Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.265
Filter
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38695119

ABSTRACT

Sequence similarity is of paramount importance in biology, as similar sequences tend to have similar function and share common ancestry. Scoring matrices, such as PAM or BLOSUM, play a crucial role in all bioinformatics algorithms for identifying similarities, but have the drawback that they are fixed, independent of context. We propose a new scoring method for amino acid similarity that remedies this weakness, being contextually dependent. It relies on recent advances in deep learning architectures that employ self-supervised learning in order to leverage the power of enormous amounts of unlabelled data to generate contextual embeddings, which are vector representations for words. These ideas have been applied to protein sequences, producing embedding vectors for protein residues. We propose the E-score between two residues as the cosine similarity between their embedding vector representations. Thorough testing on a wide variety of reference multiple sequence alignments indicate that the alignments produced using the new $E$-score method, especially ProtT5-score, are significantly better than those obtained using BLOSUM matrices. The new method proposes to change the way alignments are computed, with far-reaching implications in all areas of textual data that use sequence similarity. The program to compute alignments based on various $E$-scores is available as a web server at e-score.csd.uwo.ca. The source code is freely available for download from github.com/lucian-ilie/E-score.


Subject(s)
Algorithms , Computational Biology , Sequence Alignment , Sequence Alignment/methods , Computational Biology/methods , Software , Sequence Analysis, Protein/methods , Amino Acid Sequence , Proteins/chemistry , Proteins/genetics , Deep Learning , Databases, Protein
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38701416

ABSTRACT

Predicting protein function is crucial for understanding biological life processes, preventing diseases and developing new drug targets. In recent years, methods based on sequence, structure and biological networks for protein function annotation have been extensively researched. Although obtaining a protein in three-dimensional structure through experimental or computational methods enhances the accuracy of function prediction, the sheer volume of proteins sequenced by high-throughput technologies presents a significant challenge. To address this issue, we introduce a deep neural network model DeepSS2GO (Secondary Structure to Gene Ontology). It is a predictor incorporating secondary structure features along with primary sequence and homology information. The algorithm expertly combines the speed of sequence-based information with the accuracy of structure-based features while streamlining the redundant data in primary sequences and bypassing the time-consuming challenges of tertiary structure analysis. The results show that the prediction performance surpasses state-of-the-art algorithms. It has the ability to predict key functions by effectively utilizing secondary structure information, rather than broadly predicting general Gene Ontology terms. Additionally, DeepSS2GO predicts five times faster than advanced algorithms, making it highly applicable to massive sequencing data. The source code and trained models are available at https://github.com/orca233/DeepSS2GO.


Subject(s)
Algorithms , Computational Biology , Neural Networks, Computer , Protein Structure, Secondary , Proteins , Proteins/chemistry , Proteins/metabolism , Proteins/genetics , Computational Biology/methods , Databases, Protein , Gene Ontology , Sequence Analysis, Protein/methods , Software
3.
BMC Bioinformatics ; 25(1): 176, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704533

ABSTRACT

BACKGROUND: Protein residue-residue distance maps are used for remote homology detection, protein information estimation, and protein structure research. However, existing prediction approaches are time-consuming, and hundreds of millions of proteins are discovered each year, necessitating the development of a rapid and reliable prediction method for protein residue-residue distances. Moreover, because many proteins lack known homologous sequences, a waiting-free and alignment-free deep learning method is needed. RESULT: In this study, we propose a learning framework named FreeProtMap. In terms of protein representation processing, the proposed group pooling in FreeProtMap effectively mitigates issues arising from high-dimensional sparseness in protein representation. In terms of model structure, we have made several careful designs. Firstly, it is designed based on the locality of protein structures and triangular inequality distance constraints to improve prediction accuracy. Secondly, inference speed is improved by using additive attention and lightweight design. Besides, the generalization ability is improved by using bottlenecks and a neural network block named local microformer. As a result, FreeProtMap can predict protein residue-residue distances in tens of milliseconds and has higher precision than the best structure prediction method. CONCLUSION: Several groups of comparative experiments and ablation experiments verify the effectiveness of the designs. The results demonstrate that FreeProtMap significantly outperforms other state-of-the-art methods in accurate protein residue-residue distance prediction, which is beneficial for lots of protein research works. It is worth mentioning that we could scan all proteins discovered each year based on FreeProtMap to find structurally similar proteins in a short time because the fact that the structure similarity calculation method based on distance maps is much less time-consuming than algorithms based on 3D structures.


Subject(s)
Proteins , Proteins/chemistry , Computational Biology/methods , Databases, Protein , Protein Conformation , Algorithms , Sequence Analysis, Protein/methods , Neural Networks, Computer
4.
BMC Med Inform Decis Mak ; 24(1): 122, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741115

ABSTRACT

MOTIVATION: Drug repurposing speeds up the development of new treatments, being less costly, risky, and time consuming than de novo drug discovery. There are numerous biological elements that contribute to the development of diseases and, as a result, to the repurposing of drugs. METHODS: In this article, we analysed the potential role of protein sequences in drug repurposing scenarios. For this purpose, we embedded the protein sequences by performing four state of the art methods and validated their capacity to encapsulate essential biological information through visualization. Then, we compared the differences in sequence distance between protein-drug target pairs of drug repurposing and non - drug repurposing data. Thus, we were able to uncover patterns that define protein sequences in repurposing cases. RESULTS: We found statistically significant sequence distance differences between protein pairs in the repurposing data and the rest of protein pairs in non-repurposing data. In this manner, we verified the potential of using numerical representations of sequences to generate repurposing hypotheses in the future.


Subject(s)
Drug Repositioning , Humans , Sequence Analysis, Protein
5.
Int J Biol Macromol ; 270(Pt 2): 132469, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761901

ABSTRACT

Thermophilic proteins are important for academic research and industrial processes, and various computational methods have been developed to identify and screen them. However, their performance has been limited due to the lack of high-quality labeled data and efficient models for representing protein. Here, we proposed a novel sequence-based thermophilic proteins prediction framework, called ThermoFinder. The results demonstrated that ThermoFinder outperforms previous state-of-the-art tools on two benchmark datasets, and feature ablation experiments confirmed the effectiveness of our approach. Additionally, ThermoFinder exhibited exceptional performance and consistency across two newly constructed datasets, one of these was specifically constructed for the regression-based prediction of temperature optimum values directly derived from protein sequences. The feature importance analysis, using shapley additive explanations, further validated the advantages of ThermoFinder. We believe that ThermoFinder will be a valuable and comprehensive framework for predicting thermophilic proteins, and we have made our model open source and available on Github at https://github.com/Luo-SynBioLab/ThermoFinder.


Subject(s)
Computational Biology , Software , Computational Biology/methods , Proteins/chemistry , Databases, Protein , Sequence Analysis, Protein/methods , Algorithms , Temperature
6.
Comput Biol Med ; 176: 108538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759585

ABSTRACT

Anticancer peptides (ACPs) key properties including bioactivity, high efficacy, low toxicity, and lack of drug resistance make them ideal candidates for cancer therapies. To deeply explore the potential of ACPs and accelerate development of cancer therapies, although 53 Artificial Intelligence supported computational predictors have been developed for ACPs and non ACPs classification but only one predictor has been developed for ACPs functional types annotations. Moreover, these predictors extract amino acids distribution patterns to transform peptides sequences into statistical vectors that are further fed to classifiers for discriminating peptides sequences and annotating peptides functional classes. Overall, these predictors remain fail in extracting diverse types of amino acids distribution patterns from peptide sequences. The paper in hand presents a unique CARE encoder that transforms peptides sequences into statistical vectors by extracting 4 different types of distribution patterns including correlation, distribution, composition, and transition. Across public benchmark dataset, proposed encoder potential is explored under two different evaluation settings namely; intrinsic and extrinsic. Extrinsic evaluation indicates that 12 different machine learning classifiers achieve superior performance with the proposed encoder as compared to 55 existing encoders. Furthermore, an intrinsic evaluation reveals that, unlike existing encoders, the proposed encoder generates more discriminative clusters for ACPs and non-ACPs classes. Across 8 public benchmark ACPs and non-ACPs classification datasets, proposed encoder and Adaboost classifier based CAPTURE predictor outperforms existing predictors with an average accuracy, recall and MCC score of 1%, 4%, and 2% respectively. In generalizeability evaluation case study, across 7 benchmark anti-microbial peptides classification datasets, CAPTURE surpasses existing predictors by an average AU-ROC of 2%. CAPTURE predictive pipeline along with label powerset method outperforms state-of-the-art ACPs functional types predictor by 5%, 5%, 5%, 6%, and 3% in terms of average accuracy, subset accuracy, precision, recall, and F1 respectively. CAPTURE web application is available at https://sds_genetic_analysis.opendfki.de/CAPTURE.


Subject(s)
Antineoplastic Agents , Peptides , Humans , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Peptides/chemistry , Machine Learning , Amino Acid Sequence , Computational Biology/methods , Neoplasms/drug therapy , Sequence Analysis, Protein/methods , Databases, Protein
7.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38600663

ABSTRACT

Protein sequence design can provide valuable insights into biopharmaceuticals and disease treatments. Currently, most protein sequence design methods based on deep learning focus on network architecture optimization, while ignoring protein-specific physicochemical features. Inspired by the successful application of structure templates and pre-trained models in the protein structure prediction, we explored whether the representation of structural sequence profile can be used for protein sequence design. In this work, we propose SPDesign, a method for protein sequence design based on structural sequence profile using ultrafast shape recognition. Given an input backbone structure, SPDesign utilizes ultrafast shape recognition vectors to accelerate the search for similar protein structures in our in-house PAcluster80 structure database and then extracts the sequence profile through structure alignment. Combined with structural pre-trained knowledge and geometric features, they are further fed into an enhanced graph neural network for sequence prediction. The results show that SPDesign significantly outperforms the state-of-the-art methods, such as ProteinMPNN, Pifold and LM-Design, leading to 21.89%, 15.54% and 11.4% accuracy gains in sequence recovery rate on CATH 4.2 benchmark, respectively. Encouraging results also have been achieved on orphan and de novo (designed) benchmarks with few homologous sequences. Furthermore, analysis conducted by the PDBench tool suggests that SPDesign performs well in subdivided structures. More interestingly, we found that SPDesign can well reconstruct the sequences of some proteins that have similar structures but different sequences. Finally, the structural modeling verification experiment indicates that the sequences designed by SPDesign can fold into the native structures more accurately.


Subject(s)
Neural Networks, Computer , Proteins , Sequence Alignment , Amino Acid Sequence , Proteins/chemistry , Sequence Analysis, Protein/methods
8.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38662570

ABSTRACT

MOTIVATION: Proteins, the molecular workhorses of biological systems, execute a multitude of critical functions dictated by their precise three-dimensional structures. In a complex and dynamic cellular environment, proteins can undergo misfolding, leading to the formation of aggregates that take up various forms, including amorphous and ordered aggregation in the shape of amyloid fibrils. This phenomenon is closely linked to a spectrum of widespread debilitating pathologies, such as Alzheimer's disease, Parkinson's disease, type-II diabetes, and several other proteinopathies, but also hampers the engineering of soluble agents, as in the case of antibody development. As such, the accurate prediction of aggregation propensity within protein sequences has become pivotal due to profound implications in understanding disease mechanisms, as well as in improving biotechnological and therapeutic applications. RESULTS: We previously developed Cordax, a structure-based predictor that utilizes logistic regression to detect aggregation motifs in protein sequences based on their structural complementarity to the amyloid cross-beta architecture. Here, we present a dedicated web server interface for Cordax. This online platform combines several features including detailed scoring of sequence aggregation propensity, as well as 3D visualization with several customization options for topology models of the structural cores formed by predicted aggregation motifs. In addition, information is provided on experimentally determined aggregation-prone regions that exhibit sequence similarity to predicted motifs, scores, and links to other predictor outputs, as well as simultaneous predictions of relevant sequence propensities, such as solubility, hydrophobicity, and secondary structure propensity. AVAILABILITY AND IMPLEMENTATION: The Cordax webserver is freely accessible at https://cordax.switchlab.org/.


Subject(s)
Software , Protein Aggregates , Internet , Amyloid/chemistry , Proteins/chemistry , Amino Acid Motifs , Humans , Protein Conformation , Sequence Analysis, Protein/methods , Amino Acid Sequence
9.
Bioinformatics ; 40(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38608190

ABSTRACT

MOTIVATION: Deep-learning models are transforming biological research, including many bioinformatics and comparative genomics algorithms, such as sequence alignments, phylogenetic tree inference, and automatic classification of protein functions. Among these deep-learning algorithms, models for processing natural languages, developed in the natural language processing (NLP) community, were recently applied to biological sequences. However, biological sequences are different from natural languages, such as English, and French, in which segmentation of the text to separate words is relatively straightforward. Moreover, biological sequences are characterized by extremely long sentences, which hamper their processing by current machine-learning models, notably the transformer architecture. In NLP, one of the first processing steps is to transform the raw text to a list of tokens. Deep-learning applications to biological sequence data mostly segment proteins and DNA to single characters. In this work, we study the effect of alternative tokenization algorithms on eight different tasks in biology, from predicting the function of proteins and their stability, through nucleotide sequence alignment, to classifying proteins to specific families. RESULTS: We demonstrate that applying alternative tokenization algorithms can increase accuracy and at the same time, substantially reduce the input length compared to the trivial tokenizer in which each character is a token. Furthermore, applying these tokenization algorithms allows interpreting trained models, taking into account dependencies among positions. Finally, we trained these tokenizers on a large dataset of protein sequences containing more than 400 billion amino acids, which resulted in over a 3-fold decrease in the number of tokens. We then tested these tokenizers trained on large-scale data on the above specific tasks and showed that for some tasks it is highly beneficial to train database-specific tokenizers. Our study suggests that tokenizers are likely to be a critical component in future deep-network analysis of biological sequence data. AVAILABILITY AND IMPLEMENTATION: Code, data, and trained tokenizers are available on https://github.com/technion-cs-nlp/BiologicalTokenizers.


Subject(s)
Algorithms , Computational Biology , Deep Learning , Natural Language Processing , Computational Biology/methods , Proteins/chemistry , Sequence Alignment/methods , Sequence Analysis, Protein/methods
10.
Comput Biol Med ; 174: 108408, 2024 May.
Article in English | MEDLINE | ID: mdl-38636332

ABSTRACT

Accurately predicting tumor T-cell antigen (TTCA) sequences is a crucial task in the development of cancer vaccines and immunotherapies. TTCAs derived from tumor cells, are presented to immune cells (T cells) through major histocompatibility complex (MHC), via the recognition of specific portions of their structure known as epitopes. More specifically, MHC class I introduces TTCAs to T-cell receptors (TCR) which are located on the surface of CD8+ T cells. However, TTCA sequences are varied and lead to struggles in vaccine design. Recently, Machine learning (ML) models have been developed to predict TTCA sequences which could aid in fast and correct TTCA identification. During the construction of the TTCA predictor, the peptide encoding strategy is an important step. Previous studies have used biological descriptors for encoding TTCA sequences. However, there have been no studies that use natural language processing (NLP), a potential approach for this purpose. As sentences have their own words with diverse properties, biological sequences also hold unique characteristics that reflect evolutionary information, physicochemical values, and structural information. We hypothesized that NLP methods would benefit the prediction of TTCA. To develop a new identifying TTCA model, we first constructed a based model with widely used ML algorithms and extracted features from biological descriptors. Then, to improve our model performance, we added extracted features from biological language models (BLMs) based on NLP methods. Besides, we conducted feature selection by using Chi-square and Pearson Correlation Coefficient techniques. Then, SMOTE, Up-sampling, and Near-Miss were used to treat unbalanced data. Finally, we optimized Sa-TTCA by the SVM algorithm to the four most effective feature groups. The best performance of Sa-TTCA showed a competitive balanced accuracy of 87.5% on a training set, and 72.0% on an independent testing set. Our results suggest that integrating biological descriptors with natural language processing has the potential to improve the precision of predicting protein/peptide functionality, which could be beneficial for developing cancer vaccines.


Subject(s)
Antigens, Neoplasm , Natural Language Processing , Support Vector Machine , Humans , Antigens, Neoplasm/immunology , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/genetics , Neoplasms/immunology , Sequence Analysis, Protein/methods , Computational Biology/methods
11.
Int J Biol Macromol ; 267(Pt 1): 131311, 2024 May.
Article in English | MEDLINE | ID: mdl-38599417

ABSTRACT

In the rapidly evolving field of computational biology, accurate prediction of protein secondary structures is crucial for understanding protein functions, facilitating drug discovery, and advancing disease diagnostics. In this paper, we propose MFTrans, a deep learning-based multi-feature fusion network aimed at enhancing the precision and efficiency of Protein Secondary Structure Prediction (PSSP). This model employs a Multiple Sequence Alignment (MSA) Transformer in combination with a multi-view deep learning architecture to effectively capture both global and local features of protein sequences. MFTrans integrates diverse features generated by protein sequences, including MSA, sequence information, evolutionary information, and hidden state information, using a multi-feature fusion strategy. The MSA Transformer is utilized to interleave row and column attention across the input MSA, while a Transformer encoder and decoder are introduced to enhance the extracted high-level features. A hybrid network architecture, combining a convolutional neural network with a bidirectional Gated Recurrent Unit (BiGRU) network, is used to further extract high-level features after feature fusion. In independent tests, our experimental results show that MFTrans has superior generalization ability, outperforming other state-of-the-art PSSP models by 3 % on average on public benchmarks including CASP12, CASP13, CASP14, TEST2016, TEST2018, and CB513. Case studies further highlight its advanced performance in predicting mutation sites. MFTrans contributes significantly to the protein science field, opening new avenues for drug discovery, disease diagnosis, and protein.


Subject(s)
Computational Biology , Protein Structure, Secondary , Proteins , Proteins/chemistry , Computational Biology/methods , Deep Learning , Neural Networks, Computer , Algorithms , Sequence Alignment , Sequence Analysis, Protein/methods
12.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38648741

ABSTRACT

SUMMARY: SIMSApiper is a Nextflow pipeline that creates reliable, structure-informed MSAs of thousands of protein sequences faster than standard structure-based alignment methods. Structural information can be provided by the user or collected by the pipeline from online resources. Parallelization with sequence identity-based subsets can be activated to significantly speed up the alignment process. Finally, the number of gaps in the final alignment can be reduced by leveraging the position of conserved secondary structure elements. AVAILABILITY AND IMPLEMENTATION: The pipeline is implemented using Nextflow, Python3, and Bash. It is publicly available on github.com/Bio2Byte/simsapiper.


Subject(s)
Proteins , Sequence Alignment , Sequence Analysis, Protein , Software , Proteins/chemistry , Sequence Alignment/methods , Sequence Analysis, Protein/methods , Algorithms , Amino Acid Sequence , Computational Biology/methods , Databases, Protein
13.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38652603

ABSTRACT

MOTIVATION: Antibody therapeutic candidates must exhibit not only tight binding to their target but also good developability properties, especially low risk of immunogenicity. RESULTS: In this work, we fit a simple generative model, SAM, to sixty million human heavy and seventy million human light chains. We show that the probability of a sequence calculated by the model distinguishes human sequences from other species with the same or better accuracy on a variety of benchmark datasets containing >400 million sequences than any other model in the literature, outperforming large language models (LLMs) by large margins. SAM can humanize sequences, generate new sequences, and score sequences for humanness. It is both fast and fully interpretable. Our results highlight the importance of using simple models as baselines for protein engineering tasks. We additionally introduce a new tool for numbering antibody sequences which is orders of magnitude faster than existing tools in the literature. AVAILABILITY AND IMPLEMENTATION: All tools developed in this study are available at https://github.com/Wang-lab-UCSD/AntPack.


Subject(s)
Antibodies , Humans , Antibodies/chemistry , Software , Sequence Analysis, Protein/methods , Computational Biology/methods , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/immunology , Algorithms
14.
Science ; 383(6689): eadg4320, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38513038

ABSTRACT

Many clinically used drugs are derived from or inspired by bacterial natural products that often are produced through nonribosomal peptide synthetases (NRPSs), megasynthetases that activate and join individual amino acids in an assembly line fashion. In this work, we describe a detailed phylogenetic analysis of several bacterial NRPSs that led to the identification of yet undescribed recombination sites within the thiolation (T) domain that can be used for NRPS engineering. We then developed an evolution-inspired "eXchange Unit between T domains" (XUT) approach, which allows the assembly of NRPS fragments over a broad range of GC contents, protein similarities, and extender unit specificities, as demonstrated for the specific production of a proteasome inhibitor designed and assembled from five different NRPS fragments.


Subject(s)
Bacterial Proteins , Evolution, Molecular , Peptide Synthases , Protein Engineering , Peptide Synthases/chemistry , Peptide Synthases/classification , Peptide Synthases/genetics , Phylogeny , Amino Acid Sequence/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/classification , Bacterial Proteins/genetics , Sequence Analysis, Protein
15.
J Pharm Biomed Anal ; 243: 116094, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38479303

ABSTRACT

BACKGROUND: Tandem mass spectrometry (MS/MS) can provide direct and accurate sequence characterization of synthetic peptide drugs, and peptide drug products including side chain modifications in the Peptide drugs. This article explains a step-by-step guide to developing a high-throughput method using high resolution mass spectrometry for characterization of Calcitonin Salmon injection containing high proportion of UV-active excipients. METHODS: The major challenge in the method development of Amino acid sequencing and Peptide mapping was presence of phenol in drug product. Phenol is a UV-active excipient and reacts with both Dithiothreitol (DTT) and Trypsin. Hence Calcitonin Salmon was extracted from the Calcitonin Salmon injection using solid phase extraction after the extraction, Amino acid sequencing and peptide mapping study was performed. Upon incubation of Calcitonin Salmon with Trypsin and DTT, digested fragments were generated which were separated by mass compatible reverse phase chromatography and the molecular mass of each fragment was determined using HRMS. RESULTS: A reverse phase chromatographic method was developed using UHPLC-HRMS for the determination of direct mass, peptide mapping and to determine the amino acid sequencing in the Calcitonin Salmon injection. The method was found Specific and fragments after trypsin digest are well resolved from each other and the molecular mass of each fragment was determined using HRMS. Sequencing was performed using automated identification of b and y ions annotation and identifications based on MS/MS spectra using Biopharma finder and Proteome discoverer software. CONCLUSION: Using this approach 100% protein coverage was obtained and protein was identified as Calcitonin Salmon and the observed masses of tryptic digest of peptide was found similar with theoretical masses. The method can be used for both UV and MS based Peptide mapping and whereas the UV based peptide mapping method can be used as identification test for Calcitonin Salmon drug substance and drug product in quality control.


Subject(s)
Calcitonin , Peptides , Tandem Mass Spectrometry , Peptide Mapping , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Trypsin/metabolism , Sequence Analysis, Protein , Proteome , Phenols
16.
Nat Commun ; 15(1): 2775, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555371

ABSTRACT

Homologous protein search is one of the most commonly used methods for protein annotation and analysis. Compared to structure search, detecting distant evolutionary relationships from sequences alone remains challenging. Here we propose PLMSearch (Protein Language Model), a homologous protein search method with only sequences as input. PLMSearch uses deep representations from a pre-trained protein language model and trains the similarity prediction model with a large number of real structure similarity. This enables PLMSearch to capture the remote homology information concealed behind the sequences. Extensive experimental results show that PLMSearch can search millions of query-target protein pairs in seconds like MMseqs2 while increasing the sensitivity by more than threefold, and is comparable to state-of-the-art structure search methods. In particular, unlike traditional sequence search methods, PLMSearch can recall most remote homology pairs with dissimilar sequences but similar structures. PLMSearch is freely available at https://dmiip.sjtu.edu.cn/PLMSearch .


Subject(s)
Biological Evolution , Proteins , Proteins/chemistry , Molecular Sequence Annotation , Algorithms , Sequence Analysis, Protein
17.
Methods Mol Biol ; 2758: 61-75, 2024.
Article in English | MEDLINE | ID: mdl-38549008

ABSTRACT

Natural peptides secreted under stress conditions by many organisms are bioactive molecules with a broad spectrum of activities. These molecules could become potential models for novel pharmaceuticals, to which bacteria, according to modern scientific concepts, do not have and cannot develop resistance. Taking this into consideration, it is necessary to clarify the amino acid sequences of such peptides. Here we describe our approach to de novo sequencing of amphibians' skin secretion peptides.


Subject(s)
Sequence Analysis, Protein , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Sequence Analysis, Protein/methods , Peptides/chemistry , Amino Acid Sequence
18.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38340092

ABSTRACT

De novo peptide sequencing is a promising approach for novel peptide discovery, highlighting the performance improvements for the state-of-the-art models. The quality of mass spectra often varies due to unexpected missing of certain ions, presenting a significant challenge in de novo peptide sequencing. Here, we use a novel concept of complementary spectra to enhance ion information of the experimental spectrum and demonstrate it through conceptual and practical analyses. Afterward, we design suitable encoders to encode the experimental spectrum and the corresponding complementary spectrum and propose a de novo sequencing model $\pi$-HelixNovo based on the Transformer architecture. We first demonstrated that $\pi$-HelixNovo outperforms other state-of-the-art models using a series of comparative experiments. Then, we utilized $\pi$-HelixNovo to de novo gut metaproteome peptides for the first time. The results show $\pi$-HelixNovo increases the identification coverage and accuracy of gut metaproteome and enhances the taxonomic resolution of gut metaproteome. We finally trained a powerful $\pi$-HelixNovo utilizing a larger training dataset, and as expected, $\pi$-HelixNovo achieves unprecedented performance, even for peptide-spectrum matches with never-before-seen peptide sequences. We also use the powerful $\pi$-HelixNovo to identify antibody peptides and multi-enzyme cleavage peptides, and $\pi$-HelixNovo is highly robust in these applications. Our results demonstrate the effectivity of the complementary spectrum and take a significant step forward in de novo peptide sequencing.


Subject(s)
Sequence Analysis, Protein , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Sequence Analysis, Protein/methods , Peptides , Amino Acid Sequence , Antibodies , Algorithms
19.
PLoS Comput Biol ; 20(2): e1011892, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38416757

ABSTRACT

In proteomics, a crucial aspect is to identify peptide sequences. De novo sequencing methods have been widely employed to identify peptide sequences, and numerous tools have been proposed over the past two decades. Recently, deep learning approaches have been introduced for de novo sequencing. Previous methods focused on encoding tandem mass spectra and predicting peptide sequences from the first amino acid onwards. However, when predicting peptides using tandem mass spectra, the peptide sequence can be predicted not only from the first amino acid but also from the last amino acid due to the coexistence of b-ion (or a- or c-ion) and y-ion (or x- or z-ion) fragments in the tandem mass spectra. Therefore, it is essential to predict peptide sequences bidirectionally. Our approach, called NovoB, utilizes a Transformer model to predict peptide sequences bidirectionally, starting with both the first and last amino acids. In comparison to Casanovo, our method achieved an improvement of the average peptide-level accuracy rate of approximately 9.8% across all species.


Subject(s)
Algorithms , Sequence Analysis, Protein , Sequence Analysis, Protein/methods , Peptides/chemistry , Amino Acid Sequence , Amino Acids
20.
Article in English | MEDLINE | ID: mdl-38316555

ABSTRACT

The recent CASP15 competition highlighted the critical role of multiple sequence alignments (MSAs) in protein structure prediction, as demonstrated by the success of the top AlphaFold2-based prediction methods. To push the boundaries of MSA utilization, we conducted a petabase-scale search of the Sequence Read Archive (SRA), resulting in gigabytes of aligned homologs for CASP15 targets. These were merged with default MSAs produced by ColabFold-search and provided to ColabFold-predict. By using SRA data, we achieved highly accurate predictions (GDT_TS > 70) for 66% of the non-easy targets, whereas using ColabFold-search default MSAs scored highly in only 52%. Next, we tested the effect of deep homology search and ColabFold's advanced features, such as more recycles, on prediction accuracy. While SRA homologs were most significant for improving ColabFold's CASP15 ranking from 11th to 3rd place, other strategies contributed too. We analyze these in the context of existing strategies to improve prediction.


Subject(s)
Computational Biology , Proteins , Computational Biology/methods , Proteins/chemistry , Sequence Alignment , Protein Conformation , Software , Algorithms , Sequence Analysis, Protein/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...