Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.978
Filter
1.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726820

ABSTRACT

We investigated the relationship between neutrophil apoptosis and endoplasmic reticulum stress (ERS) in sepsis and its mechanism. A prospective cohort study was conducted by recruiting a total of 58 patients with sepsis. Peripheral blood samples were collected on 1, 3, 5 and 7 days after admission to the ICU. The expressions of endoplasmic reticulum specific glucose regulatory protein 78 (GRP78), C/EBP homologous protein (CHOP), apoptosis signal-regulating kinase 1 (ASK1), Bcl-2-like 11 (BIM), death receptor 5 (DR5), c-Jun N-terminal kinases (JNK) and p38 were detected by Western blot and PCR. The subcellular location of CHOP and GRP78 was observed by immunofluorescence analysis. Spearman correlation was used to analyze the correlation between the expression of chop protein and the apoptosis rate of peripheral blood neutrophils. Healthy volunteers in the same period were selected as the healthy control group. The expression of GRP78 protein was significantly elevated on the first day of ICU admission and showed a decreasing trend on the third, fifth and seventh day, but was significantly higher than the corresponding healthy control group. The expression of CHOP protein reached the highest level on the third day. The expression of chop protein in each group was significantly higher than that in the corresponding healthy control group. Immunofluorescence staining clearly showed that the CHOP protein accumulated in the nucleus, with an elevation in the intensity of GRP78. The neutrophil apoptosis rate of sepsis patients on the 1st, 3rd, 5th and 7th day of ICU stay was significantly higher than that of the healthy control group, with the highest apoptosis rate on the 3rd day, and then decreased gradually. CHOP protein expression level was significantly positively correlated with neutrophil apoptosis rate in sepsis patients. Endoplasmic reticulum stress occurs in neutrophils during the development of sepsis. GRP78 protein and CHOP protein may be involved in the pathological process of neutrophil apoptosis in sepsis.


Subject(s)
Apoptosis , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Heat-Shock Proteins , Neutrophils , Sepsis , Transcription Factor CHOP , Humans , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Neutrophils/metabolism , Neutrophils/pathology , Sepsis/pathology , Sepsis/metabolism , Sepsis/genetics , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Male , Female , Middle Aged , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Endoplasmic Reticulum/genetics , Aged , Adult , Gene Expression Regulation , Prospective Studies
2.
Int J Med Sci ; 21(6): 983-993, 2024.
Article in English | MEDLINE | ID: mdl-38774750

ABSTRACT

Previous studies have highlighted the protective effects of pyruvate kinase M2 (PKM2) overexpression in septic cardiomyopathy. In our study, we utilized cardiomyocyte-specific PKM2 knockout mice to further investigate the role of PKM2 in attenuating LPS-induced myocardial dysfunction, focusing on mitochondrial biogenesis and prohibitin 2 (PHB2). Our findings confirmed that the deletion of PKM2 in cardiomyocytes significantly exacerbated LPS-induced myocardial dysfunction, as evidenced by impaired contractile function and relaxation. Additionally, the deletion of PKM2 intensified LPS-induced myocardial inflammation. At the molecular level, LPS triggered mitochondrial dysfunction, characterized by reduced ATP production, compromised mitochondrial respiratory complex I/III activities, and increased ROS production. Intriguingly, the absence of PKM2 further worsened LPS-induced mitochondrial damage. Our molecular investigations revealed that LPS disrupted mitochondrial biogenesis in cardiomyocytes, a disruption that was exacerbated by the absence of PKM2. Given that PHB2 is known as a downstream effector of PKM2, we employed PHB2 adenovirus to restore PHB2 levels. The overexpression of PHB2 normalized mitochondrial biogenesis, restored mitochondrial integrity, and promoted mitochondrial function. Overall, our results underscore the critical role of PKM2 in regulating the progression of septic cardiomyopathy. PKM2 deficiency impeded mitochondrial biogenesis, leading to compromised mitochondrial integrity, increased myocardial inflammation, and impaired cardiac function. The overexpression of PHB2 mitigated the deleterious effects of PKM2 deletion. This discovery offers a novel insight into the molecular mechanisms underlying septic cardiomyopathy and suggests potential therapeutic targets for intervention.


Subject(s)
Cardiomyopathies , Mice, Knockout , Mitochondria, Heart , Myocytes, Cardiac , Prohibitins , Pyruvate Kinase , Sepsis , Animals , Cardiomyopathies/pathology , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/etiology , Mice , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Sepsis/metabolism , Sepsis/pathology , Sepsis/genetics , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Humans , Organelle Biogenesis , Lipopolysaccharides/toxicity , Male , Disease Models, Animal
3.
Immun Inflamm Dis ; 12(5): e1279, 2024 May.
Article in English | MEDLINE | ID: mdl-38780016

ABSTRACT

OBJECTIVE: Sepsis is an organ malfunction disease that may become fatal and is commonly accompanied by severe complications such as multiorgan dysfunction. Patients who are already hospitalized have a high risk of death due to sepsis. Even though early diagnosis is very important, the technology and clinical approaches that are now available are inadequate. Hence, there is an immediate necessity to investigate biological markers that are sensitive, specific, and reliable for the prompt detection of sepsis to reduce mortality and improve patient prognosis. Mounting research data indicate that ferroptosis contributes to the occurrence, development, and prevention of sepsis. However, the specific regulatory mechanism of ferroptosis remains to be elucidated. This research evaluated the expression profiles of ferroptosis-related genes (FRGs) and the diagnostic significance of the ferroptosis-related classifiers in sepsis. METHODS AND RESULTS: We collected three peripheral blood data sets from septic patients, integrated the clinical examination data and mRNA expression profile of these patients, and identified 13 FRGs in sepsis through a co-expression network and differential analysis. Then, an optimal classifier tool for sepsis was constructed by integrating a variety of machine learning algorithms. Two key genes, ATG16L1 and SRC, were shown to be shared between the algorithms, and thus were identified as the FRG signature of classifier. The tool exhibited satisfactory diagnostic efficiency in the training data set (AUC = 0.711) and two external verification data sets (AUC = 0.961; AUC = 0.913). In the rat cecal ligation puncture sepsis model, in vivo experiments verified the involvement of ATG16L1 and SRC in the early sepsis process. CONCLUSION: These findings confirm that FRGs may participate in the development of sepsis, the ferroptosis related classifiers can provide a basis for the development of new strategies for the early diagnosis of sepsis and the discovery of new potential therapeutic targets for life-threatening infections.


Subject(s)
Ferroptosis , Machine Learning , Sepsis , Ferroptosis/genetics , Sepsis/diagnosis , Sepsis/genetics , Sepsis/metabolism , Sepsis/pathology , Humans , Animals , Rats , Male , Biomarkers , Disease Models, Animal , Gene Expression Profiling , Female , Rats, Sprague-Dawley
4.
Biochem Biophys Res Commun ; 718: 150083, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38735138

ABSTRACT

Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), represent critical clinical syndromes with multifactorial origins, notably stemming from sepsis within intensive care units (ICUs). Despite their high mortality rates, no selective cure is available beside ventilation support. Apoptosis plays a complex and pivotal role in the pathophysiology of acute lung injury. Excessive apoptosis of alveolar epithelial and microvascular endothelial cells can lead to disruption of lung epithelial barrier integrity, impairing the body's ability to exchange blood and gas. At the same time, apoptosis of damaged or dysfunctional cells, including endothelial and epithelial cells, can help maintain tissue integrity and accelerate recovery from organ pro-inflammatory stress. The balance between pro-survival and pro-apoptotic signals in lung injury determines patient outcomes, making the modulation of apoptosis an area of intense research in the quest for more effective therapies. Here we found that protein tyrosine phosphatase receptor type O (PTPRO), a poorly understood receptor-like protein tyrosine phosphatase, is consistently upregulated in multiple tissue types of mice under septic conditions and in the lung alveolar epithelial cells. PTPRO reduction by its selective short-interfering RNA (siRNA) leads to excessive apoptosis in lung alveolar epithelial cells without affecting cell proliferation. Consistently PTPRO overexpression by a DNA construct attenuates apoptotic signaling induced by LPS. These effects of PTPTO on cellular apoptosis are dependent on an ErbB2/PI3K/Akt/NFκB signaling pathway. Here we revealed a novel regulatory pathway of cellular apoptosis by PTPRO in lung alveolar epithelial cells during sepsis.


Subject(s)
Alveolar Epithelial Cells , Apoptosis , Lipopolysaccharides , Receptor-Like Protein Tyrosine Phosphatases, Class 3 , Apoptosis/drug effects , Animals , Lipopolysaccharides/pharmacology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Mice , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Mice, Inbred C57BL , Humans , Male , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Signal Transduction/drug effects , Sepsis/metabolism , Sepsis/pathology
5.
Free Radic Biol Med ; 220: 179-191, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38704053

ABSTRACT

Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms. Despite major advances in diagnosis and technology, morbidity and mortality remain high. The level of neutrophil extracellular traps (NETs) is closely associated with the progression and prognosis of sepsis, suggesting the regulation of NET formation as a new strategy in sepsis treatment. Owing to its pleiotropic effects, atorvastatin, a clinical lipid-lowering drug, affects various aspects of sepsis-related inflammation and immune responses. To align closely with clinical practice, we combined it with imipenem for the treatment of sepsis. In this study, we used a cecum ligation and puncture-induced lung injury mouse model and employed techniques including western blot, immunofluorescence, and enzyme-linked immunosorbent assay to measure the levels of NETs and other sepsis-related lung injury indicators. Our findings indicate that atorvastatin effectively inhibited the formation of NETs. When combined with imipenem, it significantly alleviated lung injury, reduced systemic inflammation, and improved the 7-day survival rate of septic mice. Additionally, we explored the inhibitory mechanism of atorvastatin on NET formation in vitro, revealing its potential action through the ERK/NOX2 pathway. Therefore, atorvastatin is a potential immunomodulatory agent that may offer new treatment strategies for patients with sepsis in clinical settings.


Subject(s)
Atorvastatin , Disease Models, Animal , Extracellular Traps , Imipenem , NADPH Oxidase 2 , Sepsis , Animals , Atorvastatin/pharmacology , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/complications , Sepsis/pathology , Mice , Imipenem/pharmacology , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , Lung Injury/drug therapy , Lung Injury/pathology , Lung Injury/metabolism , Male , MAP Kinase Signaling System/drug effects , Neutrophils/metabolism , Neutrophils/drug effects , Neutrophils/pathology , Signal Transduction/drug effects , Humans , Mice, Inbred C57BL , Drug Therapy, Combination
6.
Narra J ; 4(1): e532, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798871

ABSTRACT

Sepsis, a life-threatening condition resulting from immune dysregulation, is typically triggered by bacterial infections and commonly coexists with diabetes mellitus. Neutrophils are the first responders to infection and require regulated activation to control pathogen and damage-associated molecular patterns. Dysregulation of neutrophil activation leads to uncontrolled inflammatory responses, often observed in both sepsis and diabetes patients. Neutrophil dysregulation, characterized by effector dysfunction and inadequate cell death processes, can serve as a biomarker for assessing sepsis severity, particularly in diabetic patients. This review provides information on the relationship between effector function, neutrophil cell death, and the severity of sepsis in individuals with diabetes mellitus, aiming to shed light on the mechanisms underlying sepsis progression. Topics covered in the review include an overview of effector function of neutrophil cells, mechanisms of neutrophil cell death, and dysregulation of effectors and neutrophil cell death processes in sepsis severity with diabetes mellitus.


Subject(s)
Cell Death , Neutrophils , Sepsis , Severity of Illness Index , Humans , Sepsis/immunology , Sepsis/pathology , Neutrophils/immunology , Neutrophils/pathology , Diabetes Mellitus/immunology , Diabetes Mellitus/pathology , Biomarkers
7.
J Neuroinflammation ; 21(1): 96, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627764

ABSTRACT

BACKGROUND: Gasdermin D (GSDMD)-mediated pyroptotic cell death is implicated in the pathogenesis of cognitive deficits in sepsis-associated encephalopathy (SAE), yet the underlying mechanisms remain largely unclear. Dynamin-related protein 1 (Drp1) facilitates mitochondrial fission and ensures quality control to maintain cellular homeostasis during infection. This study aimed to investigate the potential role of the GSDMD/Drp1 signaling pathway in cognitive impairments in a mouse model of SAE. METHODS: C57BL/6 male mice were subjected to cecal ligation and puncture (CLP) to establish an animal model of SAE. In the interventional study, mice were treated with the GSDMD inhibitor necrosulfonamide (NSA) or the Drp1 inhibitor mitochondrial division inhibitor-1 (Mdivi-1). Surviving mice underwent behavioral tests, and hippocampal tissues were harvested for histological analysis and biochemical assays at corresponding time points. Haematoxylin-eosin staining and TUNEL assays were used to evaluate neuronal damage. Golgi staining was used to detect synaptic dendritic spine density. Additionally, transmission electron microscopy was performed to assess mitochondrial and synaptic morphology in the hippocampus. Local field potential recordings were conducted to detect network oscillations in the hippocampus. RESULTS: CLP induced the activation of GSDMD, an upregulation of Drp1, leading to associated mitochondrial impairment, neuroinflammation, as well as neuronal and synaptic damage. Consequently, these effects resulted in a reduction in neural oscillations in the hippocampus and significant learning and memory deficits in the mice. Notably, treatment with NSA or Mdivi-1 effectively prevented these GSDMD-mediated abnormalities. CONCLUSIONS: Our data indicate that the GSDMD/Drp1 signaling pathway is involved in cognitive deficits in a mouse model of SAE. Inhibiting GSDMD or Drp1 emerges as a potential therapeutic strategy to alleviate the observed synaptic damages and network oscillations abnormalities in the hippocampus of SAE mice.


Subject(s)
Cognitive Dysfunction , Sepsis-Associated Encephalopathy , Sepsis , Animals , Male , Mice , Cognitive Dysfunction/metabolism , Dynamins/metabolism , Hippocampus/metabolism , Mice, Inbred C57BL , Sepsis/pathology , Sepsis-Associated Encephalopathy/metabolism , Signal Transduction
8.
Free Radic Biol Med ; 218: 120-131, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583680

ABSTRACT

Sepsis-induced acute kidney injury (S-AKI) is the most common type of acute kidney injury (AKI), accompanied by elevated morbidity and mortality rates. This study investigated the mechanism by which lipid droplets (LDs) degraded via autophagy (lipophagy)required for RAB7 regulated ferroptosis in the pathogenesis of S-AKI. Here, we constructed the S-AKI model in vitro and in vivo to elucidate the potential relationship of lipophagy and ferroptosis, and we first confirmed that the activation of lipophagy promoted renal tubular epithelial cell ferroptosis and renal damage in S-AKI. The results showed that lipopolysaccharide (LPS) induced a marked increase in lipid peroxidation and ferroptosis, which were rescued by ferrstain-1 (Fer-1), an inhibitor of ferroptosis. In addition, LPS induced the remarkable activation of RAB7-mediated lipophagy. Importantly, silencing RAB7 alleviated LPS-induced lipid peroxidation and ferroptosis. Thus, the present study demonstrated the potential significant role of ferroptosis and lipophagy in sepsis-induced AKI, and contributed to better understanding of the pathogenesis and treatment targets of AKI.


Subject(s)
Acute Kidney Injury , Autophagy , Ferroptosis , Lipid Peroxidation , Lipopolysaccharides , Sepsis , rab GTP-Binding Proteins , rab7 GTP-Binding Proteins , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Acute Kidney Injury/etiology , Sepsis/complications , Sepsis/metabolism , Sepsis/pathology , Sepsis/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Ferroptosis/genetics , Animals , Mice , Humans , Male , Lipid Droplets/metabolism , Mice, Inbred C57BL , Disease Models, Animal
9.
Int J Immunopathol Pharmacol ; 38: 3946320241234736, 2024.
Article in English | MEDLINE | ID: mdl-38652556

ABSTRACT

Sepsis, critical condition marked by severe organ dysfunction from uncontrolled infection, involves the endothelium significantly. Macrophages, through paracrine actions, play a vital role in sepsis, but their mechanisms in sepsis pathogenesis remain elusive. Objective: We aimed to explore how macrophage-derived exosomes with low miR-141 expression promote pyroptosis in endothelial cells (ECs). Exosomes from THP-1 cell supernatant were isolated and characterized. The effects of miR-141 mimic/inhibitor on apoptosis, proliferation, and invasion of Human Umbilical Vein Endothelial Cells (HUVECs) were assessed using flow cytometry, CCK-8, and transwell assays. Key pyroptosis-related proteins, including caspase-1, IL-18, IL-1ß, NLR Family Pyrin Domain Containing 3 (NLRP3), ASC, and cleaved-GSDMD, were analyzed via Western blot. The interaction between miR-141 and NLRP3 was studied using RNAhybrid v2.2 and dual-Luciferase reporter assays. The mRNA and protein level of NLRP3 after exosomal miR-141 inhibitor treatment was detected by qPCR and Western blot, respectively. Exosomes were successfully isolated. miR-141 mimic reduced cell death and pyroptosis-related protein expression in HUVECs, while the inhibitor had opposite effects, increasing cell death, and enhancing pyroptosis protein expression. Additionally, macrophage-derived exosomal miR-141 inhibitor increased cell death and pyroptosis-related proteins in HUVECs. miR-141 inhibits NLRP3 transcription. Macrophages facilitate sepsis progression by secreting miR-141 decreased exosomes to activate NLRP3-mediated pyroptosis in ECs, which could be a potentially valuable target of sepsis therapy.


Subject(s)
Exosomes , Human Umbilical Vein Endothelial Cells , Macrophages , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Sepsis , MicroRNAs/genetics , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Humans , Exosomes/metabolism , Macrophages/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Sepsis/metabolism , Sepsis/pathology , THP-1 Cells , Disease Progression , Animals , Mice
10.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 102-109, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650148

ABSTRACT

Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis. The tumour necrosis factor receptor superfamily member 6 (TNFRSF6) gene encodes the Fas protein, and it participates in apoptosis induced in different cell types. This study aimed to explore TNFRSF6 function in SAE. The SAE mouse model was established by intraperitoneal injection of LPS in TNFRSF6-/- mice and C57BL/6J mice. Microglia were treated with LPS to establish the cell model. The learning, memory and cognitive functions in mice were tested by behavioral tests. Nissl staining was utilized for determining neuronal injury. Microglial activation was tested by immunofluorescence assay. ELISA was utilized for determining TNF-α, IL-1ß, IL-6, and IL-10 contents. Mitochondrial dysfunction was measured by mitochondrial oxygen consumption, ATP content, ROS production, and JC-1 assay. TNFRSF6 was upregulated in the LPS-induced mouse model and cell model. TNFRSF6 deficiency notably alleviated the impaired learning, memory and cognitive functions in SAE mice. Furthermore, we found that TNFRSF6 deficiency could alleviate neuronal injury, microglial activation, and inflammation in SAE mice. Additionally, mitochondrial dysfunction in the SAE mice was improved by TNFRSF6 depletion. In the LPS-induced microglia, we also proved that TNFRSF6 knockdown reduced inflammatory response inhibited ROS production, and alleviated mitochondrial dysfunction. TNFRSF6 induced mitochondrial dysfunction and microglia activation in the in vivo and in vitro models of SAE.


Subject(s)
Disease Models, Animal , Lipopolysaccharides , Mice, Inbred C57BL , Microglia , Mitochondria , Sepsis-Associated Encephalopathy , Animals , Male , Mice , Inflammation/pathology , Inflammation/metabolism , Lipopolysaccharides/toxicity , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Mitochondria/metabolism , Neurons/metabolism , Neurons/pathology , Reactive Oxygen Species/metabolism , Sepsis/complications , Sepsis/metabolism , Sepsis/pathology , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/pathology
11.
Sci Transl Med ; 16(744): eadg5768, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38657024

ABSTRACT

Sepsis is a life-threatening disease caused by a dysregulated host response to infection, resulting in 11 million deaths globally each year. Vascular endothelial cell dysfunction results in the loss of endothelial barrier integrity, which contributes to sepsis-induced multiple organ failure and mortality. Erythropoietin-producing hepatocellular carcinoma (Eph) receptors and their ephrin ligands play a key role in vascular endothelial barrier disruption but are currently not a therapeutic target in sepsis. Using a cecal ligation and puncture (CLP) mouse model of sepsis, we showed that prophylactic or therapeutic treatment of mice with EphA4-Fc, a decoy receptor and pan-ephrin inhibitor, resulted in improved survival and a reduction in vascular leak, lung injury, and endothelial cell dysfunction. EphA2-/- mice also exhibited reduced mortality and pathology after CLP compared with wild-type mice. Proteomics of plasma samples from mice with sepsis after CLP revealed dysregulation of a number of Eph/ephrins, including EphA2/ephrin A1. Administration of EphA4-Fc to cultured human endothelial cells pretreated with TNF-α or ephrin-A1 prevented loss of endothelial junction proteins, specifically VE-cadherin, with maintenance of endothelial barrier integrity. In children admitted to hospital with fever and suspected infection, we observed that changes in EphA2/ephrin A1 in serum samples correlated with endothelial and organ dysfunction. Targeting Eph/ephrin signaling may be a potential therapeutic strategy to reduce sepsis-induced endothelial dysfunction and mortality.


Subject(s)
Endothelial Cells , Ephrins , Sepsis , Signal Transduction , Animals , Sepsis/complications , Sepsis/metabolism , Sepsis/pathology , Humans , Endothelial Cells/metabolism , Mice , Ephrins/metabolism , Mice, Inbred C57BL , Receptors, Eph Family/metabolism , Cecum/pathology , Male , Human Umbilical Vein Endothelial Cells/metabolism , Disease Models, Animal
12.
Cell Commun Signal ; 22(1): 241, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664775

ABSTRACT

Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.


Subject(s)
Acute Lung Injury , Endothelial Cells , Respiratory Distress Syndrome , Sepsis , Humans , Sepsis/complications , Sepsis/pathology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/etiology , Acute Lung Injury/pathology , Acute Lung Injury/etiology , Endothelial Cells/pathology , Animals
13.
Nature ; 629(8013): 893-900, 2024 May.
Article in English | MEDLINE | ID: mdl-38632402

ABSTRACT

The blood-brain barrier (BBB) protects the central nervous system from infections or harmful substances1; its impairment can lead to or exacerbate various diseases of the central nervous system2-4. However, the mechanisms of BBB disruption during infection and inflammatory conditions5,6 remain poorly defined. Here we find that activation of the pore-forming protein GSDMD by the cytosolic lipopolysaccharide (LPS) sensor caspase-11 (refs. 7-9), but not by TLR4-induced cytokines, mediates BBB breakdown in response to circulating LPS or during LPS-induced sepsis. Mice deficient in the LBP-CD14 LPS transfer and internalization pathway10-12 resist BBB disruption. Single-cell RNA-sequencing analysis reveals that brain endothelial cells (bECs), which express high levels of GSDMD, have a prominent response to circulating LPS. LPS acting on bECs primes Casp11 and Cd14 expression and induces GSDMD-mediated plasma membrane permeabilization and pyroptosis in vitro and in mice. Electron microscopy shows that this features ultrastructural changes in the disrupted BBB, including pyroptotic endothelia, abnormal appearance of tight junctions and vasculature detachment from the basement membrane. Comprehensive mouse genetic analyses, combined with a bEC-targeting adeno-associated virus system, establish that GSDMD activation in bECs underlies BBB disruption by LPS. Delivery of active GSDMD into bECs bypasses LPS stimulation and opens the BBB. In CASP4-humanized mice, Gram-negative Klebsiella pneumoniae infection disrupts the BBB; this is blocked by expression of a GSDMD-neutralizing nanobody in bECs. Our findings outline a mechanism for inflammatory BBB breakdown, and suggest potential therapies for diseases of the central nervous system associated with BBB impairment.


Subject(s)
Blood-Brain Barrier , Caspases, Initiator , Endothelial Cells , Inflammation , Intracellular Signaling Peptides and Proteins , Lipopolysaccharide Receptors , Lipopolysaccharides , Phosphate-Binding Proteins , Pyroptosis , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Mice , Lipopolysaccharides/pharmacology , Phosphate-Binding Proteins/metabolism , Endothelial Cells/metabolism , Male , Caspases, Initiator/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Inflammation/pathology , Inflammation/metabolism , Lipopolysaccharide Receptors/metabolism , Brain/pathology , Brain/metabolism , Female , Humans , Sepsis/metabolism , Sepsis/pathology , Sepsis/microbiology , Tight Junctions/metabolism , Single-Cell Analysis , Mice, Inbred C57BL , Klebsiella pneumoniae , Gasdermins
14.
Biochem Biophys Res Commun ; 710: 149832, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38588614

ABSTRACT

BACKGROUND: Sepsis-induced acute lung injury (ALI) is associated with considerable morbidity and mortality in critically ill patients. S100A9, a key endothelial injury factor, is markedly upregulated in sepsis-induced ALI; however, its specific mechanism of action has not been fully elucidated. METHODS: The Gene Expression Omnibus database transcriptome data for sepsis-induced ALI were used to screen for key differentially expressed genes (DEGs). Using bioinformatics analysis methods such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses, the pathogenesis of sepsis-induced ALI was revealed. Intratracheal infusion of lipopolysaccharide (LPS, 10 mg/kg) induced ALI in wild-type (WT) and S100A9 knockout mice. Multiomics analyses (transcriptomics and proteomics) were performed to investigate the potential mechanisms by which S100A9 exacerbates acute lung damage. Hematoxylin-eosin, Giemsa, and TUNEL staining were used to evaluate lung injury and cell apoptosis. LPS (10 µg/mL)-induced murine lung epithelial MLE-12 cells were utilized to mimic ALI and were modulated by S100A9 lentiviral transfection. The impact of S100A9 on cell apoptosis and inflammatory responses were identified using flow cytometry and PCR. The expression of interleukin (IL)-17-nuclear factor kappa B (NFκB)-caspase-3 signaling components was identified using western blotting. RESULTS: Six common DEGs (S100A9, S100A8, IFITM6, SAA3, CD177, and MMP9) were identified in the six datasets related to ALI in sepsis. Compared to WT sepsis mice, S100A9 knockout significantly alleviated LPS-induced ALI in mice, with reduced lung structural damage and inflammatory exudation, decreased exfoliated cell and protein content in the lung lavage fluid, and reduced apoptosis and necrosis of pulmonary epithelial cells. Transcriptomic analysis revealed that knocking out S100A9 significantly affected 123 DEGs, which were enriched in immune responses, defense responses against bacteria or lipopolysaccharides, cytokine-cytokine receptor interactions, and the IL-17 signaling pathway. Proteomic analysis revealed that S100A9 knockout alleviated muscle contraction dysfunction and structural remodeling in sepsis-induced ALI. Multiomics analysis revealed that S100A9 may be closely related to interferon-induced proteins with tetratricopeptide repeats and oligoadenylate synthase-like proteins. LPS decreased MLE12 cell activity, accompanied by high expression of S100A9. The expression of IL-17RA, pNFκB, and cleaved-caspase-3 were increased by S100A9 overexpression and reduced by S100A9 knockdown in LPS-stimulated MLE12 cells. S100A9 knockdown decreases transcription of apoptosis-related markers Bax, Bcl and caspase-3, alleviating LPS-induced apoptosis. CONCLUSIONS: S100A9 as a key biomarker of sepsis-induced acute lung injury, and exacerbates lung damage and epithelial cell apoptosis induced by LPS via the IL-17-NFκB-caspase-3 signaling pathway.


Subject(s)
Acute Lung Injury , Sepsis , Humans , Mice , Animals , NF-kappa B/metabolism , Interleukin-17/metabolism , Caspase 3/metabolism , Lipopolysaccharides/pharmacology , Proteomics , Acute Lung Injury/chemically induced , Lung/pathology , Signal Transduction , Mice, Knockout , Sepsis/pathology , Calgranulin B/genetics , Calgranulin B/metabolism
15.
Cell Rep ; 43(3): 113918, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38451817

ABSTRACT

Maximizing the potential of human liver organoids (LOs) for modeling human septic liver requires the integration of innate immune cells, particularly resident macrophage Kupffer cells. In this study, we present a strategy to generate LOs containing Kupffer cells (KuLOs) by recapitulating fetal liver hematopoiesis using human induced pluripotent stem cell (hiPSC)-derived erythro-myeloid progenitors (EMPs), the origin of tissue-resident macrophages, and hiPSC-derived LOs. Remarkably, LOs actively promote EMP hematopoiesis toward myeloid and erythroid lineages. Moreover, supplementing with macrophage colony-stimulating factor (M-CSF) proves crucial in sustaining the hematopoietic population during the establishment of KuLOs. Exposing KuLOs to sepsis-like endotoxins leads to significant organoid dysfunction that closely resembles the pathological characteristics of the human septic liver. Furthermore, we observe a notable functional recovery in KuLOs upon endotoxin elimination, which is accelerated by using Toll-like receptor-4-directed endotoxin antagonist. Our study represents a comprehensive framework for integrating hematopoietic cells into organoids, facilitating in-depth investigations into inflammation-mediated liver pathologies.


Subject(s)
Induced Pluripotent Stem Cells , Liver Diseases , Sepsis , Humans , Kupffer Cells , Liver/pathology , Liver Diseases/pathology , Organoids , Sepsis/pathology , Endotoxins , Cell Differentiation
16.
Biomed Pharmacother ; 174: 116453, 2024 May.
Article in English | MEDLINE | ID: mdl-38513593

ABSTRACT

Sepsis-associated encephalopathy (SAE), a common neurological complication of sepsis, is a heterogenous complex clinical syndrome caused by the dysfunctional response of a host to infection. This dysfunctional response leads to excess mortality and morbidity worldwide. Despite clinical relevance with high incidence, there is a lack of understanding for its both its acute/chronic pathogenesis and therapeutic management. A better understanding of the molecular mechanisms behind SAE may provide tools to better enhance therapeutic efficacy. Mounting evidence indicates that some types of non-apoptotic regulated cell death (RCD), such as ferroptosis, pyroptosis, and autophagy, contribute to SAE. Targeting these types of RCD may provide meaningful targets for future treatments against SAE. This review summarizes the core mechanism by which non-apoptotic RCD leads to the pathogenesis of SAE. We focus on the emerging types of therapeutic compounds that can inhibit RCD and delineate their beneficial pharmacological effects against SAE. Within this review we suggest that pharmacological inhibition of non-apoptotic RCD may serve as a potential therapeutic strategy against SAE.


Subject(s)
Autophagy , Ferroptosis , Pyroptosis , Sepsis-Associated Encephalopathy , Humans , Pyroptosis/drug effects , Autophagy/drug effects , Autophagy/physiology , Ferroptosis/drug effects , Animals , Sepsis-Associated Encephalopathy/pathology , Sepsis-Associated Encephalopathy/metabolism , Sepsis/complications , Sepsis/metabolism , Sepsis/pathology , Sepsis/drug therapy , Regulated Cell Death/drug effects
17.
Int Immunopharmacol ; 131: 111872, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38503011

ABSTRACT

Liver is one of the vital organs in the human body and liver injury will have a very serious impact on human damage. Gypenoside XLIX is a PPAR-α activator that inhibits the activation of the NF-κB signaling pathway. The components of XLIX have pharmacological effects such as cardiovascular protection, antihypoxia, anti-tumor and anti-aging. In this study, we used cecum ligation and puncture (CLP) was used to induce in vivo mice hepatic injury, and lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells, evaluated whether Gypenoside XLIX could have a palliative effect on sepsis-induced acute liver injury via NF-κB/PPAR-α/NLRP3. In order to gain insight into these mechanisms, six groups were created in vivo: the Contol group, the Sham group, the CLP group, the CLP + XLIX group (40 mg/kg) and the Sham + XLIX (40 mg/kg) group, and the CLP + DEX (2 mg/kg) group. Three groups were created in vitro: Control, LPS, LPS + XLIX (40 µM). The analytical methods used included H&E staining, qPCR, reactive oxygen species (ROS), oil red O staining, and Western Blot. The results showed that XLIX attenuated hepatic inflammatory injury in mice with toxic liver disease through inhibition of the TLR4-mediated NF-κB pathway, attenuated lipid accumulation through activation of PPAR-α, and attenuated hepatic pyroptosis by inhibiting NLRP3 production. Regarding the imbalance between oxidative and antioxidant defenses due to septic liver injury, XLIX reduced liver oxidative stress-related biomarkers (ALT, AST), reduced ROS accumulation, decreased the amount of malondialdehyde (MDA) produced by lipid peroxidation, and increased the levels of antioxidant enzymes such as glutathione (GSH) and catalase (CAT). Our results demonstrate that XLIX can indeed attenuate septic liver injury. This is extremely important for future studies on XLIX and sepsis, and provides a potential pathway for the treatment of acute liver injury.


Subject(s)
NF-kappa B , Saponins , Sepsis , Humans , Mice , Animals , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Antioxidants , PPAR alpha/metabolism , Lipopolysaccharides/pharmacology , Reactive Oxygen Species , Liver/pathology , Glutathione , Sepsis/pathology
18.
Behav Brain Res ; 465: 114887, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38499156

ABSTRACT

Sepsis-associated encephalopathy (SAE) frequently encounters patients who are in intensive care units and ∼70% of patients with severe systemic infection. However, due to the unclear pathological mechanisms of SAE, the desease-modifying drug is still lack. Here, we aimed to explore whether the flavonoid components extracted from CCL (CCLF) seeds possess protective effects on SAE animals, and systematically evaluate the transcriptomic alteration (in the hippocampus) after CCLF treatment on SAE animals employing RNA sequencing. We observed that CCLF improved the brain's learning and memory abilities and the structural integrity of BBB using cecal ligation and puncture (CLP)-induced SAE animal models, evaluated by behavioral test and tissue examination of animals respectively. RNA sequencing results showed that CCLF treatment reverses SAE-induced transcriptomic alteration in the hippocampus. Moreover, CCLF also dramatically relieved inflammatory (such as TNF-α, IL-2, and IL-6) and oxidative (MDA and SOD activity) stresses, and inhibited SAE-induced neuron apoptosis in brain tissues. More importantly, CCLF restored the PI3K/AKT signaling pathway and then induced the Nrf2 nuclear translocation to drive HO-1 expression both in vitro and in vivo. LY294002, an inhibitor of PI3K, obviously blocked CCLF's functions on anti-apoptosis, anti-inflammation, and anti-oxidation in vivo, demonstrating that CCLF achieves its bioactivities in a PI3K/AKT signaling dependent manner. Altogether, CCLF exhibits remarkable neuro-protective function and may be a promising candidate for further clinical trials for SAE treatment.


Subject(s)
Cuscuta , Sepsis-Associated Encephalopathy , Sepsis , Animals , Cuscuta/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , NF-E2-Related Factor 2/metabolism , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/metabolism , Sepsis/complications , Sepsis/drug therapy , Sepsis/pathology , Sepsis-Associated Encephalopathy/drug therapy
19.
BMC Anesthesiol ; 24(1): 72, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395800

ABSTRACT

BACKGROUND: Approximately 40 to 60% of patients with sepsis develop sepsis-induced cardiomyopathy (SIC), which is associated with a substantial increase in mortality. We have found that molecular hydrogen (H2) inhalation improved the survival rate and cardiac injury in septic mice. However, the mechanism remains unclear. This study aimed to explore the regulatory mechanism by which hydrogen modulates autophagy and its role in hydrogen protection of SIC. METHODS: Cecal ligation and puncture (CLP) was used to induce sepsis in adult C57BL/6J male mice. The mice were randomly divided into 4 groups: Sham, Sham + 2% hydrogen inhalation (H2), CLP, and CLP + H2 group. The 7-day survival rate was recorded. Myocardial pathological scores were calculated. Myocardial troponin I (cTnI) levels in serum were detected, and the levels of autophagy- and mitophagy-related proteins in myocardial tissue were measured. Another four groups of mice were also studied: CLP, CLP + Bafilomycin A1 (BafA1), CLP + H2, and CLP + H2 + BafA1 group. Mice in the BafA1 group received an intraperitoneal injection of the autophagy inhibitor BafA1 1 mg/kg 1 h after operation. The detection indicators remained the same as before. RESULTS: The survival rate of septic mice treated with H2 was significantly improved, myocardial tissue inflammation was improved, serum cTnI level was decreased, autophagy flux was increased, and mitophagy protein content was decreased (P < 0.05). Compared to the CLP + H2 group, the CLP + H2 + BafA1 group showed a decrease in autophagy level and 7-day survival rate, an increase in myocardial tissue injury and cTnI level, which reversed the protective effect of hydrogen (P < 0.05). CONCLUSION: Hydrogen exerts protective effect against SIC, which may be achieved through the promotion of autophagy and mitophagy.


Subject(s)
Cardiomyopathies , Sepsis , Humans , Mice , Male , Animals , Mice, Inbred C57BL , Autophagy , Cardiomyopathies/etiology , Cardiomyopathies/prevention & control , Sepsis/complications , Sepsis/pathology , Hydrogen/pharmacology , Hydrogen/therapeutic use
20.
Curr Pharm Des ; 30(3): 161-168, 2024.
Article in English | MEDLINE | ID: mdl-38243948

ABSTRACT

Sepsis is a complex clinical condition and a leading cause of death worldwide. During Sepsis, there is a derailment in the host response to infection, which can progress to severe sepsis and multiple organ dysfunction or failure, which leads to death. Free radicals, including reactive oxygen species (ROS) generated predominantly in mitochondria, are one of the key players in impairing normal organ function in sepsis. ROS contributing to oxidative stress has been reported to be the main culprit in the injury of the lung, heart, liver, kidney, gastrointestinal, and other organs. Here in the present review, we describe the generation, and essential properties of various types of ROS, their effect on macromolecules, and their role in mitochondrial dysfunction. Furthermore, the mechanism involved in the ROS-mediated pathogenesis of sepsis-induced organ dysfunction has also been discussed.


Subject(s)
Mitochondrial Diseases , Sepsis , Humans , Reactive Oxygen Species , Multiple Organ Failure , Free Radicals , Sepsis/pathology , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...