyl-CpG-binding protein 2. We studied activity-dependent plasticity induced by sensory deprivation via whisker trimming in early symptomatic male mutant mice to assess neural rewiring capability. METHODS: One whisker was trimmed for 0-14 days and intrinsic optical imaging of the transient reduction of brain blood oxygenation resulting from neural activation by 1 second of wiggling of the whisker stump was compared to that of an untrimmed control whisker. RESULTS: Cortical evoked responses to wiggling a non-trimmed whisker were constant for 14 days, reduced for a trimmed whisker by 49.0 ± 4.3% in wild type (n = 14) but by only 22.7 ± 4.6% in mutant (n = 18, p = 0.001). CONCLUSION: As the reduction in neural activation following sensory deprivation in whisker barrel cortex is known to be dependent upon evoked and basal neural activity, impairment of cortical re-wiring following whisker trimming provides a paradigm suitable to explore mechanisms underlying deficiencies in the establishment and maintenance of synapses in RTT, which can be potentially targeted by therapeutics.


Subject(s)
Sensory Deprivation , Vibrissae , Mice , Animals , Male , Sensory Deprivation/physiology , Vibrissae/physiology , Somatosensory Cortex/physiology
19.
Elife ; 112022 12 14.
Article in English | MEDLINE | ID: mdl-36515269

ABSTRACT

Homeostatic regulation is essential for stable neuronal function. Several synaptic mechanisms of homeostatic plasticity have been described, but the functional properties of synapses involved in homeostasis are unknown. We used longitudinal two-photon functional imaging of dendritic spine calcium signals in visual and retrosplenial cortices of awake adult mice to quantify the sensory deprivation-induced changes in the responses of functionally identified spines. We found that spines whose activity selectively correlated with intrinsic network activity underwent tumor necrosis factor alpha (TNF-α)-dependent homeostatic increases in their response amplitudes, but spines identified as responsive to sensory stimulation did not. We observed an increase in the global sensory-evoked responses following sensory deprivation, despite the fact that the identified sensory inputs did not strengthen. Instead, global sensory-evoked responses correlated with the strength of network-correlated inputs. Our results suggest that homeostatic regulation of global responses is mediated through changes to intrinsic network-correlated inputs rather than changes to identified sensory inputs thought to drive sensory processing.


Subject(s)
Neuronal Plasticity , Neurons , Mice , Animals , Neuronal Plasticity/physiology , Neurons/physiology , Homeostasis/physiology , Synapses/physiology , Sensory Deprivation/physiology
20.
Annu Rev Neurosci ; 45: 471-489, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803589

ABSTRACT

Unimodal sensory loss leads to structural and functional changes in both deprived and nondeprived brain circuits. This process is broadly known as cross-modal plasticity. The evidence available indicates that cross-modal changes underlie the enhanced performances of the spared sensory modalities in deprived subjects. Sensory experience is a fundamental driver of cross-modal plasticity, yet there is evidence from early-visually deprived models supporting an additional role for experience-independent factors. These experience-independent factors are expected to act early in development and constrain neuronal plasticity at later stages. Here we review the cross-modal adaptations elicited by congenital or induced visual deprivation prior to vision. In most of these studies, cross-modal adaptations have been addressed at the structural and functional levels. Here, we also appraise recent data regarding behavioral performance in early-visually deprived models. However, further research is needed to explore how circuit reorganization affects their function and what brings about enhanced behavioral performance.


Subject(s)
Neuronal Plasticity , Sensory Deprivation , Brain , Humans , Neuronal Plasticity/physiology , Sensory Deprivation/physiology , Vision, Ocular
SELECTION OF CITATIONS
SEARCH DETAIL
...