Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.772
Filter
1.
J Interferon Cytokine Res ; 44(5): 208-220, 2024 May.
Article in English | MEDLINE | ID: mdl-38691831

ABSTRACT

Intestinal damage and secondary bacterial translocation are caused by the inflammatory response induced by sepsis. Tongfu Lifei (TLF) decoction has a protective effect on sepsis-related gastrointestinal function injury. However, the relation between gut microbiota, immune barrier, and sepsis under the treatment of TLF have not been well clarified yet. Here, rats were subjected to cecal ligation and puncture (CLP) to create a sepsis model. Subsequently, the TLF decoction was given to CLP rats by gavage, fecal microbiota transplantation (FMT), and antibiotic were used as positive control. TLF suppressed the inflammatory response and improved the pathological changes in the intestines of CLP rats. Besides, TLF promoted the balance of the percentage of the Th17 and Treg cells. Intestinal barrier function was also improved by TLF through enhancing ZO-1, and Occludin and Claudin 1 expression, preventing the secondary translocation of other gut microbiota. TLF dramatically boosted the gut microbiota's alpha- and beta-diversity in CLP rats. Moreover, it increased the relative abundance of anti-inflammatory gut microbiota and changed the progress of the glucose metabolism. In short, TLF regulated the gut microbiota to balance the ratio of Th17/Treg cells, reducing the inflammation in serum and intestinal mucosal injury in rats.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Intestinal Mucosa , Sepsis , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Gastrointestinal Microbiome/drug effects , Sepsis/immunology , Sepsis/drug therapy , Sepsis/complications , Th17 Cells/immunology , Th17 Cells/drug effects , Rats , Drugs, Chinese Herbal/pharmacology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/microbiology , Male , Rats, Sprague-Dawley
2.
Sci Rep ; 14(1): 10477, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714743

ABSTRACT

Endothelial glycocalyx (eGC) covers the inner surface of the vessels and plays a role in vascular homeostasis. Syndecan is considered the "backbone" of this structure. Several studies have shown eGC shedding in sepsis and its involvement in organ dysfunction. Matrix metalloproteinases (MMP) contribute to eGC shedding through their ability for syndecan-1 cleavage. This study aimed to investigate if doxycycline, a potent MMP inhibitor, could protect against eGC shedding in lipopolysaccharide (LPS)-induced sepsis and if it could interrupt the vascular hyperpermeability, neutrophil transmigration, and microvascular impairment. Rats that received pretreatment with doxycycline before LPS displayed ultrastructural preservation of the eGC observed using transmission electronic microscopy of the lung and heart. In addition, these animals exhibited lower serum syndecan-1 levels, a biomarker of eGC injury, and lower perfused boundary region (PBR) in the mesenteric video capillaroscopy, which is inversely related to the eGC thickness compared with rats that only received LPS. Furthermore, this study revealed that doxycycline decreased sepsis-related vascular hyperpermeability in the lung and heart, reduced neutrophil transmigration in the peritoneal lavage and inside the lungs, and improved some microvascular parameters. These findings suggest that doxycycline protects against LPS-induced eGC shedding, and it could reduce vascular hyperpermeability, neutrophils transmigration, and microvascular impairment.


Subject(s)
Doxycycline , Glycocalyx , Lipopolysaccharides , Sepsis , Glycocalyx/metabolism , Glycocalyx/drug effects , Animals , Sepsis/drug therapy , Sepsis/metabolism , Doxycycline/pharmacology , Rats , Male , Capillary Permeability/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects , Syndecan-1/metabolism , Rats, Wistar , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Neutrophils/metabolism , Neutrophils/drug effects , Matrix Metalloproteinase Inhibitors/pharmacology
3.
PLoS One ; 19(5): e0302628, 2024.
Article in English | MEDLINE | ID: mdl-38723000

ABSTRACT

Blood vessels permit the selective passage of molecules and immune cells between tissues and circulation. Uncontrolled inflammatory responses from an infection can increase vascular permeability and edema, which can occasionally lead to fatal organ failure. We identified mexenone as a vascular permeability blocker by testing 2,910 compounds in the Clinically Applied Compound Library using the lipopolysaccharide (LPS)-induced vascular permeability assay. Mexenone suppressed the LPS-induced downregulation of junctional proteins and phosphorylation of VE-cadherin in Bovine Aortic Endothelial Cells (BAECs). The injection of mexenone 1 hr before LPS administration completely blocked LPS-induced lung vascular permeability and acute lung injury in mice after 18hr. Our results suggest that mexenone-induced endothelial cell (EC) barrier stabilization could be effective in treating sepsis patients.


Subject(s)
Endothelial Cells , Lipopolysaccharides , Sepsis , Animals , Sepsis/drug therapy , Sepsis/chemically induced , Sepsis/metabolism , Mice , Cattle , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Capillary Permeability/drug effects , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/prevention & control , Male , Cadherins/metabolism , Mice, Inbred C57BL , Antigens, CD/metabolism
4.
Cytokine ; 179: 156637, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723454

ABSTRACT

Sepsis is understood as the result of initiating systemic inflammation derived from an inadequate host response against pathogens. In its acute phase, sepsis is marked by an exacerbated reaction to infection, tissue damage, organ failure, and metabolic dysfunction. Among these, hypoglycemia, characterized by disorders of the gluconeogenesis pathway, is related to one of the leading causes of mortality in septic patients. Recent research has investigated the involvement of sympathetic efferent neuroimmune pathways during systemic inflammation. These pathways can be stimulated by several centrally administered drugs, including Angiotensin-(1-7) (Ang-(1-7)). Therefore, the present study aims to evaluate the effects of central treatment with Ang-(1-7) on hypoglycemia during endotoxemia. For this, male Wistar Hannover rats underwent stereotaxic surgery for intracerebroventricular (i.c.v.) administration of Ang-(1-7) and cannulation of the jugular vein for lipopolysaccharide (LPS) injection. Our results demonstrate that LPS was capable of inducing hypoglycemia and that prior central treatment with Ang-(1-7) attenuated this effect. Our data also show that Ang-(1-7) reduced plasma concentrations of TNF-α, IL-1ß, IL-6, and nitric oxide, in addition to the decrease and increase of hepatic IL-6 and IL-10 respectively, in animals subjected to systemic inflammation by LPS, resulting in the reduction of systemic and hepatic inflammation, thus attenuating the deleterious effects of LPS on phosphoenolpyruvate carboxykinase protein content. In summary, the data suggest that central treatment with Ang-(1-7) attenuates hypoglycemia induced by endotoxemia, probably through anti-inflammatory action, leading to reestablishing hepatic gluconeogenesis.


Subject(s)
Angiotensin I , Hypoglycemia , Lipopolysaccharides , Peptide Fragments , Rats, Wistar , Sepsis , Animals , Angiotensin I/pharmacology , Male , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/complications , Peptide Fragments/pharmacology , Hypoglycemia/drug therapy , Hypoglycemia/metabolism , Rats , Inflammation/drug therapy , Inflammation/metabolism , Liver/metabolism , Liver/drug effects , Nitric Oxide/metabolism , Hepatitis/drug therapy , Hepatitis/metabolism , Endotoxemia/drug therapy , Cytokines/metabolism , Gluconeogenesis/drug effects , Blood Glucose/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Respir Res ; 25(1): 201, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725041

ABSTRACT

Growth differentiation factor 15 (GDF15) as a stress response cytokine is involved in the development and progression of several diseases associated with metabolic disorders. However, the regulatory role and the underlying mechanisms of GDF15 in sepsis remain poorly defined. Our study analyzed the levels of GDF15 and its correlations with the clinical prognosis of patients with sepsis. In vivo and in vitro models of sepsis were applied to elucidate the role and mechanisms of GDF15 in sepsis-associated lung injury. We observed strong correlations of plasma GDF15 levels with the levels of C-reactive protein (CRP), procalcitonin (PCT), lactate dehydrogenase (LDH), and lactate as well as Sequential Organ Failure Assessment (SOFA) scores in patients with sepsis. In the mouse model of lipopolysaccharide-induced sepsis, recombinant GDF15 inhibited the proinflammatory responses and alleviated lung tissue injury. In addition, GDF15 decreased the levels of cytokines produced by alveolar macrophages (AMs). The anti-inflammatory effect of glycolysis inhibitor 2-DG on AMs during sepsis was mediated by GDF15 via inducing the phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) and the expression of activating transcription factor 4 (ATF4). Furthermore, we explored the mechanism underlying the beneficial effects of GDF15 and found that GDF15 inhibited glycolysis and mitogen-activated protein kinases (MAPK)/nuclear factor-κB (NF-κB) signaling via promoting AMPK phosphorylation. This study demonstrated that GDF15 inhibited glycolysis and NF-κB/MAPKs signaling via activating AMP-activated protein kinase (AMPK), thereby alleviating the inflammatory responses of AMs and sepsis-associated lung injury. Our findings provided new insights into novel therapeutic strategies for treating sepsis.


Subject(s)
AMP-Activated Protein Kinases , Glycolysis , Growth Differentiation Factor 15 , Macrophages, Alveolar , Mice, Inbred C57BL , Sepsis , Growth Differentiation Factor 15/metabolism , Animals , Mice , Sepsis/metabolism , Sepsis/drug therapy , Male , Glycolysis/drug effects , AMP-Activated Protein Kinases/metabolism , Humans , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/drug effects , Lung Injury/metabolism , Female , Middle Aged
6.
Nat Commun ; 15(1): 4119, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750020

ABSTRACT

Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.


Subject(s)
Mice, Inbred C57BL , Mice, Knockout , Neutrophils , Sepsis , Animals , Sepsis/immunology , Sepsis/drug therapy , Mice , Neutrophils/immunology , Neutrophils/metabolism , Phagocytosis , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Disease Models, Animal , Male , Neutrophil Infiltration/drug effects , Cecum/surgery , Recombinant Proteins/therapeutic use , Recombinant Proteins/administration & dosage , Humans , Pore Forming Cytotoxic Proteins/metabolism , Ligation , Lipopolysaccharides , Shock, Septic/immunology
7.
Sci Rep ; 14(1): 11849, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38783019

ABSTRACT

The resistance to antibiotics in Gram-negative bacilli causing sepsis is a warning sign of failure of therapy. Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) represent major Gram-negative bacilli associated with sepsis. Quinolone resistance is an emerging resistance among E. coli and K. pneumoniae. Therefore, the present study aimed to study the presence of plasmid-mediated quinolone resistance (PMQR) genes qnrA, qnrB, and qnrS by polymerase chain reaction (PCR) in E. coli and K. pneumoniae isolated from pediatric patients with sepsis. This was a retrospective cross-sectional study that included pediatric patients with healthcare-associated sepsis. The E. coli and K. pneumoniae isolates were identified by microbiological methods. PMQR genes namely qnrA, qnrB, and qnrS were detected in E. coli and K. pneumoniae isolates by PCR. The results were analyzed by SPPS24, and the qualitative data was analyzed as numbers and percentages and comparison was performed by Chi-square test, P was significant if < 0.05. The most prevalent gene detected by PCR was qnrA (75%), followed by qnrB (28.1%), and qnrS (25%). The most frequently detected qnr gene in E coli and K. pneumoniae was qnrA (28.8%, and 16.3% respectively). The present study highlights the high prevalence of ciprofloxacin resistance among E. coli and K. pneumoniae isolated from pediatric patients with healthcare-associated sepsis. There was a high frequency of PMQR genes in E. coli and K. pneumoniae isolated from pediatric patients. Therefore, it is important to monitor the spread of PMQR genes in clinical isolates to ensure efficient antibiotic use in those children. The finding denotes the importance of an antibiotics surveillance program.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Escherichia coli , Klebsiella pneumoniae , Plasmids , Quinolones , Sepsis , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Child , Quinolones/pharmacology , Plasmids/genetics , Drug Resistance, Bacterial/genetics , Sepsis/microbiology , Sepsis/drug therapy , Retrospective Studies , Cross-Sectional Studies , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Female , Male , Child, Preschool , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Microbial Sensitivity Tests , Infant , Bacterial Proteins/genetics
8.
J Trace Elem Med Biol ; 84: 127456, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692229

ABSTRACT

Copper is an essential trace element for all aerobic organisms because of its unique biological functions. In recent years, researchers have discovered that copper can induce cell death through various regulatory mechanisms, thereby inducing inflammation. Efforts have also been made to alter the chemical structure of copper to achieve either anticancer or anti-inflammatory effects. The copper ion can exhibit bactericidal effects by interfering with the integrity of the cell membrane and promoting oxidative stress. Sepsis is a systemic inflammatory response caused by infection. Some studies have revealed that copper is involved in the pathophysiological process of sepsis and is closely related to its prognosis. During the infection of sepsis, the body may enhance the antimicrobial effect by increasing the release of copper. However, to avoid copper poisoning, all organisms have evolved copper resistance genes. Therefore, further analysis of the complex relationship between copper and bacteria may provide new ideas and research directions for the treatment of sepsis.


Subject(s)
Copper , Inflammation , Sepsis , Sepsis/drug therapy , Sepsis/immunology , Sepsis/microbiology , Humans , Inflammation/drug therapy , Animals , Bacteria/drug effects , Anti-Bacterial Agents/pharmacology
9.
Ann Intern Med ; 177(5): JC50, 2024 May.
Article in English | MEDLINE | ID: mdl-38710088

ABSTRACT

SOURCE CITATION: Chaudhuri D, Nei AM, Rochwerg B, et al. 2024 focused update: guidelines on use of corticosteroids in sepsis, acute respiratory distress syndrome, and community-acquired pneumonia. Crit Care Med. 2024;52:e219-e233. 38240492.


Subject(s)
Adrenal Cortex Hormones , Community-Acquired Infections , Respiratory Distress Syndrome , Sepsis , Humans , Respiratory Distress Syndrome/drug therapy , Sepsis/drug therapy , Adrenal Cortex Hormones/therapeutic use , Community-Acquired Infections/drug therapy , Pneumonia/drug therapy , Adult
10.
Clin Transl Sci ; 17(5): e13829, 2024 May.
Article in English | MEDLINE | ID: mdl-38769746

ABSTRACT

To investigate the effects of neutrophil elastase inhibitor (sivelestat sodium) on gastrointestinal function in sepsis. A reanalysis of the data from previous clinical trials conducted at our center was performed. Septic patients were divided into either the sivelestat group or the non-sivelestat group. The gastrointestinal dysfunction score (GIDS), feeding intolerance (FI) incidence, serum levels of intestinal barrier function and inflammatory biomarkers were recorded. The clinical severity and outcome variables were also documented. A total of 163 septic patients were included. The proportion of patients with GIDS ≥2 in the sivelestat group was reduced relative to that in the non-sivelestat group (9.6% vs. 22.5%, p = 0.047) on the 7th day of intensive care unit (ICU) admission. The FI incidence was also remarkably reduced in the sivelestat group in contrast to that in the non-sivelestat group (21.2% vs. 37.8%, p = 0.034). Furthermore, the sivelestat group had fewer days of FI [4 (3, 4) vs. 5 (4-6), p = 0.008]. The serum levels of d-lactate (p = 0.033), intestinal fatty acid-binding protein (p = 0.005), interleukin-6 (p = 0.001), white blood cells (p = 0.007), C-reactive protein (p = 0.001), and procalcitonin (p < 0.001) of the sivelestat group were lower than those of the non-sivelestat group. The sivelestat group also demonstrated longer ICU-free days [18 (0-22) vs. 13 (0-17), p = 0.004] and ventilator-free days [22 (1-24) vs. 16 (1-19), p = 0.002] compared with the non-sivelestat group. In conclusion, sivelestat sodium administration appears to improve gastrointestinal dysfunction, mitigate dysregulated inflammation, and reduce disease severity in septic patients.


Subject(s)
Gastrointestinal Diseases , Glycine , Sepsis , Sulfonamides , Humans , Sepsis/drug therapy , Sepsis/complications , Sepsis/blood , Male , Female , Glycine/analogs & derivatives , Glycine/therapeutic use , Middle Aged , Aged , Sulfonamides/therapeutic use , Sulfonamides/administration & dosage , Gastrointestinal Diseases/drug therapy , Proteinase Inhibitory Proteins, Secretory , Biomarkers/blood , Treatment Outcome
11.
Free Radic Biol Med ; 220: 179-191, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38704053

ABSTRACT

Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms. Despite major advances in diagnosis and technology, morbidity and mortality remain high. The level of neutrophil extracellular traps (NETs) is closely associated with the progression and prognosis of sepsis, suggesting the regulation of NET formation as a new strategy in sepsis treatment. Owing to its pleiotropic effects, atorvastatin, a clinical lipid-lowering drug, affects various aspects of sepsis-related inflammation and immune responses. To align closely with clinical practice, we combined it with imipenem for the treatment of sepsis. In this study, we used a cecum ligation and puncture-induced lung injury mouse model and employed techniques including western blot, immunofluorescence, and enzyme-linked immunosorbent assay to measure the levels of NETs and other sepsis-related lung injury indicators. Our findings indicate that atorvastatin effectively inhibited the formation of NETs. When combined with imipenem, it significantly alleviated lung injury, reduced systemic inflammation, and improved the 7-day survival rate of septic mice. Additionally, we explored the inhibitory mechanism of atorvastatin on NET formation in vitro, revealing its potential action through the ERK/NOX2 pathway. Therefore, atorvastatin is a potential immunomodulatory agent that may offer new treatment strategies for patients with sepsis in clinical settings.


Subject(s)
Atorvastatin , Disease Models, Animal , Extracellular Traps , Imipenem , NADPH Oxidase 2 , Sepsis , Animals , Atorvastatin/pharmacology , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/complications , Sepsis/pathology , Mice , Imipenem/pharmacology , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , Lung Injury/drug therapy , Lung Injury/pathology , Lung Injury/metabolism , Male , MAP Kinase Signaling System/drug effects , Neutrophils/metabolism , Neutrophils/drug effects , Neutrophils/pathology , Signal Transduction/drug effects , Humans , Mice, Inbred C57BL , Drug Therapy, Combination
12.
J Ethnopharmacol ; 331: 118337, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38740110

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Microthrombosis is commonly seen in sepsis and COVID-19. Zixue Powder (ZXP) is a traditional Chinese herbal formula with the potential to treat microvascular and infectious diseases. However, the role and mechanism of ZXP in sepsis-associated thrombosis remain unclear. AIM OF THE STUDY: Investigating the therapeutic effectiveness and underlying mechanisms of ZXP in septic thrombosis. MATERIALS AND METHODS: ZXP's compositions were examined with UPLC-QTOF-MS. The efficacy of ZXP on sepsis-induced thrombosis was assessed through various methods: liver tissue pathology was examined using hematoxylin-eosin staining, platelet count was determined by a blood cell analyzer, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of serum tissue factor (TF), thromboxane B2 (TXB2), D-Dimer, and plasminogen activator inhibitor-1 (PAI-1). Neutrophil extracellular traps (NETs) were localized and expressed in liver tissues by immunofluorescence, and the number of NETs in peripheral blood was evaluated by ELISA, which measured the quantity of cf-DNA and MPO-DNA in serum. Platelet P-selectin expression and platelet-neutrophil aggregation were measured by flow cytometry, and plasma P-selectin expression was measured by ELISA. Furthermore, the mechanism of the stimulator of interferon genes (STING) signaling pathway in ZXP's anti-sepsis thrombosis effect was investigated using the STING agonist, Western blot experiments, and immunoprecipitation experiments. RESULTS: UPLC-QTOF-MS identified 40 chemical compositions of ZXP. Administration of ZXP resulted in significant improvements in liver thrombosis, platelet counts, and levels of TXB2, TF, PAI-1, and D-Dimer in septic rats. Moreover, ZXP inhibited NETs formation in both liver tissue and peripheral blood. Additionally, ZXP decreased the levels of P-selectin in both platelets and plasma, as well as the formation of platelet-neutrophil aggregates, thereby suppressing P-selectin-mediated NETs release. Immunoprecipitation and immunofluorescence staining experiments revealed that ZXP attenuated P-selectin secretion by inhibiting STING-mediated assembly of platelet soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) complex, ultimately preventing inhibition of NETs formation. CONCLUSION: Our study showed that ZXP effectively mitigates platelet granule secretion primarily through modulation of the STING pathway, consequently impeding NET-associated thrombosis in sepsis. These findings offer valuable insights for future research on the development and application of ZXP.


Subject(s)
Drugs, Chinese Herbal , Extracellular Traps , Membrane Proteins , Sepsis , Thrombosis , Animals , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Drugs, Chinese Herbal/pharmacology , Male , Sepsis/drug therapy , Thrombosis/drug therapy , Membrane Proteins/metabolism , Blood Platelets/drug effects , Blood Platelets/metabolism , Rats , Neutrophils/drug effects , Neutrophils/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats, Sprague-Dawley , Mice
13.
Front Immunol ; 15: 1394925, 2024.
Article in English | MEDLINE | ID: mdl-38690282

ABSTRACT

Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.


Subject(s)
Energy Metabolism , Oxidative Stress , Sepsis , Sirtuins , Humans , Sepsis/drug therapy , Sepsis/immunology , Sepsis/metabolism , Animals , Sirtuins/metabolism , Energy Metabolism/drug effects , Reactive Oxygen Species/metabolism , Inflammation/drug therapy , Inflammation/immunology
14.
Acta Biomater ; 181: 347-361, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702010

ABSTRACT

Cascade-reaction containers generating reactive oxygen species (ROS) as an alternative for antibiotic-based strategies for bacterial infection control, require endogenous oxygen-sources and ROS-generation close to or preferably inside target bacteria. Here, this is achieved by cetyltrimethylammonium-chloride (CTAC) assisted in situ metabolic labeling and incorporation of mesoporous SiO2-nanoparticles, dual-loaded with glucose-oxidase and Fe3O4-nanoparticles as cascade-reaction containers, inside bacterial cell walls. First, azide-functionalized d-alanine (D-Ala-N3) was inserted in cell wall peptidoglycan layers of growing Gram-positive pathogens. In Gram-negatives, this could only be achieved after outer lipid-membrane permeabilization, using a low concentration of CTAC. Low concentrations of CTAC had no adverse effect on in vitro blood clotting or hemolysis nor on the health of mice when blood-injected. Next, dibenzocyclooctyne-polyethylene-glycol modified, SiO2-nanoparticles were in situ click-reacted with d-Ala-N3 in bacterial cell wall peptidoglycan layers. Herewith, a two-step cascade-reaction is facilitated inside bacteria, in which glucose-oxidase generates H2O2 at endogenously-available glucose concentrations, while subsequently Fe3O4-nanoparticles catalyze generation of •OH from the H2O2 generated. Generation of •OH inside bacterial cell walls by dual-loaded mesoporous SiO2-nanoparticles yielded more effective in vitro killing of both planktonic Gram-positive and Gram-negative bacteria suspended in 10 % plasma than SiO2-nanoparticles solely loaded with glucose-oxidase. Gram-positive or Gram-negative bacterially induced sepsis in mice could be effectively treated by in situ pre-treatment with tail-vein injected CTAC and d-Ala-N3, followed by injection of dual-loaded cascade-reaction containers without using antibiotics. This makes in situ metabolic incorporation of cascade-reaction containers as described attractive for further investigation with respect to the control of other types of infections comprising planktonic bacteria. STATEMENT OF SIGNIFICANCE: In situ metabolic-incorporation of cascade-reaction-containers loaded with glucose-oxidase and Fe3O4 nanoparticles into bacterial cell-wall peptidoglycan is described, yielding ROS-generation from endogenous glucose, non-antibiotically killing bacteria before ROS inactivates. Hitherto, only Gram-positives could be metabolically-labeled, because Gram-negatives possess two lipid-membranes. The outer membrane impedes direct access to the peptidoglycan. This problem was solved by outer-membrane permeabilization using a quaternary-ammonium compound. Several studies on metabolic-labeling perform crucial labeling steps during bacterial-culturing that in real-life should be part of a treatment. In situ metabolic-incorporation as described, can be applied in well-plates during in vitro experiments or in the body as during in vivo animal experiments. Surprisingly, metabolic-incorporation proceeded unhampered in blood and a murine, bacterially-induced sepsis could be well treated.


Subject(s)
Peptidoglycan , Reactive Oxygen Species , Sepsis , Animals , Reactive Oxygen Species/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Mice , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Gram-Positive Bacteria/drug effects , Gram-Negative Bacteria/drug effects
15.
Crit Care ; 28(1): 183, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38807151

ABSTRACT

Despite significant progress in our understanding of the pathophysiology of sepsis and extensive clinical research, there are few proven therapies addressing the underlying immune dysregulation of this life-threatening condition. The aim of this scoping review is to describe the literature evaluating immunotherapy in adult patients with sepsis, emphasizing on methods providing a "personalized immunotherapy" approach, which was defined as the classification of patients into a distinct subgroup or subphenotype, in which a patient's immune profile is used to guide treatment. Subgroups are subsets of sepsis patients, based on any cut-off in a variable. Subphenotypes are subgroups that can be reliably discriminated from other subgroup based on data-driven assessments. Included studies were randomized controlled trials and cohort studies investigating immunomodulatory therapies in adults with sepsis. Studies were identified by searching PubMed, Embase, Cochrane CENTRAL and ClinicalTrials.gov, from the first paper available until January 29th, 2024. The search resulted in 15,853 studies. Title and abstract screening resulted in 1409 studies (9%), assessed for eligibility; 771 studies were included, of which 282 (37%) were observational and 489 (63%) interventional. Treatment groups included were treatments targeting the innate immune response, the complement system, coagulation and endothelial dysfunction, non-pharmalogical treatment, pleiotropic drugs, immunonutrition, concomitant treatments, Traditional Chinese Medicine, immunostimulatory cytokines and growth factors, intravenous immunoglobulins, mesenchymal stem cells and immune-checkpoint inhibitors. A personalized approach was incorporated in 70 studies (9%). Enrichment was applied using cut-offs in temperature, laboratory, biomarker or genetic variables. Trials often showed conflicting results, possibly due to the lack of patient stratification or the potential influence of severity and timing on immunomodulatory therapy results. When a personalized approach was applied, trends of clinical benefit for several interventions emerged, which hold promise for future clinical trials using personalized immunotherapy.


Subject(s)
Immunotherapy , Precision Medicine , Sepsis , Humans , Precision Medicine/methods , Precision Medicine/trends , Sepsis/therapy , Sepsis/immunology , Sepsis/drug therapy , Immunotherapy/methods , Immunotherapy/trends
16.
J Emerg Med ; 66(5): e632-e641, 2024 May.
Article in English | MEDLINE | ID: mdl-38704306

ABSTRACT

BACKGROUND: There is a lack of evidence-based guidelines for the administration methods of ceftriaxone in emergency departments (EDs), resulting in the reliance on individual institutional protocols for decision-making. OBJECTIVE: This study was performed to compare the effects of administering ceftriaxone via intravenous push (IVP) and intravenous piggyback (IVPB) on 28-day mortality in patients with sepsis. METHODS: This was a retrospective study of patients aged 18 years or older with sepsis or septic shock who visited an ED and were treated with ceftriaxone as an initial antibiotic between March 2010 and February 2019. Patients were divided into the IVP group and the IVPB group based on the administration method. The primary outcome was 28-day mortality, and multivariable Cox proportional hazards regression analysis was performed to evaluate the relationship between antibiotic administration methods and 28-day mortality. RESULTS: During the study period, a total of 939 patients were included in the final analysis, and the overall mortality rate was 12.2%. The antibiotic administration time was significantly lower in the IVP group than in the IVPB group, and the rates of antibiotic administration within 1 h and within 3 h were higher in the IVP group than in the IVPB group (p < 0.05). However, there was no significant difference in 28-day mortality between the two groups (hazard ratio 1.07, 95% confidence interval 0.69-1.65). CONCLUSIONS: IVP administration of ceftriaxone reduced the time of antibiotic administration compared with IVPB, but there was no difference in 28-day mortality.


Subject(s)
Administration, Intravenous , Anti-Bacterial Agents , Ceftriaxone , Emergency Service, Hospital , Sepsis , Humans , Ceftriaxone/therapeutic use , Ceftriaxone/administration & dosage , Retrospective Studies , Male , Female , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Sepsis/drug therapy , Sepsis/mortality , Middle Aged , Aged , Emergency Service, Hospital/organization & administration , Proportional Hazards Models , Aged, 80 and over , Adult
17.
Front Public Health ; 12: 1369703, 2024.
Article in English | MEDLINE | ID: mdl-38808002

ABSTRACT

Introduction: Streptococcus suis is one of the porcine pathogens that have recently emerged as a pathogen capable of causing zoonoses in some humans. Patients infected with S. suis can present with sepsis, meningitis, or arthritis. Compared to common pathogens, such as Meningococcus, Streptococcus pneumoniae, and Haemophilus influenzae, S. suis infections in humans have been reported only rarely. Methods: This case report described a 57-year-old man who presented with impaired consciousness and fever following several days of backache. He was a butcher who worked in an abattoir and had wounded his hands 2 weeks prior. The patient was dependent on alcohol for almost 40 years. S. suis was detected in the cerebrospinal fluid by metagenomic next-generation sequencing. Although he received adequate meropenem and low-dose steroid therapy, the patient suffered from bilateral sudden deafness after 5 days of the infection. The final diagnosis was S. suis meningitis and sepsis. Results: The patient survived with hearing loss in both ears and dizziness at the 60-day follow-up. Discussion: We reported a case of S. suis infection manifested as purulent meningitis and sepsis. Based on literature published worldwide, human S. suis meningitis shows an acute onset and rapid progression in the nervous system. Similar to bacterial meningitis, effective antibiotics, and low-dose steroids play important roles in the treatment of human S. suis meningitis.


Subject(s)
Meningitis, Bacterial , Streptococcal Infections , Streptococcus suis , Humans , Streptococcus suis/isolation & purification , Male , Middle Aged , Streptococcal Infections/drug therapy , China , Meningitis, Bacterial/drug therapy , Meningitis, Bacterial/diagnosis , Anti-Bacterial Agents/therapeutic use , Sepsis/drug therapy , Hearing Loss, Sudden/etiology , Hearing Loss, Sudden/drug therapy
18.
Int Immunopharmacol ; 134: 112186, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733824

ABSTRACT

BACKGROUND: Although the pathophysiological mechanism of septic cardiomyopathy has been continuously discovered, it is still a lack of effective treatment method. Cortistatin (CST), a neuroendocrine polypeptide of the somatostatin family, has emerged as a novel cardiovascular-protective peptide, but the specific mechanism has not been elucidated. PURPOSE: The aim of our study is to explore the role of CST in cardiomyocytes pyroptosis and myocardial injury in sepsis and whether CST inhibits cardiomyocytes pyroptosis through specific binding with somastatin receptor 2 (SSTR2) and activating AMPK/Drp1 signaling pathway. METHODS AND RESULTS: In this study, plasma CST levels were significantly high and were negatively correlated with N-terminal pro-B type natriuretic peptide (NT-proBNP), a biomarker for cardiac dysfunction, in patients with sepsis. Exogenous administration of CST significantly improved survival rate and cardiac function in mouse models of sepsis by inhibiting the activation of the NLRP3 inflammasome and pyroptosis of cardiomyocytes (decreased cleavage of caspase-1, IL-1ß and gasdermin D). Pharmacological inhibition and genetic ablation revealed that CST exerted anti-pyroptosis effects by specifically binding to somatostatin receptor subtype 2 (SSTR2), thus activating AMPK and inactivating Drp1 to inhibit mitochondrial fission in cardiomyocytes. CONCLUSIONS: This study is the first to report that CST attenuates septic cardiomyopathy by inhibiting cardiomyocyte pyroptosis through the SSTR2-AMPK-Drp1-NLRP3 pathway. Importantly, CST specifically binds to SSTR2, which promotes AMPK phosphorylation, inhibits Drp1-mediated mitochondrial fission, and reduces ROS levels, thereby inhibiting NLRP3 inflammasome activation-mediated pyroptosis and alleviating sepsis-induced myocardial injury.


Subject(s)
AMP-Activated Protein Kinases , Cardiomyopathies , Mice, Inbred C57BL , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Neuropeptides , Pyroptosis , Receptors, Somatostatin , Sepsis , Signal Transduction , Animals , Pyroptosis/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Receptors, Somatostatin/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans , Sepsis/drug therapy , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Neuropeptides/metabolism , Mice , Male , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Disease Models, Animal , Mice, Knockout
19.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 456-460, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38802904

ABSTRACT

OBJECTIVES: To explore the value of metagenomic next-generation sequencing (mNGS) technology in the etiological diagnosis of sepsis in preterm infants following antibiotic use. METHODS: A retrospective analysis of medical records for 45 preterm infants with sepsis who were treated at Henan Provincial People's Hospital. All patients received antibiotic treatment for ≥3 days and underwent both blood culture and mNGS testing. The detection rates of pathogens by blood culture and mNGS testing were compared. RESULTS: The positive detection rate of pathogens by blood mNGS was higher than that by blood culture (44% vs 4%; P<0.001). Blood mNGS detected 28 strains of pathogens, including 23 bacteria, 4 fungi, and 1 Ureaplasma parvum. Blood culture identified one case each of Rhodotorula mucilaginosa and Klebsiella pneumoniae. In the group treated with antibiotics for >10 days, the positive rate of blood mNGS testing was higher than that of blood culture (40% vs 3%; P<0.001); similarly, in the group treated with antibiotics for ≤10 days, the positive rate of blood mNGS testing was also higher than that of blood culture (53% vs 7%; P=0.020). Treatment plans were adjusted based on blood mNGS results for 13 patients, with an effectiveness rate of 85% (11/13). CONCLUSIONS: In preterm infants with sepsis following antibiotic use, the positive rate of pathogen detection by blood mNGS is higher than that by blood culture and is unaffected by the duration of antibiotic use. Therefore, mNGS testing can be considered for confirming pathogens when clinical suspicion of infection is high but blood culture fails to detect the pathogen.


Subject(s)
Anti-Bacterial Agents , High-Throughput Nucleotide Sequencing , Infant, Premature , Metagenomics , Sepsis , Humans , Infant, Newborn , Anti-Bacterial Agents/therapeutic use , Sepsis/microbiology , Sepsis/drug therapy , Male , Female , Retrospective Studies , Metagenomics/methods
20.
Nat Commun ; 15(1): 4340, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773142

ABSTRACT

Macrophage-orchestrated inflammation contributes to multiple diseases including sepsis. However, the underlying mechanisms remain to be defined clearly. Here, we show that macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is up-regulated in murine sepsis models. When myeloid Tigar is ablated, sepsis induced by either lipopolysaccharide treatment or cecal ligation puncture in male mice is attenuated via inflammation inhibition. Mechanistic characterizations indicate that TIGAR directly binds to transforming growth factor ß-activated kinase (TAK1) and promotes tumor necrosis factor receptor-associated factor 6-mediated ubiquitination and auto-phosphorylation of TAK1, in which residues 152-161 of TIGAR constitute crucial motif independent of its phosphatase activity. Interference with the binding of TIGAR to TAK1 by 5Z-7-oxozeaenol exhibits therapeutic effects in male murine model of sepsis. These findings demonstrate a non-canonical function of macrophage TIGAR in promoting inflammation, and confer a potential therapeutic target for sepsis by disruption of TIGAR-TAK1 interaction.


Subject(s)
Apoptosis Regulatory Proteins , Disease Models, Animal , Lipopolysaccharides , MAP Kinase Kinase Kinases , Macrophages , Sepsis , Animals , Sepsis/immunology , Sepsis/drug therapy , Sepsis/metabolism , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Male , Mice , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Mice, Inbred C57BL , Phosphorylation , Humans , Ubiquitination , Zearalenone/analogs & derivatives , Zearalenone/pharmacology , Zearalenone/administration & dosage , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Inflammation/metabolism , Inflammation/pathology , Phosphoric Monoester Hydrolases/metabolism , Mice, Knockout , Lactones , Resorcinols
SELECTION OF CITATIONS
SEARCH DETAIL
...