Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Environ Toxicol Pharmacol ; 105: 104349, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38135201

ABSTRACT

The objectives of this study were to evaluate the exposure to a diet naturally contaminated with mycotoxins on lactation performance, animal health, and the ability to sequester agents (SA) to reduce the human exposure to AFM1. Sixty healthy lactating Holstein cows were randomly assigned to two groups: naturally contaminated diet without and with the addition of a SA (20 g/cow/d AntitoxCooPil® -60% zeolite-40% cell wall-). Each cow was monitored throughout lactation. The concentration of aflatoxin B1 (AFB1) in feed and M1 (AFM1) in milk, health status, and productive and reproductive parameters were measured. AFB1 concentration in feed was very low (2.31 µg/kgDM). The addition of SA reduced the milk AFM1 concentrations (0.016 vs. 0.008 µg/kg) and transfer rates (2.19 vs. 0.77%). No differences were observed in health status, production and reproduction performance. The inclusion of SA in the diet of dairy cows reduce the risk in the most susceptible population.


Subject(s)
Aflatoxin M1 , Food Contamination , Lactation , Milk , Sequestering Agents , Animals , Cattle , Female , Aflatoxin B1/toxicity , Aflatoxin B1/analysis , Aflatoxin M1/analysis , Aflatoxin M1/antagonists & inhibitors , Animal Feed/analysis , Animal Feed/toxicity , Diet/veterinary , Food Contamination/analysis , Food Contamination/prevention & control , Milk/chemistry , Sequestering Agents/administration & dosage , Random Allocation
2.
Molecules ; 26(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34885669

ABSTRACT

The thermodynamics of the interaction of L-glutamic-N,N-diacetic acid (GLDA) with protons was studied potentiometrically at different temperatures, ionic strengths and ionic media. Four protonation constants and corresponding enthalpy changes occurred at infinite dilution together with temperature and ionic strength coefficients. The medium effect was also interpreted in terms of the formation of weak complexes between the ligand and the cations of supporting electrolytes, resulting in a greater tendency of GLDA to chemically interact with Na+ rather than K+ and, in turn, (CH3)4N+. Formation constants of GLDA with Cd2+ were determined in NaCl(aq) at different ionic strength values. Five complex species were found, namely CdL2-, CdHL-, CdH2L0(aq), Cd2L0(aq), and Cd(OH)L3-, whose formation constant values at infinite dilution were log ß = 12.68, 17.61, 20.76, 17.52, and 1.77, respectively. All the species results were relevant in the pH range of natural waters, although the Cd2L0(aq) was observed only for CCd ≥ CGLDA and concentrations of >0.1 mmol dm-3. The sequestering ability of GLDA toward Cd2+, evaluated by means of pL0.5, was maximum at pH~10, whereas the presence of a chloride containing a supporting electrolyte exerted a negative effect. Among new generation biodegradable ligands, GLDA was the most efficient in Cd2+ sequestration.


Subject(s)
Acetates/chemistry , Acetates/metabolism , Cadmium/metabolism , Glutamic Acid/analogs & derivatives , Sequestering Agents/chemistry , Sequestering Agents/metabolism , Temperature , Glutamic Acid/chemistry , Glutamic Acid/metabolism , Hydrogen-Ion Concentration , Ligands , Osmolar Concentration , Potassium/metabolism , Potentiometry/methods , Protons , Sodium/metabolism , Sodium Chloride/metabolism
3.
J Pharm Pharmacol ; 73(7): 855-861, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-33885783

ABSTRACT

OBJECTIVE: Bile acid sequestrants (BAS) are used extensively in the treatment of hypercholesterolaemia. This brief review aimed to describe the design and evaluation of three types of BAS: amphiphilic copolymers, cyclodextrin/poly-cyclodextrin and molecular imprinted polymers. The mechanisms underlying the action of BAS are also discussed. KEY FINDINGS: BAS could lower plasma cholesterol, improve glycemic control in patients with type 2 diabetes and regulate balance energy metabolism via receptors or receptor-independent mediated mechanisms. Different types of BAS have different levels of ability to bind to bile acids, different stability and different in-vivo activity. CONCLUSIONS: A growing amount of evidence suggests that bile acids play important roles not only in lipid metabolism but also in glucose metabolism. The higher selectivity, specificity, stability and in-vivo activity of BAS show considerable potential for lipid-lowering therapy.


Subject(s)
Bile Acids and Salts/metabolism , Cellulose/pharmacology , Cyclodextrins/pharmacology , Diabetes Mellitus, Type 2 , Hypercholesterolemia , Molecularly Imprinted Polymers/pharmacology , Sequestering Agents/pharmacology , Surface-Active Agents/pharmacology , Anticholesteremic Agents/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Humans , Hypercholesterolemia/drug therapy , Hypercholesterolemia/metabolism
4.
J Am Soc Nephrol ; 32(3): 723-735, 2021 03.
Article in English | MEDLINE | ID: mdl-33547218

ABSTRACT

BACKGROUND: In patients on maintenance dialysis, cardiovascular mortality risk is remarkably high, which can be partly explained by severe coronary artery calcification (CAC). Hyperphosphatemia has been reported to be associated with the severity of CAC. However, the optimal phosphate range in patients on dialysis remains unknown. This study was planned to compare the effects on CAC progression of two types of noncalcium-based phosphate binders and of two different phosphate target ranges. METHODS: We conducted a randomized, open-label, multicenter, interventional trial with a two by two factorial design. A total of 160 adults on dialysis were enrolled and randomized to the sucroferric oxyhydroxide or lanthanum carbonate group, with the aim of reducing serum phosphate to two target levels (3.5-4.5 mg/dl in the strict group and 5.0-6.0 mg/dl in the standard group). The primary end point was percentage change in CAC scores during the 12-month treatment. RESULTS: The full analysis set included 115 patients. We observed no significant difference in percentage change in CAC scores between the lanthanum carbonate group and the sucroferric oxyhydroxide group. On the other hand, percentage change in CAC scores in the strict group (median of 8.52; interquartile range, -1.0-23.9) was significantly lower than that in the standard group (median of 21.8; interquartile range, 10.0-36.1; P=0.006). This effect was pronounced in older (aged 65-74 years) versus younger (aged 20-64 years) participants (P value for interaction =0.003). We observed a similar finding for the absolute change in CAC scores. CONCLUSIONS: Further study with a larger sample size is needed, but strict phosphate control shows promise for delaying progression of CAC in patients undergoing maintenance hemodialysis. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Evaluate the New Phosphate Iron-Based Binder Sucroferric Oxyhydroxide in Dialysis Patients with the Goal of Advancing the Practice of EBM (EPISODE), jRCTs051180048.


Subject(s)
Calcinosis/blood , Calcinosis/etiology , Coronary Artery Disease/blood , Coronary Artery Disease/etiology , Phosphates/blood , Renal Dialysis/adverse effects , Adult , Aged , Calcinosis/prevention & control , Coronary Artery Disease/prevention & control , Disease Progression , Drug Combinations , Female , Ferric Compounds/adverse effects , Ferric Compounds/therapeutic use , Humans , Hyperphosphatemia/complications , Hyperphosphatemia/drug therapy , Hyperphosphatemia/prevention & control , Lanthanum/adverse effects , Lanthanum/therapeutic use , Male , Middle Aged , Renal Dialysis/methods , Sequestering Agents/adverse effects , Sequestering Agents/therapeutic use , Sucrose/adverse effects , Sucrose/therapeutic use , Young Adult
5.
Environ Toxicol ; 36(4): 520-529, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33166055

ABSTRACT

Colorectal cancer stem cell (CSC) has been regarded to be the root of colorectal cancer progression. However, there is still no effective therapeutic method targeting colorectal CSC in clinical application. Here, we investigated the effects of dichloroacetate (DCA) on colorectal cancer cell stemness. We showed that DCA could reduce colorectal cancer cell stemness in a dose-dependent manner, which is evident by the decreased expression of stemness markers, tumor cell sphere-formation and cell migration ability. In addition, it was found that DCA trigerred the ferroptosis of colorectal CSC, which is characterized as the upregulation of iron concentration, lipid peroxides, and glutathione level, and decreased cell viability. Mechanistic studies demonstrated that DCA could sequester iron in lysosome and thus trigger ferroptosis, which is necessary for DCA-mediated attenuation on colorectal cancer cell stemness. Taken together, this work suggests that DCA might be a colorectal CSC-killer.


Subject(s)
Colorectal Neoplasms/pathology , Dichloroacetic Acid/pharmacology , Ferroptosis/drug effects , Iron/metabolism , Lysosomes/drug effects , Neoplastic Stem Cells/drug effects , Sequestering Agents/pharmacology , Cell Movement/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/metabolism , Dose-Response Relationship, Drug , HCT116 Cells , HT29 Cells , Humans , Lysosomes/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
6.
Int J Mol Sci ; 21(21)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138066

ABSTRACT

With the increase in CO2 emissions worldwide and its dire effects, there is a need to reduce CO2 concentrations in the atmosphere. Alpha-carbonic anhydrases (α-CAs) have been identified as suitable sequestration agents. This study reports the sequence and structural analysis of 15 α-CAs from bacteria, originating from hydrothermal vent systems. Structural analysis of the multimers enabled the identification of hotspot and interface residues. Molecular dynamics simulations of the homo-multimers were performed at 300 K, 363 K, 393 K and 423 K to unearth potentially thermostable α-CAs. Average betweenness centrality (BC) calculations confirmed the relevance of some hotspot and interface residues. The key residues responsible for dimer thermostability were identified by comparing fluctuating interfaces with stable ones, and were part of conserved motifs. Crucial long-lived hydrogen bond networks were observed around residues with high BC values. Dynamic cross correlation fortified the relevance of oligomerization of these proteins, thus the importance of simulating them in their multimeric forms. A consensus of the simulation analyses used in this study suggested high thermostability for the α-CA from Nitratiruptor tergarcus. Overall, our novel findings enhance the potential of biotechnology applications through the discovery of alternative thermostable CO2 sequestration agents and their potential protein design.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/metabolism , Carbon Dioxide/isolation & purification , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/metabolism , Hydrothermal Vents/microbiology , Sequestering Agents/metabolism , Amino Acid Sequence , Carbon Dioxide/metabolism , Computer Simulation , Molecular Dynamics Simulation , Sequence Homology
7.
Chem Soc Rev ; 49(21): 7516-7532, 2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33043945

ABSTRACT

Pharmaceutical agents, drugs of abuse, and toxic substances have a large impact, positive and negative, on modern society. Efforts to mitigate the side effects of pharmaceuticals and counteract the life threatening effects of drugs of abuse and toxins can occur either by pharmacodynamic (PD) approaches based on bioreceptor·drug antagonism or by pharmacokinetic (PK) approaches that seek to reduce the concentration of free drug. In this tutorial review, we present the use of supramolecular hosts (cyclodextrins, calixarenes, (acyclic) cucurbiturils, and pillararenes) as in vivo sequestration agents for neuromuscular blockers, drugs of abuse (methamphetamine and fentanyl), anesthetics, neurotoxins, the pesticide paraquat, and heparin anti-coagulants by the PK approach. The review presents the basic physical and molecular recognition features of the supramolecular hosts and some of the principles used in their selection and structural optimization for in vivo sequestration applications. The influence of host·guest complexation on other relevant in vivo properties of drugs (e.g. distribution, circulation time, excretion, redox properties) is also mentioned. The article concludes with a discussion of future directions.


Subject(s)
Calixarenes/chemistry , Cyclodextrins/chemistry , Macrocyclic Compounds/chemistry , Sequestering Agents/chemistry , Macromolecular Substances/chemistry , Molecular Conformation
9.
Am J Gastroenterol ; 115(10): 1596-1603, 2020 10.
Article in English | MEDLINE | ID: mdl-32558690

ABSTRACT

Bile acids (BAs) are the central signals in enterohepatic communication, and they also integrate microbiota-derived signals into enterohepatic signaling. The tissue distribution and signaling pathways activated by BAs through natural receptors, farsenoid X receptor and G protein-coupled BA receptor 1 (GPBAR1, also known as Takeda G-coupled receptor 5), have led to a greater understanding of the mechanisms and potential therapeutic agents. BA diarrhea is most commonly encountered in ileal resection or disease, in idiopathic disorders (with presentation similar to functional diarrhea or irritable bowel syndrome with diarrhea), and in association with malabsorption such as chronic pancreatitis or celiac disease. Diagnosis of BA diarrhea is based on Se-homocholic acid taurine retention, 48-hour fecal BA excretion, or serum 7αC4; the latter being a marker of hepatic BA synthesis. BA diarrhea tends to be associated with higher body mass index, increased stool weight and stool fat, and acceleration of colonic transit. Biochemical markers of increased BA synthesis or excretion are available through reference laboratories. Current treatment of BA diarrhea is based on BA sequestrants, and, in the future, it is anticipated that farsenoid X receptor agonists may also be effective. The optimal conditions for an empiric trial with BA sequestrants as a diagnostic test are still unclear. However, such therapeutic trials are widely used in clinical practice. Some national guidelines recommend definitive diagnosis of BA diarrhea over empirical trial.


Subject(s)
Bile Acids and Salts/metabolism , Diarrhea/metabolism , Diarrhea/therapy , Diet, Fat-Restricted , Sequestering Agents/therapeutic use , Benzothiazoles/therapeutic use , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/therapeutic use , Cholestenones/blood , Cholestyramine Resin/therapeutic use , Chronic Disease , Colesevelam Hydrochloride/therapeutic use , Colestipol/therapeutic use , Feces/chemistry , Humans , Intestinal Mucosa/metabolism , Irritable Bowel Syndrome/metabolism , Isoxazoles/therapeutic use , Liver/metabolism , Malabsorption Syndromes/diagnosis , Malabsorption Syndromes/drug therapy , Malabsorption Syndromes/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Taurocholic Acid/analogs & derivatives
10.
Cells ; 9(5)2020 04 27.
Article in English | MEDLINE | ID: mdl-32349204

ABSTRACT

Lipophilic weak base therapeutic agents, termed lysosomotropic drugs (LDs), undergo marked sequestration and concentration within lysosomes, hence altering lysosomal functions. This lysosomal drug entrapment has been described as luminal drug compartmentalization. Consistent with our recent finding that LDs inflict a pH-dependent membrane fluidization, we herein demonstrate that LDs undergo intercalation and concentration within lysosomal membranes. The latter was revealed experimentally and computationally by (a) confocal microscopy of fluorescent compounds and drugs within lysosomal membranes, and (b) molecular dynamics modeling of the pH-dependent membrane insertion and accumulation of an assortment of LDs, including anticancer drugs. Based on the multiple functions of the lysosome as a central nutrient sensory hub and a degradation center, we discuss the molecular mechanisms underlying the alteration of morphology and impairment of lysosomal functions as consequences of LDs' intercalation into lysosomes. Our findings bear important implications for drug design, drug induced lysosomal damage, diseases and pertaining therapeutics.


Subject(s)
Central Nervous System Agents/pharmacology , Intercalating Agents/pharmacology , Lysosomes/drug effects , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Central Nervous System Agents/analysis , Central Nervous System Agents/metabolism , Drug Resistance, Neoplasm/drug effects , Humans , Hydrophobic and Hydrophilic Interactions/drug effects , Intercalating Agents/analysis , Intercalating Agents/metabolism , Intracellular Membranes , Lysosomes/metabolism , Molecular Dynamics Simulation , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/metabolism , Sequestering Agents/metabolism
11.
J Dairy Sci ; 103(2): 1559-1565, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31785870

ABSTRACT

Aflatoxin is a potent carcinogen commonly found in animal feeds that can impair rumen fermentation at high concentrations; however, its effects at physiologically relevant concentrations are unknown. This study examined the effects of aflatoxin B1 (AFB1), with or without bentonite clay (CL) and Saccharomyces cerevisiae fermentation product (SCFP)-based sequestering agents on in vitro rumen fermentation and digestibility of a dairy cow TMR. Corn silage-based TMR (0.5 g, 17.3% crude protein and 1.67 Mcal/kg of net energy for lactation) was incubated in a rumen fluid-buffer inoculum (1:2 ratio; 50 mL) with the following treatments: (1) no additives (control); (2) control + 0.75 µg/L AFB1 (T); (3) T + 80 mg/L sodium bentonite clay (CL; Astra-Ben-20, Prince Agri Products Inc., Quincy, IL); or (4) CL + 14 mg/L SCFP (CL+SCFP; Diamond V, Cedar Rapids, IA). Ruminal fluid was collected 3 h after the morning feeding from 3 cannulated cows fed the same TMR, and rumen fluid from individual cows was used to prepare separate inocula. Each treatment was incubated in duplicate at 39°C for 0, 4, 8, 16, and 24 h in each of 3 runs. Adding T reduced total volatile fatty acid (VFA) concentration after 4 and 8 h and molar proportion of propionate after 4 and 24 h of incubation relative to control. Adding sequestering agents (CL and CL+SCFP) with T did not affect total VFA concentration after 4 or 8 h, but increased total VFA after 16 h and tended to increase molar proportion of propionate after 24 h compared with T. At 24 h, T had lower DM digestibility and higher NH3-N concentration compared with the control. Thus, AFB1, even at very low concentration (0.75 µg/L), had detrimental effects on rumen fermentation and subsequently DM digestibility of the TMR. Adding sequestering agents did not prevent negative effects of T on rumen fermentation within 8 h of incubation; however, sequestering agents were effective after 16 h of incubation.


Subject(s)
Aflatoxin B1/toxicity , Animal Feed , Cattle , Poisons/toxicity , Rumen/drug effects , Aflatoxin B1/metabolism , Animal Feed/analysis , Animals , Bentonite/pharmacology , Diet/veterinary , Female , Fermentation/drug effects , Lactation/physiology , Rumen/metabolism , Saccharomyces cerevisiae/metabolism , Sequestering Agents/pharmacology , Silage/analysis , Zea mays
12.
J Dairy Sci ; 103(2): 1431-1447, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31785878

ABSTRACT

This study was conducted to examine the effects of clay (CL) and Saccharomyces cerevisiae fermentation product (SCFP) on the ruminal bacterial community of Holstein dairy cows challenged with aflatoxin B1 (AFB1). A second objective was to examine correlations between bacterial abundance and performance measures. Eight lactating dairy cows stratified by milk yield and parity were randomly assigned to 4 treatments in a 4 × 4 Latin square design with 2 replicate squares, four 33-d periods, and a 5-d washout between periods. The treatments included (1) control (basal diet, no additive); (2) T (control + 63.4 µg/kg AFB1, oral dose); (3) CL (T + 200 g/head per day of sodium bentonite clay, top-dress); and (4) CL+SCFP [CL + 19 g/head per day Diamond V NutriTek (Diamond V Inc., Cedar Rapids, IA) + 16 g/head per day MetaShield (Diamond V Inc.), top-dress]. Cows were adapted to diets containing no AFB1 from d 1 to 25 (predosing period). From d 26 to 30 (dosing period), AFB1 was orally dosed and then withdrawn for d 31 to 33 (withdrawal period). During the predosing period, compared with the control, feeding CL and CL+SCFP increased the relative abundance of the most dominant phylum, Bacteroidetes (55.1 and 55.8 vs. 50.6%, respectively), and feeding CL+SCFP increased Prevotella abundance (43.3 and 43.6 vs. 40.0%, respectively). During the dosing period, feeding AFB1 did not affect the ruminal bacterial community, but the relative abundance of Fibrobacteraceae increased with CL+SCFP compared with T (1.45 vs. 0.97%); Fibrobacter abundance also tended to increase with CL+SCFP compared with T and control, respectively (1.45 vs. 0.97 and 1.05%, respectively). Feeding AFB1 with or without CL or CL+SCFP did not affect ruminal pH or concentrations of NH3-N, total volatile fatty acids, or individual volatile fatty acids. Milk yield and milk component yields were positively correlated with the relative abundance of unclassified Succinivibrionaceae, unclassified YS2, or Coprococcus. Feed efficiency was positively correlated (r ≥ 0.30) with the relative abundance of unclassified YS2, Coprococcus, or Treponema. Feeding aflatoxin at 63 µg/kg, a common contamination level on farms, did not affect the abundance of dominant bacteria or rumen fermentation. When aflatoxin was fed, CL+SCFP increased the abundance of Fibrobacter, a major fibrolytic bacteria genus. Milk yield and DMI were positively correlated with abundance of Succinivibrionaceae and Coprococcus. Feed efficiency was positively correlated with abundance of Coprococcus, Treponema, and YS2. Future studies should speciate culture and determine the functions of the bacteria to elucidate their roles in the rumen and potential contribution to increasing the performance of dairy cows.


Subject(s)
Aflatoxin B1/adverse effects , Bentonite/pharmacology , Cattle/microbiology , Gastrointestinal Microbiome/drug effects , Milk/metabolism , Saccharomyces cerevisiae/chemistry , Sequestering Agents/pharmacology , Animals , Clay , Diet/veterinary , Fatty Acids, Volatile/metabolism , Female , Fermentation , Lactation , Parity , Pregnancy , Prevotella/drug effects , Prevotella/growth & development , Random Allocation
13.
Toxins (Basel) ; 11(12)2019 11 26.
Article in English | MEDLINE | ID: mdl-31779109

ABSTRACT

The study applied a targeted metabolomics approach that uses a direct injection and tandem mass spectrometry (DI-MS/MS) coupled with a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics of plasma to evaluate the effects of supplementing clay with or without Saccharomyces cerevisiae fermentation product (SCFP) on the metabolic status of dairy cows challenged with aflatoxin B1. Eight healthy, lactating, multiparous Holstein cows in early lactation (64 ± 11 DIM) were randomly assigned to one of four treatments in a balanced 4 × 4 duplicated Latin square design with four 33 d periods. Treatments were control, toxin (T; 1725 µg aflatoxin B1 (AFB1)/head/day), T with clay (CL; 200 g/head/day), and CL with SCFP (YEA; 35 g of SCFP/head/day). Cows in T, CL, and YEA were dosed with aflatoxin B1 (AFB1) from days 26 to 30. The sequestering agents were top-dressed from day 1 to 33. On day 30 of each period, 15 mL of blood was taken from the coccygeal vessels and plasma samples were obtained from blood by centrifugation and analyzed for metabolites using a kit that combines DI-MS/MS with LC-MS/MS-based metabolomics. The data were analyzed using the GLIMMIX procedure of SAS. The model included the effects of treatment, period, and random effects of cow and square. Significance was declared at p ≤ 0.05. Biomarker profiles for aflatoxin ingestion in dairy cows fed no sequestering agents were determined using receiver-operator characteristic (ROC) curves, as calculated by the ROCCET web server. A total of 127 metabolites such as amino acids, biogenic amines, acylcarnitines, glycerophospholipids, and organic acids were quantified. Compared with the control, T decreased (p < 0.05) plasma concentrations of alanine, leucine, and arginine and tended to decrease that of citrulline. Treatment with CL had no effects on any of the metabolites relative to the control but increased (p ≤ 0.05) concentrations of alanine, leucine, arginine, and that of citrulline (p = 0.07) relative to T. Treatment with YEA resulted in greater (p ≤ 0.05) concentrations of aspartic acid and lysine relative to the control and the highest (p ≤ 0.05) plasma concentrations of alanine, valine, proline, threonine, leucine, isoleucine, glutamic acid, phenylalanine, and arginine compared with other treatments. The results of ROC analysis between C and T groups revealed that the combination of arginine, alanine, methylhistidine, and citrulline had sufficient specificity and sensitivity (area under the curve = 0.986) to be excellent potential biomarkers of aflatoxin ingestion in dairy cows fed no sequestering agents. This study confirmed the protective effects of sequestering agents in dairy cows challenged with aflatoxin B1.


Subject(s)
Aflatoxin B1/toxicity , Metabolomics , Sequestering Agents/pharmacology , Amino Acids/chemistry , Animals , Biomarkers/analysis , Cattle , Chromatography, High Pressure Liquid , Dairying , Female , Fermentation , Lactation , Metabolism/drug effects , ROC Curve , Saccharomyces cerevisiae , Tandem Mass Spectrometry
14.
Toxins (Basel) ; 11(10)2019 09 26.
Article in English | MEDLINE | ID: mdl-31561495

ABSTRACT

In warm agricultural areas across the globe, maize, groundnut, and other crops become frequently contaminated with aflatoxins produced primarily by the fungus Aspergillus flavus. Crop contamination with those highly toxic and carcinogenic compounds impacts both human and animal health, as well as the income of farmers and trade. In Nigeria, poultry productivity is hindered by high prevalence of aflatoxins in feeds. A practical solution to decrease crop aflatoxin content is to use aflatoxin biocontrol products based on non-toxin-producing strains of A. flavus. The biocontrol product Aflasafe® was registered in 2014 for use in maize and groundnut grown in Nigeria. Its use allows the production of aflatoxin-safe maize and groundnut. A portion of the maize treated with Aflasafe in Nigeria is being used to manufacture feeds used by the poultry industry, and productivity is improving. One of the conditions to register Aflasafe with the national regulator was to demonstrate both the safety of Aflasafe-treated maize to avian species and the impact of Aflasafe as a public good. Results presented here demonstrate that the use of maize colonized by an atoxigenic strain of Aflasafe resulted in superior (p < 0.05) broiler performance in all evaluated parameters in comparison to broilers fed with toxigenic maize. Use of an aflatoxin-sequestering agent (ASA) was not sufficient to counteract the harmful effects of aflatoxins. Both the safety and public good value of Aflasafe were demonstrated during our study. In Nigeria, the availability of aflatoxin-safe crops as a result of using Aflasafe allows poultry producers to improve their productivity, their income, and the health of consumers of poultry products.


Subject(s)
Aflatoxins/metabolism , Aspergillus flavus/pathogenicity , Biological Control Agents/pharmacology , Chickens , Crops, Agricultural/microbiology , Sequestering Agents/pharmacology , Zea mays/microbiology , Aflatoxins/toxicity , Animals , Food Contamination/analysis
15.
Int J Mol Sci ; 20(19)2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31554226

ABSTRACT

Selenocompounds (SeCs) are well-known nutrients and promising candidates for cancer therapy; however, treatment efficacy is very heterogeneous and the mechanism of action is not fully understood. Several SeCs have been reported to have albumin-binding ability, which is an important factor in determining the treatment efficacy of drugs. In the present investigation, we hypothesized that extracellular albumin might orchestrate SeCs efficacy. Four SeCs representing distinct categories were selected to investigate their cytotoxicity, cellular uptake, and species transformation. Concomitant treatment of albumin greatly decreased cytotoxicity and cellular uptake of SeCs. Using both X-ray absorption spectroscopy and hyphenated mass spectrometry, we confirmed the formation of macromolecular conjugates between SeCs and albumin. Although the conjugate was still internalized, possibly via albumin scavenger receptors expressed on the cell surface, the uptake was strongly inhibited by excess albumin. In summary, the present investigation established the importance of extracellular albumin binding in determining SeCs cytotoxicity. Due to the fact that albumin content is higher in humans and animals than in cell cultures, and varies among many patient categories, our results are believed to have high translational impact and clinical implications.


Subject(s)
Albumins/chemistry , Sequestering Agents/chemistry , Sequestering Agents/pharmacology , Albumins/metabolism , Cell Survival/drug effects , Molecular Structure , Reactive Oxygen Species/metabolism , Spectrum Analysis
16.
Drug Dev Ind Pharm ; 45(9): 1437-1443, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31107115

ABSTRACT

The purpose of the study was to develop and validate a high-performance liquid chromatography (HPLC) method which can be further applied to understand the mechanism, kinetics, isotherm, and thermodynamics of bile acid adsorption onto bile acid sequestrants. To investigate these properties a HPLC method was developed using peerless C-8 (150 x 4.6 mm, 5 µm) column with a detection wavelength of 200 nm and run time of about 12.5 min. Bile salts glycocholic (GC), glycochenodeoxycholic (GCDC), and taurodeoxycholic acid (TDC), were used and colesevelam hydrochloride was employed as the bile acid sequestrant. The calibration range was found linear from 10 to 6500 mgL-1 for GC and GCDC and 4to 2400 mg L-1 for TDC. The precision was less than 8.8% and accuracy was found well within the range of 85 to 115%. On treating the data with various established models, it was known that, the adsorption kinetics followed the pseudo second order equation indicating chemisorption mechanism. Equilibrium isotherms revealed that the linear form of Langmuir model was the best fit. The separation factor (RL) calculated revealed that the reaction is favorable and reversible. The positive value of heat of sorption (B) calculated from Temkin model indicated towards the exothermic nature of adsorption. The adsorption energy (E) calculated from Dubinin-Kaganer-Radushkevich model was found to be greater than 8 KJmol-1 conforming chemisorption mechanism. The Gibbs free energy calculated established the affinity of bile salts as TDC > GCDC > GC.


Subject(s)
Bile Acids and Salts/chemistry , Sequestering Agents/chemistry , Adsorption , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid/methods , Hydrogen-Ion Concentration , Thermodynamics
17.
Ren Fail ; 41(1): 47-56, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30732506

ABSTRACT

AST-120 (KREMEZIN®) consists of oral, spherical carbon particles that adsorb uremic toxins and their precursors within the gastrointestinal tract, allowing them to be excreted in the feces. Uremic toxins such as indoxyl sulfate and p-cresyl sulfate are abundant in the blood of chronic kidney disease (CKD) patients and are related to the progression of both CKD and cardiovascular disease. AST-120 was approved in Japan in 1991 followed by Korea (2004), Taiwan (2007) and the Philippines (2010) for treating uremic symptoms and prolonging the time to initiation of dialysis in patients with progressive CKD. In this review, we provide an overview of the past clinical data on AST-120 from 1982 to 2013. The effect of AST-120 for renal events was not supported in the primary analysis of randomized clinical trials. However, post-hoc analyses revealed significant differences between the AST-120 and control groups in the second Japanese phase III trial and in the multinational Evaluating Prevention of Progression in CKD (EPPIC) trials. Furthermore, inhibitory effects on the progression of CKD, as represented by amelioration in the estimated glomerular filtration rate (eGFR) decline and serum creatinine (sCr) elevation were suggested. These results suggest that AST-120 delays the decline in renal function. In addition, AST-120 may prolong the time to the initiation of dialysis, especially in patients with progressive CKD. For further verification of the clinical efficacy of AST-120, future study inclusion criteria should be determined carefully, defining progressive CKD using markers such as declines in eGFR and sCr elevation.


Subject(s)
Carbon/therapeutic use , Oxides/therapeutic use , Renal Insufficiency, Chronic/therapy , Sequestering Agents/therapeutic use , Toxins, Biological/toxicity , Uremia/therapy , Adsorption , Biomarkers/analysis , Carbon/pharmacology , Creatinine/blood , Disease Progression , Glomerular Filtration Rate/drug effects , Humans , Intestinal Absorption/drug effects , Kidney/physiopathology , Oxides/pharmacology , Randomized Controlled Trials as Topic , Renal Dialysis , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/physiopathology , Sequestering Agents/pharmacology , Time Factors , Toxins, Biological/chemistry , Treatment Outcome , Uremia/blood , Uremia/physiopathology
18.
Biotechnol Adv ; 37(3): 357-381, 2019.
Article in English | MEDLINE | ID: mdl-30768953

ABSTRACT

Numerous enzymes of biotechnological importance have been immobilized on magnetic nanoparticles (MNP) via random multipoint attachment, resulting in a heterogeneous protein population with potential reduction in activity due to restriction of substrate access to the active site. Several chemistries are now available, where the modifier can be linked to a single specific amino acid in a protein molecule away from the active-site, thus enabling free access of the substrate. However, rarely these site-selective approaches have been applied to immobilize enzymes on nanoparticles. In this review, for the first time, we illustrate how to adapt site-directed chemical modification (SDCM) methods for immobilizing enzymes on iron-based MNP. These strategies are mainly chemical but may additionally require genetic and enzymatic methods. We critically examine each method and evaluate their scope for simple, quick, efficient, mild and economical immobilization of enzymes on MNP. The improvements in the catalytic properties of few available examples of immobilized enzymes are also discussed. We conclude the review with the applications and future prospects of site-selectively modified magnetic enzymes and potential benefits of this technology in improving enzymes, including cold-adapted homologues, modular enzymes, and CO2-sequestering, as well as non-iron based nanomaterials.


Subject(s)
Biotechnology/methods , Enzymes, Immobilized/chemistry , Magnetite Nanoparticles/chemistry , Sequestering Agents/chemistry , Carbon Dioxide/chemistry , Catalysis , Catalytic Domain , Enzymes, Immobilized/genetics , Iron/chemistry , Substrate Specificity
19.
São Paulo; s.n; s.n; 2019. 162 p. graf, tab.
Thesis in Portuguese | LILACS | ID: biblio-1052868

ABSTRACT

Este trabalho propôs o uso do fármaco quelante mesilato de desferroxamina (DFO) como agente adjuvante para estabilização química e microbiológica de formulações. Soluções de ácido ascórbico (AA) 5,0% (p/v) foram preparadas com sistemas antioxidantes constituídos por diferentes combinações de DFO, ácido etilenodiamino tetra-acético (EDTA) e metabissulfito de sódio, cada adjuvante na concentração máxima de 0,1% (p/v). Os sistemas foram testados previamente quanto à atividade antioxidante, mediante adição de um complexo de ferro (III) redox-ativo e ensaio baseado em fluorescência. Os sistemas também foram associados ao metilparabeno e avaliados quanto à atividade antimicrobiana pelo método turbidimétrico, utilizando-se a técnica de microdiluição em meios líquidos e cepas padrão de bactérias e fungos, incluindo S. aureus (ATCC 6538), E. coli (ATCC 8739), P. aeruginosa (ATCC 9027), C. albicans (ATCC 10231) e A. brasiliensis (ATCC 16404). As soluções de AA foram expostas a condições de teste de estabilidade acelerada e avaliadas quanto à estabilidade química, empregando-se método volumétrico validado para quantificar AA. Verificou-se que o EDTA foi o agente quelante que melhor contribuiu na estabilidade química da solução de AA, entretanto, o DFO apresentou desempenho muito superior ao EDTA para bloquear a atividade pró-oxidante do ferro. Além disso, o DFO foi fator relevante na inibição do crescimento microbiano e demonstrou sinergia com o metilparabeno. A otimização estatística dos resultados indicou que o uso do DFO nos sistemas antioxidante e conservante pode reduzir consideravelmente a concentração dos adjuvantes convencionais, EDTA, metabissulfito e metilparabeno, os quais são muitas vezes associados a reações de hipersensibilidade ou a danos ao meio ambiente


In this work it was proposed the use of the chelating drug desferroxamine mesylate (DFO) as adjuvant for chemical and microbiological stabilization of formulations. Ascorbic acid (AA) solutions 5.0% (w/v) were prepared with antioxidant systems containing different combinations of DFO, ethylenediaminetetraacetic acid (EDTA) and sodium metabisulphite, using a maximum concentration of 0.1% (w/v) for each adjuvant. Previously, the systems were spiked with a redox-active iron (III) complex and tested for antioxidant activity by fluorescence-based assay. The systems also were associated with methylparaben and evaluated for antimicrobial activity by turbidimetric method, using the microdilution technique and standard strains of bacteria and fungi, including S. aureus (ATCC 6538), E. coli (ATCC 8739), P. aeruginosa (ATCC 9027), C. albicans (ATCC 10231) and A. brasiliensis (ATCC 16404). The AA solutions were exposed to accelerated stability test conditions and evaluated for chemical stability, using a volumetric method that was validated to quantify AA. It was found that EDTA was the chelating agent that most contributed to the chemical stability of AA solution, however, DFO demonstrated a much higher performance to EDTA to block the pro-oxidant activity of iron. In addition, DFO was a relevant factor in the inhibition of microbial growth and showed synergy with methylparaben. The statistical optimization of the results indicated that the use of DFO in the antioxidant and preservative systems might considerably reduce the concentration of the conventional adjuvants, EDTA, metabisulphite and methylparaben, which are often associated with hypersensitivity reactions or environmental damage


Subject(s)
Chelating Agents/analysis , Adjuvants, Pharmaceutic/pharmacology , Mesylates , Deferoxamine/agonists , Antioxidants/classification , Escherichia coli/classification , Sequestering Agents , Hypersensitivity , Iron
20.
Toxins (Basel) ; 10(12)2018 12 18.
Article in English | MEDLINE | ID: mdl-30567330

ABSTRACT

The study applied ¹H NMR-based plasma metabolomics to identify candidate biomarkers of aflatoxin B1 (AFB1) ingestion in dairy cows fed no sequestering agents and evaluate the effect of supplementing clay and/or a Saccharomyces cerevisiae fermentation product (SCFP) on such biomarkers. Eight lactating cows were randomly assigned to 1 of 4 treatments in a balanced 4 × 4 Latin square design with 2 squares. Treatments were: control, toxin (T; 1725 µg AFB1/head/day), T with clay (CL; 200 g/head/day), and CL with SCFP (CL + SCFP; 35 g of SCFP/head/day). Cows in T, CL, and CL + SCFP were dosed with AFB1 from d 26 to 30. The sequestering agents were top-dressed from d 1 to 33. On d 30 of each period, 15 mL of blood was taken from the coccygeal vessels and plasma samples were prepared by centrifugation. Compared to the control, T decreased plasma concentrations of alanine, acetic acid, leucine, arginine and valine. In contrast, T increased plasma ethanol concentration 3.56-fold compared to control. Treatment with CL tended to reduce sarcosine concentration, whereas treatment with CL + SCFP increased concentrations of mannose and 12 amino acids. Based on size of the area under the curve (AUC) of receiver operating characteristic and fold change (FC) analyses, ethanol was the most significantly altered metabolite in T (AUC = 0.88; FC = 3.56); hence, it was chosen as the candidate biomarker of aflatoxin ingestion in dairy cows fed no sequestering agent.


Subject(s)
Aflatoxin B1/pharmacology , Clay , Ethanol/blood , Saccharomyces cerevisiae , Sequestering Agents/pharmacology , Animal Feed , Animals , Biomarkers/blood , Cattle , Diet/veterinary , Eating , Female , Metabolomics , Proton Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...