Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 537
Filter
1.
Cells ; 13(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39273003

ABSTRACT

TRIM44, a tripartite motif (TRIM) family member, is pivotal in linking the ubiquitin-proteasome system (UPS) to autophagy in multiple myeloma (MM). However, its prognostic impact and therapeutic potential remain underexplored. Here, we report that TRIM44 overexpression is associated with poor prognosis in a Multiple Myeloma Research Foundation (MMRF) cohort of 858 patients, persisting across primary and recurrent MM cases. TRIM44 expression notably increases in advanced MM stages, indicating its potential role in disease progression. Single-cell RNA sequencing across MM stages showed significant TRIM44 upregulation in smoldering MM (SMM) and MM compared to normal bone marrow, especially in patients with t(4;14) cytogenetic abnormalities. This analysis further identified high TRIM44 expression as predictive of lower responsiveness to proteasome inhibitor (PI) treatments, underscoring its critical function in the unfolded protein response (UPR) in TRIM44-high MM cells. Our findings also demonstrate that TRIM44 facilitates SQSTM1 oligomerization under oxidative stress, essential for its phosphorylation and subsequent autophagic degradation. This process supports the survival of PI-resistant MM cells by activating the NRF2 pathway, which is crucial for oxidative stress response and, potentially, other chemotherapy-induced stressors. Additionally, TRIM44 counters the TRIM21-mediated suppression of the antioxidant response, enhancing MM cell survival under oxidative stress. Collectively, our discoveries highlight TRIM44's significant role in MM progression and resistance to therapy, suggesting its potential value as a therapeutic target.


Subject(s)
Multiple Myeloma , Proteasome Endopeptidase Complex , Tripartite Motif Proteins , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Multiple Myeloma/genetics , Humans , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Prognosis , Cell Line, Tumor , Proteasome Endopeptidase Complex/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Autophagy/genetics , Cell Survival/drug effects , Cell Survival/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Proteasome Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Gene Expression Regulation, Neoplastic
2.
Stem Cell Res ; 80: 103520, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39126919

ABSTRACT

SQSTM1 (Sequestosome 1) also known as p62, plays several important physiological roles in the cell. It regulates autophagy and mitochondrial homeostasis and can further lead to metabolic reprogramming. Pathogenic variants in SQSTM1 gene are known to cause Neurodegeneration with ataxia, dystonia, and gaze palsy in autosomal recessive inheritance fashion. We report here, the generation of induced pluripotent stem cell (iPSC) line (IGIBi010-A) carrying a novel homozygous frameshift variant in SQSTM1 i.e. p.Leu251SerfsTer4. In future, this iPSC line will be used as a resource to elucidate the molecular pathway, targeting strategies for disease biology derived by variation in SQSTM1 gene.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Phenotype , Sequestosome-1 Protein , Humans , Induced Pluripotent Stem Cells/metabolism , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Cell Line , Mutation , Male , Female
3.
Life Sci ; 356: 122981, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39147314

ABSTRACT

Doxorubicin-induced cardiotoxicity (DIC) poses a significant challenge, impeding its widespread application. Emerging evidence suggests the involvement of ferroptosis in the DIC. While the downregulation of SLC7A11 expression has been linked to the promotion of ferroptosis, the precise regulatory mechanism remains unclear. Recent studies, including our own, have highlighted abnormal levels of autophagy adapter protein P62 and autophagy in DIC development. Thus, our study aimed to further investigate the role of autophagy and ferroptosis in DIC, elucidating underlying molecular mechanisms across molecular, cellular, and whole-organ levels utilizing gene knockdown, immunoprecipitation, and mass spectrometry techniques. The results of our findings unveiled cardiomyocyte damage, heightened autophagy levels, and ferroptosis in DOX-treated mouse hearts. Notably, inhibition of autophagy levels attenuated DOX-induced ferroptosis. Mechanistically, we discovered that the autophagy adaptor protein P62 mediates the entry of SLC7A11 into the autophagic pathway for degradation. Furthermore, the addition of autophagy inhibitors (CQ or BAF) could elevate SLC7A11 and GPX4 protein expression, reduce the accumulation of Fe2+ and ROS in cardiomyocytes, and thus mitigate DOX-induced ferroptosis. In summary, our findings underscore the pivotal role of the P62-autophagy pathway in SLC7A11 degradation, modulating ferroptosis to exacerbate DIC. This finding offers significant insights into the underlying molecular mechanisms of DOX-induced ferroptosis and identifies new targets for reversing DIC.


Subject(s)
Amino Acid Transport System y+ , Autophagy , Cardiotoxicity , Doxorubicin , Ferroptosis , Myocytes, Cardiac , Sequestosome-1 Protein , Animals , Male , Mice , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Antibiotics, Antineoplastic/toxicity , Antibiotics, Antineoplastic/adverse effects , Autophagy/drug effects , Cardiotoxicity/metabolism , Cardiotoxicity/etiology , Doxorubicin/adverse effects , Doxorubicin/toxicity , Ferroptosis/drug effects , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics
4.
Mol Cell ; 84(17): 3271-3287.e8, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39178863

ABSTRACT

Cellular senescence, a stress-induced stable proliferation arrest associated with an inflammatory senescence-associated secretory phenotype (SASP), is a cause of aging. In senescent cells, cytoplasmic chromatin fragments (CCFs) activate SASP via the anti-viral cGAS/STING pathway. Promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are also involved in senescence and anti-viral immunity. The HIRA histone H3.3 chaperone localizes to PML NBs in senescent cells. Here, we show that HIRA and PML are essential for SASP expression, tightly linked to HIRA's localization to PML NBs. Inactivation of HIRA does not directly block expression of nuclear factor κB (NF-κB) target genes. Instead, an H3.3-independent HIRA function activates SASP through a CCF-cGAS-STING-TBK1-NF-κB pathway. HIRA physically interacts with p62/SQSTM1, an autophagy regulator and negative SASP regulator. HIRA and p62 co-localize in PML NBs, linked to their antagonistic regulation of SASP, with PML NBs controlling their spatial configuration. These results outline a role for HIRA and PML in the regulation of SASP.


Subject(s)
Cell Cycle Proteins , Cellular Senescence , Histone Chaperones , Inflammation , NF-kappa B , Nuclear Proteins , Promyelocytic Leukemia Protein , Protein Serine-Threonine Kinases , Sequestosome-1 Protein , Signal Transduction , Transcription Factors , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Autophagy , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Chromatin/metabolism , Chromatin/genetics , HEK293 Cells , Histone Chaperones/metabolism , Histone Chaperones/genetics , Histones/metabolism , Histones/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Nucleotidyltransferases , Promyelocytic Leukemia Protein/metabolism , Promyelocytic Leukemia Protein/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics
5.
Fish Shellfish Immunol ; 153: 109805, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39102972

ABSTRACT

The production of type I interferon is tightly regulated to prevent excessive immune activation. However, the role of selective autophagy receptor SQSTM1 in this regulation in teleost remains unknown. In this study, we cloned the triploid fish SQSTM1 (3nSQSTM1), which comprises 1371 nucleotides, encoding 457 amino acids. qRT-PCR data revealed that the transcript levels of SQSTM1 in triploid fish were increased both in vivo and in vitro following spring viraemia of carp virus (SVCV) infection. Immunofluorescence analysis confirmed that 3nSQSTM1 was mainly distributed in the cytoplasm. Luciferase reporter assay results showed that 3nSQSTM1 significantly blocked the activation of interferon promoters induced by 3nMDA5, 3nMAVS, 3nTBK1, and 3nIRF7. Co-immunoprecipitation assays further confirmed that 3nSQSTM1 could interact with both 3nTBK1 and 3nIRF7. Moreover, upon co-transfection, 3nSQSTM1 significantly inhibited the antiviral activity mediated by TBK1 and IRF7. Mechanistically, 3nSQSTM1 decreased the TBK1 phosphorylation and its interaction with 3nIRF7, thereby suppressing the subsequent antiviral response. Notably, we discovered that 3nSQSTM1 also interacted with SVCV N and P proteins, and these viral proteins may exploit 3nSQSTM1 to further limit the host's antiviral innate immune responses. In conclusion, our study demonstrates that 3nSQSTM1 plays a pivotal role in negatively regulating the interferon signaling pathway by targeting 3nTBK1 and 3nIRF7.


Subject(s)
Carps , Fish Diseases , Fish Proteins , Immunity, Innate , Interferon Regulatory Factor-7 , Rhabdoviridae Infections , Rhabdoviridae , Animals , Immunity, Innate/genetics , Fish Diseases/immunology , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/immunology , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/immunology , Rhabdoviridae/physiology , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Carps/immunology , Carps/genetics , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Protein Serine-Threonine Kinases/metabolism , Gene Expression Regulation/immunology , Signal Transduction/immunology , Triploidy , Phylogeny , Amino Acid Sequence , Sequence Alignment/veterinary , Gene Expression Profiling/veterinary
6.
Vascul Pharmacol ; 156: 107417, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39159737

ABSTRACT

Myocardial infarction (MI) and the ensuing heart failure (HF) remain the main cause of morbidity and mortality worldwide. One of the strategies to combat MI and HF lies in the ability to accurately predict the onset of these disorders. Alterations in mitochondrial homeostasis have been reported to be involved in the pathogenesis of various cardiovascular diseases (CVDs). In this regard, perturbations to mitochondrial dynamics leading to impaired clearance of dysfunctional mitochondria have been previously established to be a crucial trigger for MI/HF. In this study, we found that MI patients could be classified into three clusters based on the expression levels of mitophagy-related genes and consensus clustering. We identified a mitophagy-related diagnostic 5-genes signature for MI using support vector machines-Recursive Feature Elimination (SVM-RFE) and random forest, with the area under the ROC curve (AUC) value of the predictive model at 0.813. Additionally, the single-cell transcriptome and pseudo-time analyses showed that the mitoscore was significantly upregulated in macrophages, endothelial cells, pericytes, fibroblasts and monocytes in patients with ischemic cardiomyopathy, while sequestosome 1 (SQSTM1) exhibited remarkable increase in the infarcted (ICM) and non-infarcted (ICMN) myocardium samples dissected from the left ventricle compared with control samples. Lastly, through analysis of peripheral blood from MI patients, we found that the expression of SQSTM1 is positively correlated with troponin-T (P < 0.0001, R = 0.4195, R2 = 0.1759). Therefore, this study provides the rationale for a cell-specific mitophagy-related gene signature as an additional supporting diagnostic for CVDs.


Subject(s)
Gene Expression Profiling , Mitophagy , Myocardial Infarction , Predictive Value of Tests , Transcriptome , Mitophagy/genetics , Humans , Myocardial Infarction/genetics , Myocardial Infarction/diagnosis , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Male , Middle Aged , Female , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/genetics , Aged , Support Vector Machine , Genetic Markers , Case-Control Studies
7.
Science ; 385(6712): eadj7446, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39208097

ABSTRACT

Chromosomal instability (CIN) generates micronuclei-aberrant extranuclear structures that catalyze the acquisition of complex chromosomal rearrangements present in cancer. Micronuclei are characterized by persistent DNA damage and catastrophic nuclear envelope collapse, which exposes DNA to the cytoplasm. We found that the autophagic receptor p62/SQSTM1 modulates micronuclear stability, influencing chromosome fragmentation and rearrangements. Mechanistically, proximity of micronuclei to mitochondria led to oxidation-driven homo-oligomerization of p62, limiting endosomal sorting complex required for transport (ESCRT)-dependent micronuclear envelope repair by triggering autophagic degradation. We also found that p62 levels correlate with increased chromothripsis across human cancer cell lines and with increased CIN in colorectal tumors. Thus, p62 acts as a regulator of micronuclei and may serve as a prognostic marker for tumors with high CIN.


Subject(s)
Autophagy , Chromosomal Instability , Chromothripsis , Colorectal Neoplasms , Micronuclei, Chromosome-Defective , Sequestosome-1 Protein , Humans , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cell Line, Tumor , DNA Damage , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Mitochondria/metabolism , Mitochondria/genetics , Nuclear Envelope/metabolism
8.
Neuromuscul Disord ; 42: 43-52, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39142003

ABSTRACT

TIA1/SQSTM1 myopathy is one of the few digenic myopathies. We describe four new French adult male patients carrying the TIA1 p.Asn357Ser and SQSTM1 p.Pro392Leu variant and review the literature to include 20 additional cases to define the spectrum of the disease. These twenty-four patients (75% males) had late-onset (52,6 ± 10,1 years), mainly asymmetric, distal ankle and hand finger extension weakness (75%), mild CK elevation (82.4%) and myopathic EMG. Two of the four French patients had sensorimotor axonal polyneuropathy and an additional one had neurogenic changes in muscle biopsy. Muscle biopsy showed rimmed vacuoles (44.4%), myofibrillar disorganization (16.7%) or both (38.9%), with P62/TDP43 aggregates. The TIA1 p.Asn357Ser variant was present in all patients and the SQSTM1 p.Pro392Leu was the most frequent (71%) of the four reported SQSTM1 variants. We reviewed the distal myopathy gene panels of Pitié-Salpêtrière's hospital cohort finding a prevalence of 11/414=2.7% of the TIA1 p.Asn357Ser variant, with two patients having an alternative diagnosis (TTN and MYH7) with atypical phenotypes, resembling some of the features seen in TIA1/SQSTM1 myopathy. Overall, TIA1/SQSTM1 myopathy has a homogenous phenotype reinforcing the pathogenicity of its digenic variants. We confirm an increased burden of the TIA1 p.Asn357Ser variant in distal myopathy patients which could act as a genetic modifier.


Subject(s)
Distal Myopathies , Sequestosome-1 Protein , T-Cell Intracellular Antigen-1 , Humans , Sequestosome-1 Protein/genetics , Male , Middle Aged , T-Cell Intracellular Antigen-1/genetics , Distal Myopathies/genetics , Distal Myopathies/pathology , Adult , Muscle, Skeletal/pathology , Aged , Female , Mutation , Phenotype
9.
J Physiol ; 602(17): 4215-4235, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39167700

ABSTRACT

Oxidative stress contributes to the loss of skeletal muscle mass and function in cancer cachexia. However, this outcome may be mitigated by an improved endogenous antioxidant defence system. Here, using the well-established oxidative stress-inducing muscle atrophy model of Lewis lung carcinoma (LLC) in 13-week-old male C57BL/6J mice, we demonstrate that extracellular superoxide dismutase (EcSOD) levels increase in the cachexia-prone extensor digitorum longus muscle. LLC transplantation significantly increased interleukin-1ß (IL-1ß) expression and release from extensor digitorum longus muscle fibres. Moreover, IL-1ß treatment of C2C12 myotubes increased NBR1, p62 phosphorylation at Ser351, Nrf2 nuclear translocation and EcSOD protein expression. Additional studies in vivo indicated that intramuscular IL-1ß injection is sufficient to stimulate EcSOD expression, which is prevented by muscle-specific knockout of p62 and Nrf2 (i.e. in p62 skmKO and Nrf2 skmKO mice, respectively). Finally, since an increase in circulating IL-1ß may lead to unwanted outcomes, we demonstrate that targeting this pathway at p62 is sufficient to drive muscle EcSOD expression in an Nrf2-dependent manner. In summary, cancer cachexia increases EcSOD expression in extensor digitorum longus muscle via muscle-derived IL-1ß-induced upregulation of p62 phosphorylation and Nrf2 activation. These findings provide further mechanistic evidence for the therapeutic potential of p62 and Nrf2 to mitigate cancer cachexia-induced muscle atrophy. KEY POINTS: Oxidative stress plays an important role in muscle atrophy during cancer cachexia. EcSOD, which mitigates muscle loss during oxidative stress, is upregulated in 13-week-old male C57BL/6J mice of extensor digitorum longus muscles during cancer cachexia. Using mouse and cellular models, we demonstrate that cancer cachexia promotes muscle EcSOD protein expression via muscle-derived IL-1ß-dependent stimulation of the NBR1-p62-Nrf2 signalling pathway. These results provide further evidence for the potential therapeutic targeting of the NBR1-p62-Nrf2 signalling pathway downstream of IL-1ß to mitigate cancer cachexia-induced muscle atrophy.


Subject(s)
Cachexia , Interleukin-1beta , Mice, Inbred C57BL , Muscle, Skeletal , NF-E2-Related Factor 2 , Signal Transduction , Superoxide Dismutase , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Cachexia/metabolism , Cachexia/etiology , Cachexia/genetics , Male , Interleukin-1beta/metabolism , Muscle, Skeletal/metabolism , Mice , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/complications , Carcinoma, Lewis Lung/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/genetics , Mice, Knockout , Oxidative Stress
10.
Free Radic Biol Med ; 222: 588-600, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996820

ABSTRACT

Emerging evidence has reported that acute lung injury (ALI), characterized by inflammation and oxidative stress in airway epithelium, is regulated by programmed cell death. Ferroptosis, a regulated form of cell death spurred by uncontrolled lipid peroxidation, has been proven to implicate various diseases. Inhibiting ferroptosis represents a feasible strategy for ALI through the suppression of lipid peroxidation, while the mechanism remains to be further elucidated. Here, we identified Sequestosome 1 (SQSTM1) as a negative regulator of airway epithelium ferroptosis during ALI. SQSTM1 knockdown cells manifested higher sensitivity to ferroptosis. Mechanistically, SQSTM1 was found to directly interact with vitamin D receptor (VDR) through its nuclear receptor (NR) box motif, facilitating its nuclear translocation and initiating autophagy at the transcriptional level. To further validate these findings, an in vivo preventive model utilizing spermidine, a proven inducer of SQSTM1 was established. The results consistently demonstrated that spermidine supplementation significantly induced SQSTM1 and ameliorated ALI by mitigating airway epithelial ferroptosis. Notably, these effects were abrogated in the absence of SQSTM1. Taken together, this study identified SQSTM1 as a negative regulator of airway epithelium ferroptosis in a VDR-mediated autophagy manner, making it a potential therapeutic target for the treatment of ALI.


Subject(s)
Acute Lung Injury , Autophagy , Ferroptosis , Receptors, Calcitriol , Sequestosome-1 Protein , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Ferroptosis/genetics , Ferroptosis/drug effects , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Animals , Humans , Mice , Male , Mice, Inbred C57BL , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Oxidative Stress , Lipid Peroxidation/drug effects
11.
Free Radic Biol Med ; 222: 607-624, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39009244

ABSTRACT

Autophagy is essential for the adaptive response to exercise and physiological skeletal muscle functionality. However, the mechanisms leading to the activation of macroautophagy and chaperone-mediated autophagy in human skeletal muscle in response to high-intensity exercise remain elusive. Our findings demonstrate that macroautophagy and chaperone-mediated autophagy are stimulated by high-intensity exercise in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg) in healthy humans. High-intensity exercise induces macroautophagy initiation through AMPKα phosphorylation, which phosphorylates and activates ULK1. ULK1 phosphorylates BECN1 at Ser15, eliciting the dissociation of BECN1-BCL2 crucial for phagophore formation. Besides, high-intensity exercise elevates the LC3B-II:LC3B-I ratio, reduces total SQSTM1/p62 levels, and induces p-Ser349 SQSTM1/p62 phosphorylation, suggesting heightened autophagosome degradation. PHAF1/MYTHO, a novel macroautophagy biomarker, is highly upregulated in response to high-intensity exercise. The latter is accompanied by elevated LAMP2A expression, indicating chaperone-mediated autophagy activation regardless of post-exercise HSPA8/HSC70 downregulation. Despite increased glycolytic metabolism, severe acute hypoxia does not exacerbate the autophagy signaling response. Signaling changes revert within 1 min of recovery with free circulation, while the application of immediate post-exercise ischemia impedes recovery. Our study concludes that macroautophagy and chaperone-mediated autophagy pathways are strongly activated by high-intensity exercise, regardless of PO2, and that oxygenation is necessary to revert these signals to pre-exercise values. PHAF1/MYTHO emerges as a pivotal exercise-responsive autophagy marker positively associated with the LC3B-II:LC3B-I ratio.


Subject(s)
Autophagy-Related Protein-1 Homolog , Autophagy , Beclin-1 , Chaperone-Mediated Autophagy , Exercise , Hypoxia , Muscle, Skeletal , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Exercise/physiology , Male , Phosphorylation , Hypoxia/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Beclin-1/metabolism , Beclin-1/genetics , Chaperone-Mediated Autophagy/genetics , Ischemia/metabolism , Ischemia/pathology , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , AMP-Activated Protein Kinases/metabolism , Adult , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , HSC70 Heat-Shock Proteins/metabolism , HSC70 Heat-Shock Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Female
12.
Respir Res ; 25(1): 263, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956592

ABSTRACT

BACKGROUND: Aberrant activation of macrophages is associated with pathogenesis of acute lung injury (ALI). However, the potential pathogenesis has not been explored. OBJECTIVES: We aimed to identify whether histone deacetylase (HDAC) 10 is involved in lipopolysaccharide (LPS)-exposed ALI and reveal the underlying pathogenesis by which it promotes lung inflammation in LPS-exposed ALI via modifying P62 with deacetylation. METHODS: We constructed an ALI mice model stimulated with LPS to determine the positive effect of Hdac10 deficiency. Moreover, we cultured murine alveolar macrophage cell line (MH-S cells) and primary bone marrow-derived macrophages (BMDMs) to explore the pro-inflammatory activity and mechanism of HDAC10 after LPS challenge. RESULTS: HDAC10 expression was increased both in mice lung tissues and macrophage cell lines and promoted inflammatory cytokines production exposed to LPS. Hdac10 deficiency inhibited autophagy and inflammatory response after LPS stimulation. In vivo, Hdac10fl/fl-LysMCre mice considerably attenuated lung inflammation and inflammatory cytokines release exposed to LPS. Mechanistically, HDAC10 interacts with P62 and mediates P62 deacetylation at lysine 165 (K165), by which it promotes P62 expression and increases inflammatory cytokines production. Importantly, we identified that Salvianolic acid B (SAB), an HDAC10 inhibitor, reduces lung inflammatory response in LPS-stimulated ALI. CONCLUSION: These results uncover a previously unknown role for HDAC10 in regulating P62 deacetylation and aggravating lung inflammation in LPS-induced ALI, implicating that targeting HDAC10 is an effective therapy for LPS-exposed ALI.


Subject(s)
Acute Lung Injury , Histone Deacetylases , Lipopolysaccharides , Lysine , Mice, Inbred C57BL , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Acute Lung Injury/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Lipopolysaccharides/toxicity , Mice , Acetylation , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/deficiency , Lysine/metabolism , Mice, Knockout , Male , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Myeloid Cells/metabolism
13.
Sci Rep ; 14(1): 15696, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977909

ABSTRACT

As the largest organ in the human body, skeletal muscle is essential for breathing support, movement initiation, and maintenance homeostasis. It has been shown that programmed cell death (PCD), which includes autophagy, apoptosis, and necrosis, is essential for the development of skeletal muscle. A novel form of PCD called ferroptosis is still poorly understood in relation to skeletal muscle. In this study, we observed that the activation of ferroptosis significantly impeded the differentiation of C2C12 myoblasts into myotubes and concurrently suppressed the expression of OTUB1, a crucial deubiquitinating enzyme. OTUB1-silenced C2C12 mouse myoblasts were used to investigate the function of OTUB1 in ferroptosis. The results show that OTUB1 knockdown in vitro significantly increased C2C12 ferroptosis and inhibited myogenesis. Interestingly, the induction of ferroptosis resulting from OTUB1 knockdown was concomitant with the activation of autophagy. Furthermore, OTUB1 interacted with the P62 protein and stabilized its expression by deubiquitinating it, thereby inhibiting autophagy-dependent ferroptosis and promoting myogenesis. All of these findings demonstrate the critical role that OTUB1 plays in controlling ferroptosis, and we suggest that focusing on the OTUB1-P62 axis may be a useful tactic in the treatment and prevention of disorders involving the skeletal muscle.


Subject(s)
Autophagy , Cell Differentiation , Cysteine Endopeptidases , Ferroptosis , Muscle Development , Muscle Fibers, Skeletal , Myoblasts , Animals , Mice , Muscle Fibers, Skeletal/metabolism , Ferroptosis/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Myoblasts/metabolism , Myoblasts/cytology , Cell Line , Deubiquitinating Enzymes/metabolism , Deubiquitinating Enzymes/genetics , Ubiquitination , Humans , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics
14.
Zool Res ; 45(4): 937-950, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39021082

ABSTRACT

Autophagy plays a pivotal role in diverse biological processes, including the maintenance and differentiation of neural stem cells (NSCs). Interestingly, while complete deletion of Fip200 severely impairs NSC maintenance and differentiation, inhibiting canonical autophagy via deletion of core genes, such as Atg5, Atg16l1, and Atg7, or blockade of canonical interactions between FIP200 and ATG13 (designated as FIP200-4A mutant or FIP200 KI) does not produce comparable detrimental effects. This highlights the likely critical involvement of the non-canonical functions of FIP200, the mechanisms of which have remained elusive. Here, utilizing genetic mouse models, we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1, primarily via TAX1BP1 in NSCs. Conditional deletion of Tax1bp1 in fip200 hGFAP conditional knock-in (cKI) mice led to NSC deficiency, resembling the fip200 hGFAP conditional knockout (cKO) mouse phenotype. Notably, reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200 hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation. Conversely, a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration. Furthermore, conditional deletion of Tax1bp1 in fip200 hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200 hGFAP cKO mice. Collectively, these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function, presenting novel therapeutic targets for neurodegenerative diseases.


Subject(s)
Autophagy-Related Proteins , Autophagy , Neural Stem Cells , Animals , Neural Stem Cells/physiology , Neural Stem Cells/metabolism , Mice , Autophagy/physiology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Knockout , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Gene Expression Regulation , Neoplasm Proteins
15.
Pestic Biochem Physiol ; 203: 106010, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084803

ABSTRACT

Thiram, a prevalent dithiocarbamate insecticide in agriculture, is widely employed as a crop insecticide and preservative. Chronic exposure to thiram has been linked to various irreversible damages, including tibial cartilage dysplasia, erythrocytotoxicity, renal issues, and immune system compromise. Limited research exists on its effects on reproductive organs. This study investigated the reproductive toxicology in mouse testes exposure to varying concentrations (0, 30, 60, and 120 mg/kg) of thiram. Our study uncovered a series of adverse effects in mice subjected to thiram exposure, including emaciation, stunted growth, decreased water intake, and postponed testicular maturation. Biochemical analysis in thiram-exposed mice showed elevated levels of LDH and AST, while ALP, TG, ALT, and urea were decreased. Histologically, thiram disrupted the testis' microarchitecture and compromised its barrier function by widening the gap between spermatogenic cells and promoting fibrosis. The expression of pro-apoptotic genes (Bax, APAF1, Cytc, and Caspase-3) was downregulated, whereas Bcl-2 expression increased in thiram-treated mice compared to controls. Conversely, the expression of Atg5 was upregulated, and mTOR and p62 expression decreased, with a trend towards lower LC3b levels. Thiram also disrupted the blood-testis barrier, significantly reducing the mRNA expression of zona occludens-1 (ZO-1) and occludin. In conclusion, chronic exposure to high thiram concentrations (120 mg/kg) caused testicular tissue damage, affecting the blood-testis barrier and modulating apoptosis and autophagy through the Bcl-2/Bax and mTOR/Atg5/p62 pathways. This study contributes to understanding the molecular basis of thiram-induced reproductive toxicity and underscores the need for further research and precautions for those chronically exposed to thiram and its environmental residuals.


Subject(s)
Apoptosis , Autophagy-Related Protein 5 , Autophagy , Blood-Testis Barrier , Proto-Oncogene Proteins c-bcl-2 , TOR Serine-Threonine Kinases , Testis , Thiram , bcl-2-Associated X Protein , Animals , Male , Apoptosis/drug effects , Mice , TOR Serine-Threonine Kinases/metabolism , Blood-Testis Barrier/drug effects , Testis/drug effects , Testis/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 5/genetics , Autophagy/drug effects , Thiram/toxicity , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Insecticides/toxicity , Signal Transduction/drug effects
16.
J Agric Food Chem ; 72(30): 16998-17007, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39016055

ABSTRACT

Butachlor is widely used in agriculture around the world and therefore poses environmental and public health hazards due to persistent and poor biodegradability. Ferroptosis is a type of iron-mediated cell death controlled by glutathione (GSH) and GPX4 inhibition. P62 is an essential autophagy adaptor that regulates Keap1 to activate nuclear factor erythroid 2-related factor 2 (Nrf2), which effectively suppresses lipid peroxidation, thereby relieving ferroptosis. Here, we found that butachlor caused changes in splenic macrophage structure, especially impaired mitochondrial morphology with disordered structure, which is suggestive of the occurrence of ferroptosis. This was further confirmed by the detection of iron metabolism, the GSH system, and lipid peroxidation. Mechanistically, butachlor suppressed the protein level of p62 and promoted Keap1-mediated degradation of Nrf2, which results in decreased GPX4 expression and accelerated splenic macrophage ferroptosis. These findings suggest that targeting the p62-Nrf2-GPX4 signaling axis may be a promising strategy for treating inflammatory diseases.


Subject(s)
Ferroptosis , Macrophages , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Phospholipid Hydroperoxide Glutathione Peroxidase , Signal Transduction , Spleen , Animals , Humans , Male , Mice , Ferroptosis/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Lipid Peroxidation/drug effects , Macrophages/drug effects , Macrophages/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Signal Transduction/drug effects , Spleen/drug effects , Spleen/cytology , Spleen/metabolism
17.
Theranostics ; 14(10): 4090-4106, 2024.
Article in English | MEDLINE | ID: mdl-38994016

ABSTRACT

Purpose: Due to intrinsic defensive response, ferroptosis-activating targeted therapy fails to achieve satisfactory clinical benefits. Though p62-Keap1-Nrf2 axis is activated to form a negative feedback loop during ferroptosis induction, how p62 is activated remains largely unknown. Methods: MTS assay was applied to measure cell growth. Lipid ROS was detected with C11-BODIPY reagent by flow cytometer. Quantitative real-time PCR (qPCR) and western blotting were performed to determine mRNA and protein level. Immunofluorescence (IF) was performed to examine the distribution of proteins. Fluorescence recovery after photobleaching (FRAP) was adopted to evaluate p62 phase separation. Immunoprecipitation (IP), co-IP and Proximal ligation assay (PLA) were performed to detected protein posttranslational modifications and protein-protein interactions. Tumor xenograft model was employed to inspect in vivo growth of pancreatic cancer cells. Results: Upon ferroptosis induction, Nuclear Factor E2 Related Factor 2 (Nrf2) protein and its downstream genes such as HMOX1 and NQO1 were upregulated. Knockdown of p62 significantly reversed Nrf2 upregulation and Keap1 decrease after ferroptosis induction. Knockdown of either p62 or Nrf2 remarkably sensitized ferroptosis induction. Due to augmented p62 phase separation, formation of p62 bodies were increased to recruit Keap1 after ferroptosis induction. Protein arginine methyltransferase 6 (PRMT6) mediated asymmetric dimethylarginine (ADMA) of p62 to increase its oligomerization, promoting p62 phase separation and p62 body formation. Knockdown of p62 or PRMT6 notably sensitized pancreatic cancer cells to ferroptosis both in vitro and in vivo through suppressing Nrf2 signaling. Conclusion: During ferroptosis induction, PRMT6 mediated p62 ADMA to promote its phase separation, sequestering Keap1 to activate Nrf2 signaling and inhibit ferroptosis. Therefore, targeting PRMT6-mediated p62 ADMA could be a new option to sensitize ferroptosis for cancer treatment.


Subject(s)
Arginine , Ferroptosis , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Humans , Animals , Arginine/metabolism , Arginine/analogs & derivatives , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Cell Line, Tumor , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Feedback, Physiological , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Mice, Nude , Signal Transduction , Phase Separation , RNA-Binding Proteins
18.
Fish Shellfish Immunol ; 151: 109719, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914181

ABSTRACT

Sequestosome 1 (SQSTM1/p62) is a selective autophagy adapter protein that participates in antiviral and bacterial immune responses and plays an important regulatory role in clearing the proteins to be degraded and maintaining intracellular protein homeostasis. In this study, two p62 genes were cloned from common carp (Cyprinus carpio), namely Ccp62-1 and Ccp62-2, and conducted bioinformatics analysis on them. The results showed that Ccp62s had the same structural domain (Phox and Bem1 domain, ZZ-type zinc finger domain, and ubiquitin-associated domain) as p62 from other species. Ccp62s were widely expressed in various tissues of fish, and highly expressed in immune organs such as gills, spleen, head kidney, etc. Subcellular localization study showed that they were mainly distributed in punctate aggregates in the cytoplasm. After stimulation with Aeromonas hydrophila and spring viraemia of carp virus (SVCV), the expression level of Ccp62s was generally up-regulated. Overexpression of Ccp62s in EPC cells could inhibit SVCV replication. Upon A. hydrophila challenge, the bacterial load in Ccp62s-overexpressing group was significantly reduced, the expression levels of pro-inflammatory cytokines and interferon factors were increased, and the survival rate of the fish was improved. These results indicated that Ccp62s were involved in the immune response of common carp to bacterial and viral infections.


Subject(s)
Aeromonas hydrophila , Carps , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Immunity, Innate , Phylogeny , Rhabdoviridae Infections , Rhabdoviridae , Animals , Carps/immunology , Carps/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Aeromonas hydrophila/physiology , Immunity, Innate/genetics , Rhabdoviridae/physiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Gene Expression Regulation/immunology , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/immunology , Gene Expression Profiling/veterinary , Sequence Alignment/veterinary , Amino Acid Sequence , Autophagy/immunology
19.
J Toxicol Sci ; 49(7): 313-319, 2024.
Article in English | MEDLINE | ID: mdl-38945842

ABSTRACT

Dihydropyrazines (DHPs) are formed by non-enzymatic glycation reactions in vivo and in food. We recently reported that 3-hydro-2,2,5,6-tetramethylpyrazine (DHP-3), which is a methyl-substituted DHP, caused severe oxidative stress and cytotoxicity. However, the molecular mechanisms underlying the cytotoxic pathways of the DHP response remain elusive. Because oxidative stress induces endoplasmic reticulum (ER) stress and autophagy, we investigated the ability of DHP-3 to modulate the ER stress and autophagy pathways. DHP-3 activated the ER stress pathway by increasing inositol-requiring enzyme 1 (IRE1) and PKR-like ER kinase (PERK) phosphorylation and transcription factor 6 (ATF6) expression. Moreover, DHP-3 increased the expression of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), which are downstream targets of PERK. In addition, DHP-3 inhibited the autophagy pathway by increasing the accumulation of microtubule-associated protein 1 light chain 3 alpha-phosphatidylethanolamine conjugate (LC3-II) and p62/sequestosome 1 (p62), while decreasing autophagic flux. Taken together, these results indicate that DHP-3 activates the ER stress pathway and inhibits the autophagy pathway, suggesting that the resulting removal of damaged organelles is inadequate.


Subject(s)
Activating Transcription Factor 4 , Activating Transcription Factor 6 , Autophagy , Endoplasmic Reticulum Stress , Protein Serine-Threonine Kinases , Pyrazines , eIF-2 Kinase , Humans , Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Pyrazines/pharmacology , Hep G2 Cells , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , eIF-2 Kinase/metabolism , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Phosphorylation , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Oxidative Stress/drug effects , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Signal Transduction/drug effects , Microtubule-Associated Proteins/metabolism
20.
Cancer Lett ; 597: 217063, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38925361

ABSTRACT

In this study we have identified POLθ-S6K-p62 as a novel druggable regulator of radiation response in prostate cancer. Despite significant advances in delivery, radiotherapy continues to negatively affect treatment outcomes and quality of life due to resistance and late toxic effects to the surrounding normal tissues such as bladder and rectum. It is essential to develop new and effective strategies to achieve better control of tumor. We found that ribosomal protein S6K (RPS6KB1) is elevated in human prostate tumors, and contributes to resistance to radiation. As a downstream effector of mTOR signaling, S6K is known to be involved in growth regulation. However, the impact of S6K signaling on radiation response has not been fully explored. Here we show that loss of S6K led to formation of smaller tumors with less metastatic ability in mice. Mechanistically we found that S6K depletion reduced NFκB and SQSTM1 (p62) reporter activity and DNA polymerase θ (POLθ) that is involved in alternate end-joining repair. We further show that the natural compound berberine interacts with S6K in a in a hitherto unreported novel mode and that pharmacological inhibition of S6K with berberine reduces Polθ and downregulates p62 transcriptional activity via NFκB. Loss of S6K or pre-treatment with berberine improved response to radiation in prostate cancer cells and prevented radiation-mediated resurgence of PSA in animals implanted with prostate cancer cells. Notably, silencing POLQ in S6K overexpressing cells enhanced response to radiation suggesting S6K sensitizes prostate cancer cells to radiation via POLQ. Additionally, inhibition of autophagy with CQ potentiated growth inhibition induced by berberine plus radiation. These observations suggest that pharmacological inhibition of S6K with berberine not only downregulates NFκB/p62 signaling to disrupt autophagic flux but also decreases Polθ. Therefore, combination treatment with radiation and berberine inhibits autophagy and alternate end-joining DNA repair, two processes associated with radioresistance leading to increased radiation sensitivity.


Subject(s)
NF-kappa B , Prostatic Neoplasms , Radiation Tolerance , Sequestosome-1 Protein , Signal Transduction , Male , Animals , Humans , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Signal Transduction/drug effects , Mice , Radiation Tolerance/drug effects , Cell Line, Tumor , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics
SELECTION OF CITATIONS
SEARCH DETAIL