Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Probiotics Antimicrob Proteins ; 15(3): 502-515, 2023 06.
Article in English | MEDLINE | ID: mdl-34671924

ABSTRACT

Plant fungal diseases cause major problems for the global economy. Antimicrobial peptides have aroused great interest in the control of phytopathogens, as they are natural molecules and have a broad spectrum of inhibitory activity. Herein, we have tried to identify and characterize antimicrobial peptides present in fruits of Capsicum chinense and to evaluate their enzymatic and antifungal activities. The retained fraction obtained in the anion exchange chromatography with strong antifungal activity was subjected to molecular exclusion chromatography and obtained four fractions named G1, G2, G3, and G4. The 6.0-kDa protein band of G2 showed similarity with protease inhibitors type II, and it was able to inhibit 100% of trypsin and α-amylase activities. The protein band with approximately 6.5 kDa of G3 showed similarity with sequences of protease inhibitors from genus Capsicum and showed growth inhibition of 48% for Colletotrichum lindemuthianum, 49% for Fusarium lateritium, and 51% for F. solani and F. oxysporum. Additionally, G3 causes morphological changes, membrane permeabilization, and ROS increase in F. oxysporum cells. The 9-kDa protein band of G4 fraction was similar to a nsLTP type 1, and a protein band of 6.5 kDa was similar to a nsLTP type 2. The G4 fraction was able to inhibit 100% of the activities of glycosidases tested and showed growth inhibition of 35 and 50% of F. oxysporum and C. lindemuthianum, respectively. C. chinense fruits have peptides with antifungal activity and enzyme inhibition with biotechnological potential.


Subject(s)
Antifungal Agents , Capsicum , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fruit/microbiology , Capsicum/microbiology , Serine Proteases/analysis , Antimicrobial Peptides , alpha-Amylases , Fungi , Protease Inhibitors/analysis
2.
Toxins (Basel) ; 13(8)2021 07 23.
Article in English | MEDLINE | ID: mdl-34437385

ABSTRACT

Snakebite envenomation is a serious neglected tropical disease, and its management is often complicated by the diversity of snake venoms. In Asia, pit vipers of the Ovophis species complex are medically important venomous snakes whose venom properties have not been investigated in depth. This study characterized the venom proteomes of Ovophis convictus (West Malaysia), Ovophis tonkinensis (northern Vietnam, southern China), and Ovophis okinavensis (Okinawa, Japan) by applying liquid chromatography-tandem mass spectrometry, which detected a high abundance of snake venom serine proteases (SVSP, constituting 40-60% of total venom proteins), followed by phospholipases A2, snake venom metalloproteinases of mainly P-III class, L-amino acid oxidases, and toxins from other protein families which were less abundant. The venoms exhibited different procoagulant activities in human plasma, with potency decreasing from O. tonkinensis > O. okinavensis > O. convictus. The procoagulant nature of venom confirms that consumptive coagulopathy underlies the pathophysiology of Ovophis pit viper envenomation. The hetero-specific antivenoms Gloydius brevicaudus monovalent antivenom (GbMAV) and Trimeresurus albolabris monovalent antivenom (TaMAV) were immunoreactive toward the venoms, and cross-neutralized their procoagulant activities, albeit at variably limited efficacy. In the absence of species-specific antivenom, these hetero-specific antivenoms may be useful in treating coagulotoxic envenomation caused by the different snakes in their respective regions.


Subject(s)
Crotalinae , Proteome , Reptilian Proteins , Viper Venoms , Animals , Antivenins/immunology , Coagulants/analysis , Coagulants/immunology , Coagulants/toxicity , Humans , L-Amino Acid Oxidase/analysis , L-Amino Acid Oxidase/immunology , L-Amino Acid Oxidase/toxicity , Metalloproteases/analysis , Metalloproteases/immunology , Metalloproteases/toxicity , Phospholipases A2/analysis , Phospholipases A2/immunology , Phospholipases A2/toxicity , Plasma/drug effects , Proteome/analysis , Proteome/immunology , Proteome/toxicity , Proteomics , Reptilian Proteins/analysis , Reptilian Proteins/immunology , Reptilian Proteins/toxicity , Serine Proteases/analysis , Serine Proteases/immunology , Serine Proteases/toxicity , Viper Venoms/chemistry , Viper Venoms/immunology , Viper Venoms/toxicity
3.
Int J Mol Sci ; 21(14)2020 Jul 12.
Article in English | MEDLINE | ID: mdl-32664686

ABSTRACT

Bacillus subtilis produces eight industrially important exo-proteases. For the detection of proteases, the activity- and antibody-based assays are normally used. Current activity-based assays require expensive multiplex chemical substrates which allow specificity determination of each enzyme. In this study, we provide evidences pertaining to the usefulness of the label-free multiple reaction monitoring (MRM) assay for a rapid identification and quantitation of specific proteins in bacteria. We used wild-type B. pumilus cells producing at least two serine proteases, subtilisin-like protease (AprBp) and glutamyl endopeptidase (GseBp), as well as optimized recombinant B. subtilis cells containing the same protease genes under control of the LIKE expression system. The Skyline software was used for the selection of three specific proteotypic peptides and their fragment ions for quantification and confirmation of AprBp and GseBp in complex mixtures. MRM indicated that the production of AprBp and GseBp exo-enzymes were respectively 0.9- and 26.6-fold higher in the culture medium of B. pumilus strain in comparison to the recombinant B. subtilis strains carrying optimized LIKE expression systems under identical conditions. The developed procedure in this study is fast, easy to perform and dependable. Additionally, it achieves accurate proteins identification and quantification in complex mixture.


Subject(s)
Bacillus pumilus/chemistry , Bacillus subtilis/chemistry , Bacterial Proteins/analysis , Mass Spectrometry/methods , Proteomics/methods , Recombinant Proteins/analysis , Amino Acid Sequence , Chromatography, High Pressure Liquid , Peptide Fragments/analysis , Serine Endopeptidases/analysis , Serine Proteases/analysis , Software
4.
PLoS Negl Trop Dis ; 14(6): e0008299, 2020 06.
Article in English | MEDLINE | ID: mdl-32511239

ABSTRACT

Snake venoms are complex mixtures of proteins with toxic activities, with many distinct isoforms, affecting different physiological targets, comprised in a few protein families. It is currently accepted that this diversity in venom composition is an adaptive advantage for venom efficacy on a wide range of prey. However, on the other side, variability on isoforms expression has implications in the clinics of human victims of snakebites and in the efficacy of antivenoms. B. atrox snakes are responsible for most of the human accidents in Brazilian Amazon and the type and abundance of protein families on their venoms present individual variability. Thus, in this study we attempted to correlate the individual venom proteome of the snake brought to the hospital by the patient seeking for medical assistance with the clinical signs observed in the same patient. Individual variability was confirmed in venoms of the 14 snakes selected for the study. The abundance of each protein family was quite similar among the venom samples, while the isoforms composition was highly variable. Considering the protein families, the SVMP group presented the best correlation with bleeding disorders and edema. Considering individual isoforms, some isoforms of venom metalloproteinase (SVMP), C-type lectin-like toxins (CTL) and snake venom serine proteinases (SVSP) presented expression levels that with statistically significant positive correlation to signs and symptoms presented by the patients as bleeding disorders, edema, ecchymosis and blister formation. However, some unexpected data were also observed as the correlation between a CTL, CRISP or LAAO isoforms with blister formation, still to be confirmed with a larger number of samples. Although this is still a small number of patient samples, we were able to indicate that venom composition modulates clinical manifestations of snakebites, to confirm at the bedside the prominent role of SVMPs and to include new possible toxin candidates for the development of toxin inhibitors or to improve antivenom selectiveness, important actions for the next generation treatments of snakebites.


Subject(s)
Bothrops , Crotalid Venoms/analysis , Proteome/analysis , Serine Proteases/analysis , Animals , Antivenins , Brazil , Metalloproteases/analysis , Protein Isoforms/analysis , Proteomics , Snake Bites/therapy
5.
Appl Environ Microbiol ; 86(3)2020 01 21.
Article in English | MEDLINE | ID: mdl-31757827

ABSTRACT

Antibiotic resistance continues to be an emerging threat both in clinical and environmental settings. Among the many causes, the impact of postchlorinated human wastewater on antibiotic resistance has not been well studied. Our study compared antibiotic susceptibility among Aeromonas spp. in postchlorinated effluents to that of the recipient riverine populations for three consecutive years against 12 antibiotics. Aeromonas veronii and Aeromonas hydrophila predominated among both aquatic environments, although greater species diversity was evident in treated wastewater. Overall, treated wastewater contained a higher prevalence of nalidixic acid-, trimethoprim-sulfamethoxazole (SXT)-, and tetracycline-resistant isolates, as well as multidrug-resistant (MDR) isolates compared to upstream surface water. After selecting for tetracycline-resistant strains, 34.8% of wastewater isolates compared to 8.3% of surface water isolates were multidrug resistant, with nalidixic acid, streptomycin, and SXT being the most common. Among tetracycline-resistant isolates, efflux pump genes tetE and tetA were the most prevalent, though stronger resistance correlated with tetA. Over 50% of river and treated wastewater isolates exhibited cytotoxicity that was significantly correlated with serine protease activity, suggesting many MDR strains from effluent have the potential to be pathogenic. These findings highlight that conventionally treated wastewater remains a reservoir of resistant, potentially pathogenic bacterial populations being introduced into aquatic systems that could pose a threat to both the environment and public health.IMPORTANCE Aeromonads are Gram-negative, asporogenous rod-shaped bacteria that are autochthonous in fresh and brackish waters. Their pathogenic nature in poikilotherms and mammals, including humans, pose serious environmental and public health concerns especially with rising levels of antibiotic resistance. Wastewater treatment facilities serve as major reservoirs for the dissemination of antibiotic resistance genes (ARGs) and resistant bacterial populations and are, thus, a potential major contributor to resistant populations in aquatic ecosystems. However, few longitudinal studies exist analyzing resistance among human wastewater effluents and their recipient aquatic environments. In this study, considering their ubiquitous nature in aquatic environments, we used Aeromonas spp. as bacterial indicators of environmental antimicrobial resistance, comparing it to that in postchlorinated wastewater effluents over 3 years. Furthermore, we assessed the potential of these resistant populations to be pathogenic, thus elaborating on their potential public health threat.


Subject(s)
Aeromonas/isolation & purification , Drug Resistance, Bacterial , Rivers/microbiology , Waste Disposal, Fluid , Wastewater/microbiology , Aeromonas/enzymology , Aeromonas hydrophila/enzymology , Aeromonas hydrophila/isolation & purification , Aeromonas veronii/enzymology , Aeromonas veronii/isolation & purification , Bacterial Proteins/analysis , Cities , Halogenation , Illinois , Longitudinal Studies , Phenotype , Seasons , Serine Proteases/analysis , Species Specificity
6.
Rev. lab. clín ; 12(3): 137-146, jul.-sept. 2019. ilus, tab
Article in Spanish | IBECS | ID: ibc-187168

ABSTRACT

Las proteasas de serina son enzimas ampliamente distribuidas en la naturaleza, responsables de múltiples e importantes procesos biológicos. Durante las infecciones bacterianas los patógenos secretan y usan sus proteasas de serina como factores de virulencia para combatir contra el huésped, a través de diversos efectos como la desorganización de tejidos, la proteólisis de efectores inmunológicos o la inactivación de componentes relevantes para la fisiología del huésped; sin embargo, desde hace algunos años se ha observado que las proteasas de serina podían modular procesos fisiológicos por un mecanismo altamente específico, a través de la activación de los receptores activados por proteasas. En este artículo resumimos el conocimiento reciente sobre las proteasas de serina bacteriana y su relevancia en la fisiopatología de la infección, y destacamos la oportunidad de nuevas intervenciones antimicrobianas basadas en la inhibición de la interacción receptores activados por proteasas-proteasa


Serine proteases are enzymes widely distributed in nature, and are responsible for multiple and important biological processes. During bacterial infection, pathogens secrete and use their serine proteases as virulent factors to combat against the host, through diverse mechanisms, such as tissue disruption, proteolysis of immunological effectors or inactivation of relevant components for the host physiology. However, some years ago it was observed that serine proteases could modulate physiological processes by a highly specific mechanism, through the activation of protease activated receptors (PARs). In this paper, we review recent knowledge about bacterial serine proteases and their relevance in the pathophysiology of infection. The opportunity for new antimicrobial interventions based on the inhibition of PAR-protease interaction, is also highlighted


Subject(s)
Humans , Serine Proteases/analysis , Bacteria/enzymology , Bacterial Infections/physiopathology , Protease Inhibitors/pharmacokinetics , Serine Proteinase Inhibitors/pharmacokinetics , Anti-Bacterial Agents/pharmacokinetics , Bacterial Infections/drug therapy , Peptide Hydrolases/classification , Virulence Factors
7.
Molecules ; 24(8)2019 Apr 16.
Article in English | MEDLINE | ID: mdl-31014025

ABSTRACT

Snakebite envenoming is a serious medical problem in different areas of the world. In Latin America, the major prevalence is due to snakes of the family Viperidae, where rattlesnakes (Crotalus) are included. They produce hemotoxic venom which causes bleeding, tissue degradation and necrosis. Each venom has several enzymatic activities, producing different effects in the envenoming, doing its clinical effects difficult to study. Comparison between venom molecules is also difficult when different techniques are used, and therefore, their identification/characterization using the same methodology is necessary. In this work, a general biochemical characterization in snake venom of serine proteases (SVSP), phospholipases A2 (PLA2), metalloproteases (SVMP) and hyaluronidases (SVH) of Crotalus aquilus (Ca), Crotalus polystictus (Cp) and Crotalus molossus nigrescens (Cmn) was done. Differences in protein pattern, enzyme content and enzymatic activities were observed. All the venoms showed high PLA2 activity, high molecular weight SVSP, and a wide variety of SVMP and SVH forms. Ca and Cp showed the highest enzymatic activities of SVMP and SVSP trypsin-like and chymotrypsin-like, whereas Cmn showed the highest SVH and similar PLA2 activity with Ca. All the venoms showed peptides with similar molecular weight to crotamine-like myotoxins. No previous biochemical characterization of C. aquilus has been reported and there are no previous analyses that include these four protein families in these Crotalus venoms.


Subject(s)
Hydrolases/metabolism , Hydrolases/toxicity , Snake Venoms/enzymology , Animals , Crotalus , Metalloproteases/analysis , Mexico , Serine Proteases/analysis , Species Specificity
8.
J Nat Prod ; 82(5): 1217-1226, 2019 05 24.
Article in English | MEDLINE | ID: mdl-30995037

ABSTRACT

Honey is a unique natural product produced by European honeybees. Due to its high economic value, honey is considered to be well characterized chemically, and it is often discovered to be an adulterated commodity. However, this study shows that our knowledge of honey protein composition, which is of high medical and pharmaceutical importance, is incomplete. In this in-depth proteomic study of 13 honeys, we identified a number of proteins that are important for an understanding of honey properties and merit additional pharmaceutical research. Our major result is an expanded understanding of the proteins underlying honey's antimicrobial properties, such as hymenoptaecin and defensin-1, glucose dehydrogenase isoforms, venom allergens and other venom-like proteins, serine proteases and serine protease inhibitors, and a series of royal jelly proteins. In addition, we performed quantitative comparisons of all of the proteins previously known or newly identified. The honey proteins, determined using label-free nLC-MS/MS in which the same protein quantity was analyzed in one series, were found in relatively similar proportions, although eucalyptus honey differed most widely from the remaining honeys. Overall, the proteome analysis indicated that honeybees supply proteins to honey in a relatively stable ratio within each proteome, but total protein quantity can differ by approximately an order of magnitude in different honeys.


Subject(s)
Allergens/analysis , Anti-Bacterial Agents/pharmacology , Fatty Acids/chemistry , Honey/analysis , Proteomics/methods , Serine Proteases/analysis , Serine Proteinase Inhibitors/analysis , Venoms/analysis
9.
Toxicon ; 163: 59-69, 2019 May.
Article in English | MEDLINE | ID: mdl-30902682

ABSTRACT

Phoneutria nigriventer spider venom has been studied for more than 40 years and several components with pharmacological potential have been described in it. However, studies on venoms from other species of the Phoneutria genus are scarce. In this work, a conventional cDNA library from the species Phoneutria pertyi venom glands was constructed, aiming to identify novel putative cysteine-rich peptide toxins for the genus Phoneutria. 296 unique sequences were identified and 51 sequences corresponded to putative cysteine-rich peptide toxins. Besides cysteine-rich peptide toxins, other putative venom components such as protease inhibitors, defensins and serine proteinases were identified. Furthermore, by manual curation of the sequences with no match at UniProt, we were able to identify glycine-rich proteins (GRP), a class of venom component never described in Phoneutria genus. This work describes the first complete sequences of toxins from the venom of P. pertyi and reveals that, despite most of the retrieved toxins show a high identity to toxins identified in Phoneutria genus, novel putative toxins remains to be described.


Subject(s)
Spider Venoms/chemistry , Transcriptome , Animals , Arthropod Proteins/analysis , DNA, Complementary/genetics , DNA, Complementary/metabolism , Defensins/analysis , Gene Expression Profiling , Peptides/analysis , Protease Inhibitors/analysis , Serine Proteases/analysis , Spiders/genetics , Spiders/metabolism
10.
Biochem Biophys Res Commun ; 512(2): 230-235, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30885434

ABSTRACT

The shelterin protein complex protects natural chromosome ends from being recognized as DNA damage sites and also regulates the synthesis of telomeric repeats by telomerase. TPP1, a shelterin subunit that is essential for telomerase extension of telomeres, has been studied intensively in recent years. Many such studies utilize epitope tagged TPP1, but it is unclear how the tags may affect the multiple cellular functions of TPP1. Here we analyzed the effect of adding a 3x Flag epitope tag to the N- or C-terminus of TPP1. While the position of the tag did not affect TPP1's interaction within the shelterin complex or its localization to telomeres, the N-terminal Flag tag on TPP1 impaired telomerase function, resulting in reduced telomerase processivity in vitro and a failure to stimulate telomere elongation in vivo. The C-terminally Flag-tagged TPP1, in contrast, behaved similarly to untagged TPP1 in all functional aspects examined. These findings suggest that caution is required when utilizing epitope tagged TPP1 to study its regulation of telomerase function.


Subject(s)
Aminopeptidases/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Protein Interaction Mapping/methods , Serine Proteases/metabolism , Shelterin Complex , Telomerase/metabolism , Telomere-Binding Proteins , Aminopeptidases/analysis , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/analysis , HCT116 Cells , HeLa Cells , Humans , Protein Interaction Maps , Serine Proteases/analysis , Shelterin Complex/metabolism , Telomere Homeostasis , Telomere-Binding Proteins/metabolism
11.
PLoS Negl Trop Dis ; 13(1): e0007017, 2019 01.
Article in English | MEDLINE | ID: mdl-30657756

ABSTRACT

BACKGROUND: Naja annulifera is a medically important venomous snake occurring in some of the countries in Sub-Saharan Africa. Accidental bites result in severe coagulation disturbances, systemic inflammation and heart damage, as reported in dogs, and death, by respiratory arrest, in humans. Despite the medical importance of N. annulifera, little is known about its venom composition and the pathogenesis of envenomation. In this paper, the toxic, inflammatory and immunogenic properties of N. annulifera venom were analyzed. METHODOLOGY/PRINCIPAL FINDINGS: Venom proteomic analysis identified 79 different proteins, including Three Finger Toxins, Cysteine Rich Secretory Proteins, Metalloproteinases, Phospholipases A2 (PLA2), Hyaluronidase, L-amino-acid oxidase, Cobra Venom Factor and Serine Proteinase. The presence of PLA2, hyaluronidase, fibrinogenolytic and anticoagulant activities was detected using functional assays. The venom was cytotoxic to human keratinocytes. In an experimental murine model of envenomation, it was found that the venom induced local changes, such as swelling, which was controlled by anti-inflammatory drugs. Moreover, the venom caused death, which was preceded by systemic inflammation and pulmonary hemorrhage. The venom was shown to be immunogenic, inducing a strong humoral immune response, with the production of antibodies able to recognize venom components with high molecular weight and to neutralize its lethal activity. CONCLUSIONS/SIGNIFICANCE: The results obtained in this study demonstrate that N. annulifera venom contains toxins able to induce local and systemic inflammation, which can contribute to lung damage and death. Moreover, the venom is immunogenic, an important feature that must be considered during the production of a therapeutic anti-N. annulifera antivenom.


Subject(s)
Elapid Venoms/analysis , Elapid Venoms/toxicity , Animals , Antivenins/pharmacology , Female , Hyaluronoglucosaminidase/analysis , L-Amino Acid Oxidase/analysis , Male , Metalloproteases/analysis , Mice , Mice, Inbred BALB C , Naja , Phospholipases A2/analysis , Proteomics , Serine Proteases/analysis
12.
Acta Trop ; 189: 137-144, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30268686

ABSTRACT

Deinagkistrodon acutus, also known as the hundred-pace viper or Chinese moccasin, is a clinically significant venomous snake in Taiwan. To address the lack of knowledge on the venom proteome of D. acutus, the venom composition was studied by a bottom-up proteomic approach combining reverse phase high-performance liquid chromatography, SDS-PAGE, and LC-MS/MS analysis. The immunoreactivity and cross-reactivity of Taiwanese freeze-dried D. acutus antivenom (DA-AV) and hemorrhagic antivenom (FH-AV) were investigated, as well. The proteomic analysis revealed the presence of 29 distinct proteins from D. acutus venom belonging to 8 snake venom protein families. Snake venom metalloproteinase (SVMP, 46.86%), C-type lectin (CLEC, 37.59%), phospholipase A2 (PLA2, 7.33%) and snake venom serine protease (SVSP, 6.62%) were the most abundant proteins. In addition to DA-AV, FH-AV also showed a profile of broad immunorecognition toward the venom of D. acutus. Remarkably, both antivenoms specifically reacted with the HPLC fractions containing SVMPs, and the titer was 5-10 times higher than fractions of other components. This information helps us to deeply understand the pathophysiology of D. acutus envenomation and guide us to development of more effective antivenom for clinical treatment.


Subject(s)
Proteome/chemistry , Snake Venoms/chemistry , Animals , Lectins, C-Type/analysis , Metalloproteases/analysis , Phospholipases A2/analysis , Proteomics , Serine Proteases/analysis , Snakes , Taiwan
13.
J Proteomics ; 187: 171-181, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30048773

ABSTRACT

In order to determine Bothriopsis bilineata smaragdina venom (BbsV) composition, proteomic approaches were performed. Venom components were analyzed by RP-HPLC, SDS- PAGE and nano LC on line with LTQ Orbitrap XL. Results showed a total of 189 identified proteins, grouped into 11 different subgroups, which include snake venom metalloproteinases (SVMPs, 54.67%), snake C-type lectins (Snaclecs, 15.78%), snake venom serine proteinases (SVSPs, 14.69%), cystein-rich secretory proteins (CRISP, 2.61%), phospholipases A2 (PLA2, 1.14%), phosphodiesterase (PDE, 1.17%), venom endothelial growth factor (VEGF, 1.06%) 5'nucleotidases (0.33%), L-amino acid oxidases (LAAOs, 0.28%) and other proteins. In vitro enzymatic activities (SVMP, SVSP, LAAO, Hyal and PLA2) of BbsV were also analyzed. BbsV showed high SVSP activity but low PLA2 activity, when compared to other Bothrops venoms. In vivo, BbsV induced hemorrhage and edema in mice and showed intraperitoneal median lethal dose (LD50) of 92.74 (± 0.15) µg/20 g of mice. Furthermore, BbsV reduced cell viability when incubated with VERO cells. Peruvian and Brazilian bothropic antivenoms recognize BbsV proteins, as detected by ELISA and Western Blotting. Both antivenoms were able to neutralize in vivo edema and hemorrhage. SIGNIFICANCE: In Peru, snakebite is a public health problem, especially in the rain forest, as a result of progressive colonization of this geographical area. This country is the second in Latin America, after Brazil, to exhibit the largest variety of venomous snakes. B. atrox and B. b. smaragdina snakes are sympatric species in Peruvian Amazon region and are responsible for approximately 95% of the envenomings reported in this region. B. b. smaragdina may cause a smaller share (3 to 38%) of those accidents, due to its arboreal habits, that make human encounters with these snakes less likely to happen. Despite B. b. smaragdina recognized medical importance, its venom composition and biological activities have been poorly studied. Furthermore, BbsV is not a component of the antigenic pool used to produce the corresponding Peruvian bothropic antivenom (P-BAV). Our results not only provide new insights on BbsV composition and biological activity, but also demonstrate that both P-BAV and B-BAV polyvalent antivenoms have a considerable recognition of proteins from BbsV and, more importantly, neutralized hemorrhage and edema, the main local effects of bothropic envenomation.


Subject(s)
Antivenins/analysis , Bothrops , Crotalid Venoms/immunology , Crotalid Venoms/metabolism , Crotalid Venoms/pharmacology , Animals , Antivenins/metabolism , Chlorocebus aethiops , Crotalid Venoms/analysis , Female , Hemorrhage/chemically induced , Hemorrhage/pathology , L-Amino Acid Oxidase/analysis , L-Amino Acid Oxidase/metabolism , Lethal Dose 50 , Metalloproteases/analysis , Metalloproteases/metabolism , Mice , Peru , Phospholipases A2/analysis , Phospholipases A2/metabolism , Proteome/analysis , Proteome/metabolism , Proteomics , Serine Proteases/analysis , Serine Proteases/metabolism , Vero Cells
14.
PLoS Negl Trop Dis ; 12(5): e0006485, 2018 05.
Article in English | MEDLINE | ID: mdl-29758030

ABSTRACT

BACKGROUND: Trichinellosis is a serious zoonositc parasitosis worldwide. Because its clinical manifestations aren't specific, the diagnosis of trichinellosis is not easy to be made. Trichinella spiralis muscle larva (ML) excretory-secretory (ES) antigens are the most widely applied diagnostic antigens for human trichinellosis, but the major drawback of the ES antigens for assaying anti-Trichinella antibodies is the false negative in the early Trichinella infection period. The aim of this study was to characterize the T. spiralis putative serine protease (TsSP) and to investigate its potential use for diagnosis of trichinellosis. METHODOLOGY/PRINCIPAL FINDINGS: The full-length TsSP sequence was cloned and expressed, and recombinant TsSP (rTsSP) was purified by Ni-NTA-Sefinose Column. On Western blotting analysis the rTsSP was recognized by T. spiralis-infected mouse serum, and the natural TsSP was identified in T. spiralis ML crude and ES antigens by using anti-rTsSP serum. Expression of TsSP was detected at various T. spiralis developmental stages (newborn larvae, muscle larvae, intestinal infective larvae and adult worms). Immunolocalization identified the TsSP principally in cuticles and stichosomes of the nematode. The sensitivity of rTsSP-ELISA and ES-ELISA was 98.11% (52/53) and 88.68% (47/53) respectively (P > 0.05) when the sera from trichinellosis patients were examined. However, while twenty-one serum samples of trichinellosis patients' sera at 19 days post-infection (dpi) were tested, the sensitivity (95.24%) of rTsSP-ELISA was distinctly higher than 71.43% of ES-ELISA (P < 0.05). The specificity (99.53%) of rTsSP-ELISA was remarkably higher than 91.98% of ES-ELISA (P < 0.01). Only one out of 20 serum samples of cysticercosis patients cross-reacted with the rTsSP. Specific anti-Trichinella IgG in infected mice was first detected by rTsSP-ELISA as soon as 7 dpi and antibody positive rate reached 100% on 10 dpi, whereas the ES-ELISA did not permit detection of 100% of infected mice before 16 dpi. CONCLUSIONS: The rTsSP is a potential early diagnostic antigen for human trichinellosis.


Subject(s)
Helminth Proteins/immunology , Serine Proteases/immunology , Trichinella spiralis/enzymology , Trichinellosis/parasitology , Animals , Antibodies, Helminth/analysis , Antibodies, Helminth/immunology , Antigens, Helminth/analysis , Antigens, Helminth/genetics , Antigens, Helminth/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Female , Helminth Proteins/analysis , Helminth Proteins/genetics , Humans , Mice , Mice, Inbred BALB C , Serine Proteases/analysis , Serine Proteases/genetics , Trichinella spiralis/genetics , Trichinella spiralis/isolation & purification , Trichinellosis/diagnosis , Trichinellosis/immunology
15.
J Am Chem Soc ; 139(29): 10115-10125, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28672107

ABSTRACT

Neutrophils, the front line defenders against infection, express four serine proteases (NSPs) that play roles in the control of cell-signaling pathways and defense against pathogens and whose imbalance leads to pathological conditions. Dissecting the roles of individual NSPs in humans is problematic because neutrophils are end-stage cells with a short half-life and minimal ongoing protein synthesis. To gain insight into the regulation of NSP activity we have generated a small-molecule chemical toolbox consisting of activity-based probes with different fluorophore-detecting groups with minimal wavelength overlap and highly selective natural and unnatural amino acid recognition sequences. The key feature of these activity-based probes is the ability to use them for simultaneous observation and detection of all four individual NSPs by fluorescence microscopy, a feature never achieved in previous studies. Using these probes we demonstrate uneven distribution of NSPs in neutrophil azurophil granules, such that they seem to be mutually excluded from each other, suggesting the existence of unknown granule-targeting mechanisms.


Subject(s)
Fluorescent Dyes/chemistry , Neutrophils/enzymology , Optical Imaging , Serine Proteases/analysis , Serine Proteases/metabolism , Humans , Molecular Conformation
16.
Methods Mol Biol ; 1626: 13-24, 2017.
Article in English | MEDLINE | ID: mdl-28608196

ABSTRACT

To detect serine protease activity by zymography, casein and CBB stain have been used as a substrate and a detection procedure, respectively. Casein zymography has been using substrate concentration at 1 mg/mL and employing conventional CBB stain. Although ordinary casein zymography provides reproducible results, it has several disadvantages including time-consuming and relative low sensitivity. Improved casein zymography, RAMA casein zymography, is rapid and highly sensitive. RAMA casein zymography completes the detection process within 1 h after incubation and increases the sensitivity at least by tenfold. In addition to serine protease, the method also detects metalloprotease 7 (MMP7, Matrilysin) with high sensitivity.


Subject(s)
Caseins/metabolism , Electrophoresis, Polyacrylamide Gel/methods , Enzyme Assays/methods , Serine Proteases/analysis , Animals , Coloring Agents/analysis , Coloring Agents/metabolism , Electrophoresis, Polyacrylamide Gel/economics , Humans , Indicators and Reagents , Matrix Metalloproteinase 7/analysis , Matrix Metalloproteinase 7/metabolism , Rosaniline Dyes/analysis , Rosaniline Dyes/metabolism , Serine Proteases/metabolism , Staining and Labeling/methods , Substrate Specificity , Time Factors
17.
J Proteomics ; 152: 1-12, 2017 01 30.
Article in English | MEDLINE | ID: mdl-27777178

ABSTRACT

Bothriechis is a genus of eleven currently recognized slender and arboreal venomous snakes, commonly called palm-pitvipers that range from southern Mexico to northern South America. Despite dietary studies suggesting that palm-pitvipers are generalists with an ontogenetic shift toward endothermic prey, venom proteomic analyses have revealed remarkable divergence between the venoms of the Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. To achieve a more complete picture of the venomic landscape across Bothriechis, the venom proteomes of biodiversity of the northern Middle American highland palm-pitvipers, B. thalassinus, B. aurifer, and B. bicolor from Guatemala, B. marchi from Honduras, and neonate Costa Rican B. lateralis and B. schlegelii, were investigated. B. thalassinus and B. aurifer venoms are comprised by similar toxin arsenals dominated by SVMPs (33-39% of the venom proteome), CTLs (11-16%), BPP-like molecules (10-13%), and CRISPs (5-10%), and are characterized by the absence of PLA2 proteins. Conversely, the predominant (35%) components of B. bicolor are D49-PLA2 molecules. The venom proteome of B. marchi is similar to B. aurifer and B. thalassinus in that it is rich in SVMPs and BPPs, but also contains appreciable amounts (14.3%) of PLA2s. The major toxin family found in the venoms of both neonate B. lateralis and B. schlegelii, is serine proteinase (SVSP), comprising about 20% of their toxin arsenals. The venom of neonate B. schlegelii is the only palm-pitviper venom where relative high amounts of Kunitz-type (6.3%) and γPLA2 (5.2%) inhibitors have been identified. Despite notable differences between their proteomes, neonate venoms are more similar to each other than to adults of their respective species. However, the ontogenetic changes taking place in the venom of B. lateralis strongly differ from those that occur in the venom of B. schlegelii. Thus, the ontogenetic change in B. lateralis produces a SVMP-rich venom, whereas in B. schlegelii the age-dependent compositional shift generates a PLA2-rich venom. Overall, genus-wide venomics illustrate the high evolvability of palm-pitviper venoms. The integration of the pattern of venom variation across Bothriechis into a phylogenetic and biogeographic framework may lay the foundation for assessing, in future studies, the evolutionary path that led to the present-day variability of the venoms of palm-pitvipers. SIGNIFICANCE: Bothriechis represents a monophyletic basal genus of eleven arboreal palm-pitvipers that range from southern Mexico to northern South America. Despite palm-pitvipers' putative status as diet generalists, previous proteomic analyses have revealed remarkable divergence between the venoms of Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. Our current proteomic study of Guatemalan species, B. thalassinus, B. aurifer, and B. bicolor, Honduran B. marchi, and neonate B. lateralis and B. schlegelii from Costa Rica was undertaken to deepen our understanding of the evolutionary pattern of venom proteome diversity across Bothriechis. Ancestral characters are often, but not always, preserved in an organism's development. Venoms of neonate B. lateralis and B. schlegelii are more similar to each other than to adults of their respective species, suggesting that the high evolvability of palm-pitviper venoms may represent an inherent feature of Bothriechis common ancestor. Our genus-wide data identified four nodes of venom phenotype differentiation across the phylogeny of Bothriechis. Integrated into a phylogenetic and biogeographic framework, the pattern of venom variation across Bothriechis may lay the groundwork to establish whether divergence was driven by selection for efficient resource exploitation in arboreal 'islands', thereby contributing to the ecological speciation of the genus.


Subject(s)
Biodiversity , Crotalid Venoms/chemistry , Proteome/analysis , Age Factors , Animals , Biological Evolution , Crotalid Venoms/enzymology , Phospholipases A2/analysis , Phylogeny , Proteomics/methods , Serine Proteases/analysis , Toxins, Biological/analysis , Viperidae
18.
Bioorg Med Chem Lett ; 27(2): 254-260, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27923620

ABSTRACT

Activity-based probes are small molecules that covalently bind to the active site of a protease in an activity-dependent manner. We synthesized and characterized two fluorescent activity-based probes that target serine proteases with trypsin-like or elastase-like activity. We assessed the selectivity and potency of these probes against recombinant enzymes and demonstrated that while they are efficacious at labeling active proteases in complex protein mixtures in vitro, they are less valuable for in vivo studies. We used these probes to evaluate serine protease activity in two mouse models of acute inflammation, including pancreatitis and colitis. As anticipated, the activity of trypsin-like proteases was increased during pancreatitis. Levels of elastase-like proteases were low in pancreatic lysates and colonic luminal fluids, whether healthy or inflamed. Exogenously added recombinant neutrophil elastase was inhibited upon incubation with these samples, an effect that was augmented in inflamed samples compared to controls. These data suggest that endogenous inhibitors and elastase-degrading proteases are upregulated during inflammation.


Subject(s)
Fluorescent Dyes/chemistry , Inflammation/metabolism , Organophosphonates/chemistry , Serine Proteases/analysis , Animals , Colitis/metabolism , Fluorescent Dyes/chemical synthesis , Mice , Molecular Structure , Organophosphonates/chemical synthesis , Pancreatitis/metabolism , Serine Proteases/metabolism
19.
J Proteomics ; 148: 44-56, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27418434

ABSTRACT

UNLABELLED: The venom of Malayan pit viper (Calloselasma rhodostoma) is highly toxic but also valuable in drug discovery. However, a comprehensive proteome of the venom that details its toxin composition and abundance is lacking. This study aimed to unravel the venom complexity through a multi-step venomic approach. At least 96 distinct proteins (29 basic, 67 acidic) in 11 families were identified from the venom. The venom consists of mainly snake venom metalloproteinases (SVMP, 41.17% of total venom proteins), within which the P-I (kistomin, 20.4%) and P-II (rhodostoxin, 19.8%) classes predominate. This is followed by C-type lectins (snaclec, 26.3%), snake venom serine protease (SVSP, 14.9%), L-amino acid oxidase (7.0%), phospholipase A2 (4.4%), cysteine-rich secretory protein (2.5%), and five minor toxins (nerve growth factor, neurotrophin, phospholipase B, 5' nucleotidase and phosphodiesterase, totaling 2.6%) not reported in the proteome hitherto. Importantly, all principal hemotoxins unveiled correlate with the syndrome: SVSP ancrod causes venom-induced consumptive coagulopathy, aggravated by thrombocytopenia caused by snaclec rhodocytin, a platelet aggregation inducer, while P-II rhodostoxin mediates hemorrhage, exacerbated by P-I kistomin and snaclec rhodocetin that inhibit platelet plug formation. These toxins exist in multiple isoforms and/or complex subunits, deserving further characterization for the development of an effective, polyspecific regional antivenom. BIOLOGICAL SIGNIFICANCE: Advents in proteomics and bioinformatics have vigorously propelled the scientific discoveries of toxins from various lineages of venomous snakes. The Malayan pit viper, Calloselasma rhodostoma, is a medically important species in Southeast Asia as its bite can cause envenomation, while the venom is also a source of bioactive compounds for drug discovery. Detailed profiling of the venom, however, is inadequate possibly due to the complex nature of the venom and technical limitation in separating the constituents into details. Integrating a multi-step fractionation method, this study successfully revealed a comprehensive and quantitative profile of the composition of the venom of this medically important venomous snake. The relative abundance of the various venom proteins is determined in a global profile, providing useful information for understanding the pathogenic roles of the different toxins in C. rhodostoma envenomation. Notably, the principal hemotoxins were identified in great details, including the variety of toxin subunits and isoforms. The findings indicate that these toxins are the principal targets for effective antivenom neutralization, and should be addressed in the production of a pan-regional polyspecific antivenom. In addition, minor toxin components not reported previously in the venom were also detected in this study, enriching the current toxin database for the venomous snakes.


Subject(s)
Crotalinae , Proteome/analysis , Viper Venoms/chemistry , Animals , Hemolytic Agents/analysis , L-Amino Acid Oxidase/analysis , Lectins, C-Type/analysis , Metalloproteases/analysis , Phospholipases A2/analysis , Serine Proteases/analysis , Viper Venoms/enzymology
20.
J Proteome Res ; 15(9): 3284-97, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27427999

ABSTRACT

This study provides comprehensive proteomic profiles from the venom producing posterior salivary glands of octopus (superorder Octopodiformes) species. A combined transcriptomic and proteomic approach was used to identify 1703 proteins from the posterior salivary gland of the southern blue-ringed octopus, Hapalochlaena maculosa and 1300 proteins from the posterior salivary gland of the southern sand octopus, Octopus kaurna. The two proteomes were broadly similar; clustering of proteins into orthogroups revealed 937 that were shared between species. Serine proteases were particularly diverse and abundant in both species. Other abundant proteins included a large number of secreted proteins, many of which had no known conserved domains, or homology to proteins with known function. On the basis of homology to known venom proteins, 23 putative toxins were identified in H. maculosa and 24 in O. kaurna. These toxins span nine protein families: CAP (cysteine rich secretory proteins, antigen 5, parthenogenesis related), chitinase, carboxylesterase, DNase, hyaluronidase, metalloprotease, phospholipase, serine protease and tachykinin. Serine proteases were responsible for 70.9% and 86.3% of putative toxin expression in H. maculosa and O. kaurna, respectively, as determined using intensity based absolute quantification (iBAQ) measurements. Phylogenetic analysis of the putative toxin serine proteases revealed a similar suite of diverse proteins present in both species. Posterior salivary gland composition of H. maculosa and O. kaurna differ in several key aspects. While O. kaurna expressed the proteinaceous neurotoxin, tachykinin, this was absent from H. maculosa, perhaps reflecting the acquisition of a potent nonproteinaceous neurotoxin, tetrodotoxin (TTX) produced by bacteria in the salivary glands of that species. The dispersal factor, hyaluronidase was particularly abundant in H. maculosa. Chitinase was abundant in both species and is believed to facilitate envenomation in chitinous prey such as crustaceans. Cephalopods represent a largely unexplored source of novel proteins distinct from all other venomous taxa and are of interest for further inquiry, as novel proteinaceous toxins derived from venoms may contribute to pharmaceutical design.


Subject(s)
Octopodiformes/chemistry , Proteomics , Salivary Glands/chemistry , Transcriptome , Animals , Cluster Analysis , Marine Toxins/analysis , Serine Proteases/analysis , Species Specificity , Venoms/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...