Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 808
Filter
1.
Physiol Rep ; 12(9): e15977, 2024 May.
Article in English | MEDLINE | ID: mdl-38697929

ABSTRACT

FAM111A gene mutations cause Kenney-Caffey syndrome (KCS) and Osteocraniostenosis (OCS), conditions characterized by short stature, low serum ionized calcium (Ca2+), low parathyroid hormone (PTH), and bony abnormalities. The molecular mechanism mediating this phenotype is unknown. The c-terminal domain of FAM111A harbors all the known disease-causing variations and encodes a domain with high homology to serine proteases. However, whether this serine protease domain contributes to the maintenance of Ca2+ homeostasis is not known. We hypothesized the disruption of the serine protease domain of FAM111A would disrupt Ca2+ homeostasis. To test this hypothesis, we generated with CRISPR/Cas9, mice with a frameshift insertion (c.1450insA) or large deletion (c.1253-1464del) mutation in the Fam111a serine protease domain. Serum-ionized Ca2+ and PTH levels were not significantly different between wild type, heterozygous, or homozygous Fam111a mutant mice. Additionally, there were no significant differences in fecal or urine Ca2+ excretion, intestinal Ca2+ absorption or overall Ca2+ balance. Only female homozygous (c.1450insA), but not heterozygous mice displayed differences in bone microarchitecture and mineral density compared to wild-type animals. We conclude that frameshift mutations that disrupt the c-terminal serine protease domain do not induce a KCS or OCS phenotype in mice nor alter Ca2+ homeostasis.


Subject(s)
Calcium , Carrier Proteins , Homeostasis , Animals , Calcium/metabolism , Mice , Parathyroid Hormone/metabolism , Female , Male , Serine Proteases/metabolism , Serine Proteases/genetics , Mice, Inbred C57BL
2.
Arq Neuropsiquiatr ; 82(5): 1-8, 2024 May.
Article in English | MEDLINE | ID: mdl-38763144

ABSTRACT

BACKGROUND: Neuronal ceroid lipofuscinoses (NCL) are a group of autosomal recessive, inherited, lysosomal, and neurodegenerative diseases that causes progressive dementia, seizures, movement disorders, language delay/regression, progressive visual failure, and early death. Neuronal ceroid lipofuscinosis type 2 (CLN2), caused by biallelic pathogenic variants of the TPP1 gene, is the only NCL with an approved targeted therapy. The laboratory diagnosis of CLN2 is established through highly specific tests, leading to diagnostic delays and eventually hampering the provision of specific treatment for patients with CLN2. Epilepsy is a common and clinically-identifiable feature among NCLs, and seizure onset is the main driver for families to seek medical care. OBJECTIVE: To evaluate the results of the Latin America Epilepsy and Genetics Program, an epilepsy gene panel, as a comprehensive tool for the investigation of CLN2 among other genetic causes of epilepsy. METHODS: A total of 1,284 patients with epilepsy without a specific cause who had at least 1 symptom associated with CLN2 were screened for variants in 160 genes associated with epilepsy or metabolic disorders presenting with epilepsy through an epilepsy gene panel. RESULTS: Variants of the TPP1 gene were identified in 25 individuals (1.9%), 21 of them with 2 variants. The 2 most frequently reported variants were p.Arg208* and p.Asp276Val, and 2 novel variants were detected in the present study: p.Leu308Pro and c.89 + 3G > C Intron 2. CONCLUSION: The results suggest that these genetic panels can be very useful tools to confirm or exclude CLN2 diagnosis and, if confirmed, provide disease-specific treatment for the patients.


ANTECEDENTES: As lipofuscinoses ceroides neuronais (neuronal ceroid lipofuscinoses, NCLs, em inglês) são um grupo de doenças autossômicas recessivas, hereditárias, lisossomais e neurodegenerativas que causam demência progressiva, crises epiléticas, distúrbios de movimento, atraso/regressão da linguagem, deficiência visual progressiva e morte precoce. A lipofuscinose ceroide neuronal tipo 2 (neuronal ceroid lipofuscinosis type 2, CLN2, em inglês), causada por variantes patogênicas bialélicas do gene TPP1, é a única com terapia-alvo aprovada. O diagnóstico laboratorial é realizado por testes específicos, o que leva a atrasos diagnósticos e, consequentemente, prejudica a disponibilização de tratamento. A epilepsia é uma característica comum e clinicamente identificável entre as NCLs, e o início das convulsões é o principal motivo para as famílias buscarem atendimento médico. OBJETIVO: Avaliar os resultados do Programa de Epilepsia e Genética da América Latina, um painel genético, como uma ferramenta abrangente para a investigação de CLN2 entre outras causas genéticas de epilepsia. MéTODOS: Um total de 1.284 pacientes com epilepsia sem uma causa específica e que tinham pelo menos 1 sintoma associado à CLN2 foram rastreados em busca de variantes em 160 genes associados à epilepsia ou a distúrbios metabólicos que apresentam epilepsia, por meio de um painel genético. RESULTADOS: Variantes do gene TPP1 foram identificadas em 25 indivíduos (1,9%), sendo que ; 21 apresentavam duas variantes. As duas variantes mais frequentes foram p.Arg208* e p.Asp276Val, e duas variantes novas foram detectadas neste: p.Leu308Pro e c.89 + 3G > C Intron 2. CONCLUSãO: Os resultados sugerem que os painéis genéticos de epilepsia podem ser uma ferramenta útil para confirmar ou excluir o diagnóstico de CLN2 e, se confirmado, fornecer tratamento específico para os pacientes.


Subject(s)
Aminopeptidases , Epilepsy , Neuronal Ceroid-Lipofuscinoses , Serine Proteases , Tripeptidyl-Peptidase 1 , Humans , Neuronal Ceroid-Lipofuscinoses/genetics , Female , Male , Epilepsy/genetics , Aminopeptidases/genetics , Serine Proteases/genetics , Child , Adolescent , Adult , Young Adult , Child, Preschool , Telomere-Binding Proteins/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Mutation , Genetic Testing/methods , Middle Aged , Infant
3.
Folia Neuropathol ; 62(1): 21-31, 2024.
Article in English | MEDLINE | ID: mdl-38741434

ABSTRACT

Neuronal ceroid lipofuscinoses (NCLs) are a growing group of neurodegenerative storage diseases, in which specific features are sought to facilitate the creation of a universal diagnostic algorithm in the future. In our ultrastructural studies, the group of NCLs was represented by the CLN2 disease caused by a defect in the TPP1 gene encoding the enzyme tripeptidyl-peptidase 1. A 3.5-year-old girl was affected by this disease. Due to diagnostic difficulties, the spectrum of clinical, enzymatic, and genetic tests was extended to include analysis of the ultrastructure of cells from a rectal biopsy. The aim of our research was to search for pathognomonic features of CLN2 and to analyse the mitochondrial damage accompanying the disease. In the examined cells of the rectal mucosa, as expected, filamentous deposits of the curvilinear profile (CVP) type were found, which dominated quantitatively. Mixed deposits of the CVP/fingerprint profile (FPP) type were observed less frequently in the examined cells. A form of inclusions of unknown origin, not described so far in CLN2 disease, were wads of osmophilic material (WOMs). They occurred alone or co-formed mixed deposits. In addition, atypically damaged mitochondria were observed in muscularis mucosae. Their deformed cristae had contact with inclusions that looked like CVPs. Considering the confirmed role of the c subunit of the mitochondrial ATP synthase in the formation of filamentous lipopigment deposits in the group of NCLs, we suggest the possible significance of other mitochondrial proteins, such as mitochondrial contact site and cristae organizing system (MICOS), in the formation of these deposits. The presence of WOMs in the context of searching for ultrastructural pathognomonic features in CLN2 disease also requires further research.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Inclusion Bodies , Mitochondria , Neuronal Ceroid-Lipofuscinoses , Tripeptidyl-Peptidase 1 , Neuronal Ceroid-Lipofuscinoses/pathology , Neuronal Ceroid-Lipofuscinoses/genetics , Humans , Female , Child, Preschool , Mitochondria/pathology , Mitochondria/ultrastructure , Inclusion Bodies/pathology , Inclusion Bodies/ultrastructure , Biopsy , Rectum/pathology , Serine Proteases/genetics , Aminopeptidases/genetics
4.
Parasit Vectors ; 17(1): 242, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812022

ABSTRACT

BACKGROUND: Proteases produced by Acanthamoeba spp. play an important role in their virulence and may be the key to understanding Acanthamoeba pathogenesis; thus, increasing attention has been directed towards these proteins. The present study aimed to investigate the lytic factors produced by Acanthamoeba castellanii during the first hours of in vitro co-culture with human corneal epithelial cells (HCECs). METHODS: We used one old and one recent Acanthamoeba isolate, both from patients with severe keratitis, and subsets of these strains with enhanced pathogenic potential induced by sequential passaging over HCEC monolayers. The proteolytic profiles of all strains and substrains were examined using 1D in-gel zymography. RESULTS: We observed the activity of additional proteases (ranging from 33 to 50 kDa) during the early interaction phase between amoebae and HCECs, which were only expressed for a short time. Based on their susceptibilities to protease inhibitors, these proteases were characterized as serine proteases. Protease activities showed a sharp decline after 4 h of co-incubation. Interestingly, the expression of Acanthamoeba mannose-binding protein did not differ between amoebae in monoculture and those in co-culture. Moreover, we observed the activation of matrix metalloproteinases in HCECs after contact with Acanthamoeba. CONCLUSIONS: This study revealed the involvement of two novel serine proteases in Acanthamoeba pathogenesis and suggests a pivotal role of serine proteases during Acanthamoeba-host cell interaction, contributing to cell adhesion and lysis.


Subject(s)
Acanthamoeba castellanii , Coculture Techniques , Epithelial Cells , Epithelium, Corneal , Peptide Hydrolases , Humans , Acanthamoeba castellanii/enzymology , Acanthamoeba castellanii/genetics , Epithelial Cells/parasitology , Epithelium, Corneal/parasitology , Epithelium, Corneal/enzymology , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Acanthamoeba Keratitis/parasitology , Serine Proteases/metabolism , Serine Proteases/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Virulence
5.
Int J Biol Macromol ; 270(Pt 1): 132286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735612

ABSTRACT

Microbial proteases have proven their efficiency in various industrial applications; however, their application in accelerating the wound healing process has been inconsistent in previous studies. In this study, heterologous expression was used to obtain an over-yielding of the serine alkaline protease. The serine protease-encoding gene aprE was isolated from Bacillus safensis lab 418 and expressed in E. coli BL21 (DE3) using the pET28a (+) expression vector. The gene sequence was assigned the accession number OP610065 in the NCBI GenBank. The open reading frame of the recombinant protease (aprEsaf) was 383 amino acids, with a molecular weight of 35 kDa. The yield of aprEsaf increased to 300 U/mL compared with the native serine protease (SAFWD), with a maximum yield of 77.43 U/mL after optimization conditions. aprEsaf was immobilized on modified amine-functionalized films (MAFs). By comparing the biochemical characteristics of immobilized and free recombinant enzymes, the former exhibited distinctive biochemical characteristics: improved thermostability, alkaline stability over a wider pH range, and efficient reusability. The immobilized serine protease was effectively utilized to expedite wound healing. In conclusion, our study demonstrates the suitability of the immobilized recombinant serine protease for wound healing, suggesting that it is a viable alternative therapeutic agent for wound management.


Subject(s)
Bacillus , Bacterial Proteins , Cloning, Molecular , Endopeptidases , Enzyme Stability , Enzymes, Immobilized , Recombinant Proteins , Wound Healing , Cloning, Molecular/methods , Wound Healing/drug effects , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Bacillus/enzymology , Bacillus/genetics , Endopeptidases/genetics , Endopeptidases/chemistry , Endopeptidases/metabolism , Endopeptidases/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/isolation & purification , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Serine Proteases/genetics , Serine Proteases/chemistry , Serine Proteases/isolation & purification , Serine Proteases/metabolism , Hydrogen-Ion Concentration , Gene Expression , Escherichia coli/genetics , Temperature , Amino Acid Sequence
6.
PLoS Pathog ; 20(5): e1012214, 2024 May.
Article in English | MEDLINE | ID: mdl-38722857

ABSTRACT

Epithelial cells function as the primary line of defense against invading pathogens. However, bacterial pathogens possess the ability to compromise this barrier and facilitate the transmigration of bacteria. Nonetheless, the specific molecular mechanism employed by Mycobacterium tuberculosis (M.tb) in this process is not fully understood. Here, we investigated the role of Rv2569c in M.tb translocation by assessing its ability to cleave E-cadherin, a crucial component of cell-cell adhesion junctions that are disrupted during bacterial invasion. By utilizing recombinant Rv2569c expressed in Escherichia coli and subsequently purified through affinity chromatography, we demonstrated that Rv2569c exhibited cell wall-associated serine protease activity. Furthermore, Rv2569c was capable of degrading a range of protein substrates, including casein, fibrinogen, fibronectin, and E-cadherin. We also determined that the optimal conditions for the protease activity of Rv2569c occurred at a temperature of 37°C and a pH of 9.0, in the presence of MgCl2. To investigate the function of Rv2569c in M.tb, a deletion mutant of Rv2569c and its complemented strains were generated and used to infect A549 cells and mice. The results of the A549-cell infection experiments revealed that Rv2569c had the ability to cleave E-cadherin and facilitate the transmigration of M.tb through polarized A549 epithelial cell layers. Furthermore, in vivo infection assays demonstrated that Rv2569c could disrupt E-cadherin, enhance the colonization of M.tb, and induce pathological damage in the lungs of C57BL/6 mice. Collectively, these results strongly suggest that M.tb employs the serine protease Rv2569c to disrupt epithelial defenses and facilitate its systemic dissemination by crossing the epithelial barrier.


Subject(s)
Bacterial Proteins , Cadherins , Epithelial Cells , Mycobacterium tuberculosis , Serine Proteases , Cadherins/metabolism , Mycobacterium tuberculosis/pathogenicity , Mycobacterium tuberculosis/metabolism , Animals , Humans , Mice , Serine Proteases/metabolism , Serine Proteases/genetics , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , A549 Cells , Tuberculosis/microbiology , Tuberculosis/metabolism , Female
7.
J Inorg Biochem ; 256: 112566, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657303

ABSTRACT

Serine proteases are important enzymes widely used in commercial products and industry. Recently, we identified a new serine protease from the desert bacterium Bacillus subtilis ZMS-2 that showed enhanced activity in the presence of Zn2+, Ag+, or H2O2. However, the molecular basis underlying this interesting property is unknown. Here, we report comparative studies between the ZMS-2 protease and its homolog, subtilisin E (SubE), from B. subtilis ATCC 6051. In the absence of Zn2+, Ag+, or H2O2, both enzymes showed the same level of proteolytic activity, but in the presence of Zn2+, Ag+, or H2O2, ZMS-2 displayed increased activity by 22%, 8%, and 14%, whereas SubE showed decreased activity by 16%, 12%, and 9%, respectively. In silico studies showed that both proteins have almost identical amino acid sequences and folding structures, except for two amino acids located in the protruding loops of the proteins. ZMS-2 contains Ser236 and Ser268, whereas SubE contains Thr236 and Thr268. Replacing Ser236 or Ser268 in ZMS-2 with threonine resulted in variants whose activities were not enhanced by Zn2+ or Ag+. However, this single mutation did not affect the enhancement by H2O2. This finding may be used as a basis for engineering better proteases for industrial uses.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Hydrogen Peroxide , Zinc , Hydrogen Peroxide/chemistry , Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Zinc/chemistry , Zinc/metabolism , Serine Proteases/metabolism , Serine Proteases/chemistry , Serine Proteases/genetics , Silver/chemistry , Amino Acid Sequence
8.
Protein Expr Purif ; 219: 106479, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38574878

ABSTRACT

Owing to vast therapeutic, commercial, and industrial applications of microbial proteases microorganisms from different sources are being explored. In this regard, the gut microbiota of Monopteruscuchia were isolated and examined for the production of protease. All the isolates were primarily and secondarily screened on skim milk and gelatin agar plates. The protease-positive isolates were characterized morphologically, biochemically, and molecularly. Out of the 20 isolated strains,6 belonging to five different genera viz.Bacillus,Priestia,Aeromonas,Staphylococcus, and Serratia demonstrated proteolytic activity. Bacillussafensis strain PRN1 demonstrated the highest protease production and, thus, the largest hydrolytic clear zones in both skim milk agar (15 ± 1 mm) and gelatin (16 ± 1 mm) plates. The optimized parameters (time, pH, temperature, carbon, nitrogen) for highest protease activity and microbial growth of B.safensis strain PRN1 includes 72 h (OD600 = 0.56,1303 U/mL), pH 8 (OD600 = 0.83, 403.29 U/mL), 40 °C (OD600 = 1.75, 1849.11 U/mL), fructose (OD600 = 1.22, 1502 U/mL), and gelatin (OD600 = 1.88, 1015.33 U/mL). The enzyme was purified to homogeneity using salt-precipitation and gel filtration chromatography. The sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that the purified enzyme was a monomer of a molecular weight of ∼33 kDa. The protease demonstrated optimal activity at pH 8 and 60 °C. It was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), demonstrating that it belongs to the serine-proteases family. The compatibility of the enzyme with surfactants and commercial detergents demonstrates its potential use in the detergent industry. Furthermore, the purified enzyme showed antibacterial and blood-stain removal properties.


Subject(s)
Bacillus , Detergents , Serine Proteases , Detergents/chemistry , Detergents/pharmacology , Serine Proteases/isolation & purification , Serine Proteases/chemistry , Serine Proteases/genetics , Serine Proteases/metabolism , Bacillus/enzymology , Bacillus/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration
9.
Arch Microbiol ; 206(4): 138, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436775

ABSTRACT

In nature, bacteria are ubiquitous and can be categorized as beneficial or harmless to humans, but most bacteria have one thing in common which is their ability to produce biofilm. Biofilm is encased within an extracellular polymeric substance (EPS) which provides resistance against antimicrobial agents. Protease enzymes have the potential to degrade or promote the growth of bacterial biofilms. In this study, the effects of a recombinant intracellular serine protease from Bacillus sp. (SPB) on biofilms from Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa were analyzed. SPB was purified using HisTrap HP column and concentrated using Amicon 30 ultra-centrifugal filter. SPB was added with varying enzyme activity and assay incubation period after biofilms were formed in 96-well plates. SPB was observed to have contrasting effects on different bacterial biofilms, where biofilm degradations were observed for both 7-day-old A. baumannii (37.26%) and S. aureus (71.51%) biofilms. Meanwhile, SPB promoted growth of P. aeruginosa biofilm up to 176.32%. Compatibility between protein components in S. aureus biofilm with SPB as well as a simpler membrane structure morphology led to higher biofilm degradation for S. aureus compared to A. baumannii. However, SPB promoted growth of P. aeruginosa biofilm due likely to its degrading protein factors that are responsible for biofilm detachment and dispersion, thus resulting in more multi-layered biofilm formation. Commercial protease Savinase which was used as a comparison showed degradation for all three bacterial biofilms. The results obtained are unique and will expand our understanding on the effects that bacterial proteases have toward biofilms.


Subject(s)
Bacillus , Serine Proteases , Humans , Serine Proteases/genetics , Extracellular Polymeric Substance Matrix , Staphylococcus aureus , Biofilms
10.
Nat Commun ; 15(1): 1976, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438396

ABSTRACT

Hemorrhagic toxin (TcsH) is a major virulence factor produced by Paeniclostridium sordellii, which is a non-negligible threat to women undergoing childbirth or abortions. Recently, Transmembrane Serine Protease 2 (TMPRSS2) was identified as a host receptor of TcsH. Here, we show the cryo-EM structures of the TcsH-TMPRSS2 complex and uncover that TcsH binds to the serine protease domain (SPD) of TMPRSS2 through the CROP unit-VI. This receptor binding mode is unique among LCTs. Five top surface loops of TMPRSS2SPD, which also determine the protease substrate specificity, constitute the structural determinants recognized by TcsH. The binding of TcsH inhibits the proteolytic activity of TMPRSS2, whereas its implication in disease manifestations remains unclear. We further show that mutations selectively disrupting TMPRSS2-binding reduce TcsH toxicity in the intestinal epithelium of the female mice. These findings together shed light on the distinct molecular basis of TcsH-TMPRSS2 interactions, which expands our knowledge of host recognition mechanisms employed by LCTs and provides novel targets for developing therapeutics against P. sordellii infections.


Subject(s)
Serine Proteases , Toxins, Biological , Pregnancy , Female , Humans , Animals , Mice , Serine Proteases/genetics , Serine , Virulence Factors/genetics , Clostridiales , Serine Endopeptidases/genetics
11.
Pest Manag Sci ; 80(6): 2860-2873, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38375972

ABSTRACT

BACKGROUND: Adaptation of specialist insects to their host plants and defense responses of plants to phytophagous insects have been extensively recognized while the dynamic interaction between these two events has been largely underestimated. Here, we provide evidence for characterization of an unrevealed dynamic interaction mode of digestive enzymes of specialist insect silkworm and inhibitor of its host plant mulberry tree. RESULTS: MnKTI-1, a mulberry Kunitz-type protease inhibitor, whose messenger RNA (mRNA) transcription and protein expression in mulberry leaf were severely triggered and up-regulated by tens of times in a matter of hours in response to silkworm, Bombyx mori, and other mulberry pest insects, suggesting a quick response and broad spectrum to insect herbivory. MnKTI-1 proteins were detected in gut content and frass of specialist B. mori, and exhibited significant post-ingestive stability. Recombinant refolded MnKTI-1 (rMnKTI-1) displayed binding affinity to digestive enzymes and a dual inhibitory activity to α-amylase BmAmy and serine protease BmSP2956 in digestive juice of silkworm. Moreover, data from in vitro assays proved that the inhibition of recombinant rMnKTI-1 to BmAmy can be reverted by pre-incubation with BmSP15920, an inactivated silkworm digestive protease that lack of complete catalytic triad. CONCLUSION: These findings demonstrate that mulberry MnKTI-1 has the potential to inhibit the digestive enzyme activities of its specialist insect herbivore silkworm, whereas this insect may employ inactivated proteases to block protease inhibitors to accomplish food digestion. The current work provides an insight to better understand the interacting mode between host plant Kunitz protease inhibitors and herbivorous insect digestive enzymes. © 2024 Society of Chemical Industry.


Subject(s)
Bombyx , Morus , Plant Proteins , alpha-Amylases , Animals , Bombyx/enzymology , Morus/chemistry , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , alpha-Amylases/metabolism , alpha-Amylases/antagonists & inhibitors , Serine Proteases/metabolism , Serine Proteases/chemistry , Serine Proteases/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Insect Proteins/antagonists & inhibitors , Herbivory , Larva/enzymology , Larva/growth & development , Peptides
12.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338947

ABSTRACT

The extended cleavage specificities of two hematopoietic serine proteases originating from the ray-finned fish, the spotted gar (Lepisosteus oculatus), have been characterized using substrate phage display. The preference for particular amino acids at and surrounding the cleavage site was further validated using a panel of recombinant substrates. For one of the enzymes, the gar granzyme G, a strict preference for the aromatic amino acid Tyr was observed at the cleavable P1 position. Using a set of recombinant substrates showed that the gar granzyme G had a high selectivity for Tyr but a lower activity for cleaving after Phe but not after Trp. Instead, the second enzyme, gar DDN1, showed a high preference for Leu in the P1 position of substrates. This latter enzyme also showed a high preference for Pro in the P2 position and Arg in both P4 and P5 positions. The selectivity for the two Arg residues in positions P4 and P5 suggests a highly specific substrate selectivity of this enzyme. The screening of the gar proteome with the consensus sequences obtained by substrate phage display for these two proteases resulted in a very diverse set of potential targets. Due to this diversity, a clear candidate for a specific immune function of these two enzymes cannot yet be identified. Antisera developed against the recombinant gar enzymes were used to study their tissue distribution. Tissue sections from juvenile fish showed the expression of both proteases in cells in Peyer's patch-like structures in the intestinal region, indicating they may be expressed in T or NK cells. However, due to the lack of antibodies to specific surface markers in the gar, it has not been possible to specify the exact cellular origin. A marked difference in abundance was observed for the two proteases where gar DDN1 was expressed at higher levels than gar granzyme G. However, both appear to be expressed in the same or similar cells, having a lymphocyte-like appearance.


Subject(s)
Fishes , Serine Proteases , Animals , Serine Proteases/genetics , Granzymes , Endopeptidases , Consensus Sequence , Substrate Specificity
13.
Metab Brain Dis ; 39(4): 545-558, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185715

ABSTRACT

Neuronal ceroid-lipofuscinosis (NCLs) are a group of severe neurodegenerative conditions, most likely present in infantile, late infantile, juvenile, and adult-onset forms. Their phenotypic characteristics comprise eyesight damage, reduced motor activity and cognitive function, and sometimes tend to die in the initial stage. In recent studies, NCLs have been categorized into at least 14 genetic collections (CLN1-14). CLN2 gene encodes Tripeptidyl peptidase 1 (TPP1), which affects late infantile-onset form. In this study, we retrieved a mutational dataset screening for TPP1 protein from various databases (ClinVar, UniProt, HGMD). Fifty-six missense mutants were enumerated with computational methods to perceive the significant mutants (G475R and G501C) and correlated with clinical and literature data. A structure-based screening method was initiated to understand protein-ligand interaction and dynamic simulation. The docking procedure was performed for the native (3EDY) and mutant (G473R and G501C) structures with Gemfibrozil (gem), which lowers the lipid level, decreases the triglycerides amount in the blood circulation, and controls hyperlipidemia. The Native had an interaction score of -5.57 kcal/mol, and the mutants had respective average binding scores of -6.24 (G473R) and - 5.17 (G501C) kcal/mol. Finally, molecular dynamics simulation showed that G473R and G501C mutants had better flexible and stable orientation in all trajectory analyses. Therefore, this work gives an extended understanding of both functional and structural levels of influence for the mutant form that leads to NCL disorder.


Subject(s)
Aminopeptidases , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Mutation, Missense , Neuronal Ceroid-Lipofuscinoses , Serine Proteases , Tripeptidyl-Peptidase 1 , Neuronal Ceroid-Lipofuscinoses/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Serine Proteases/genetics , Humans , Aminopeptidases/genetics , Molecular Dynamics Simulation , Molecular Docking Simulation
14.
BMC Biol ; 22(1): 7, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233907

ABSTRACT

BACKGROUND: Mosquitoes transmit many infectious diseases that affect human health. The fungus Beauveria bassiana is a biological pesticide that is pathogenic to mosquitoes but harmless to the environment. RESULTS: We found a microRNA (miRNA) that can modulate the antifungal immunity of Aedes aegypti by inhibiting its cognate serine protease. Fungal infection can induce the expression of modular serine protease (ModSP), and ModSP knockdown mosquitoes were more sensitive to B. bassiana infection. The novel miRNA-novel-53 is linked to antifungal immune response and was greatly diminished in infected mosquitoes. The miRNA-novel-53 could bind to the coding sequences of ModSP and impede its expression. Double fluorescence in situ hybridization (FISH) showed that this inhibition occurred in the cytoplasm. The amount of miRNA-novel-53 increased after miRNA agomir injection. This resulted in a significant decrease in ModSP transcript and a significant increase in mortality after fungal infection. An opposite effect was produced after antagomir injection. The miRNA-novel-53 was also knocked out using CRISPR-Cas9, which increased mosquito resistance to the fungus B. bassiana. Moreover, mosquito novel-circ-930 can affect ModSP mRNA by interacting with miRNA-novel-53 during transfection with siRNA or overexpression plasmid. CONCLUSIONS: Novel-circ-930 affects the expression level of ModSP by a novel-circ-930/miRNA-novel-53/ModSP mechanism to modulate antifungal immunity, revealing new information on innate immunity in insects.


Subject(s)
Aedes , MicroRNAs , Mycoses , Animals , Humans , Aedes/genetics , Aedes/microbiology , MicroRNAs/genetics , RNA, Circular , Serine Proteases/genetics , Antifungal Agents , In Situ Hybridization, Fluorescence , Fungi/genetics , Serine Endopeptidases
15.
PLoS Negl Trop Dis ; 18(1): e0011872, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190388

ABSTRACT

BACKGROUND: Gut epithelium is the first natural barrier against Trichinella spiralis larval invasion, but the mechanism by which larval penetration of gut epithelium is not completely elucidated. Previous studies showed that proteases secreted by T. spiralis intestinal infective larvae (IIL) degraded tight junctions (TJs) proteins of gut epithelium and mediated larval invasion. A new T. spiralis serine proteinase (TsSPc) was identified in the IIL surface proteins and ES proteins, rTsSPc bound to the intestinal epithelial cell (IECs) and promoted larval invasion of IECs. The aim of this study was to characterize the interacted proteins of TsSPc and IECs, and to investigate the molecular mechanisms of TsSPc mediating larval invasion of gut mucosa. METHODOLOGY/PRINCIPAL FINDING: IIFT results showed natural TsSPc was detected in infected murine intestine at 6, 12 hours post infection (hpi) and 3 dpi. The results of GST pull-down, mass spectrometry (MS) and Co-IP indicated that rTsSPc bound and interacted specifically with receptor for activated protein C kinase 1 (RACK1) in Caco-2 cells. rTsSPc did not directly hydrolyze the TJs proteins. qPCR and Western blot showed that rTsSPc up-regulated RACK1 expression, activated MAPK/ERK1/2 pathway, reduced the expression levels of gut TJs (occludin and claudin-1) and adherent protein E-cad, increased the paracellular permeability and damaged the integrity of intestinal epithelial barrier. Moreover, the RACK1 inhibitor HO and ERK1/2 pathway inhibitor PD98059 abolished the rTsSPc activating ERK1/2 pathway, they also inhibited and abrogated the rTsSPc down-regulating expression of occludin, claudin-1 and E-cad in Caco-2 monolayer and infected murine intestine, impeded larval invasion and improved intestinal epithelial integrity and barrier function, reduced intestinal worm burdens and alleviated intestinal inflammation. CONCLUSIONS: rTsSPc bound to RACK1 receptor in gut epithelium, activated MAPK/ERK1/2 pathway, decreased the expression of gut epithelial TJs proteins and disrupted the epithelial integrity, consequently mediated T. spiralis larval invasion of gut epithelium. The results are valuable to understand T. spiralis invasion mechanism, and TsSPc might be regarded as a vaccine target against T. spiralis invasion and infection.


Subject(s)
Trichinella spiralis , Trichinellosis , Humans , Animals , Mice , Larva/physiology , Serine Proteases/genetics , Caco-2 Cells , Claudin-1/metabolism , MAP Kinase Signaling System , Occludin/metabolism , Helminth Proteins/metabolism , Epithelial Cells/metabolism , Mice, Inbred BALB C , Intestinal Mucosa/metabolism , Receptors for Activated C Kinase/metabolism , Neoplasm Proteins/genetics
16.
Curr Med Chem ; 31(15): 2073-2089, 2024.
Article in English | MEDLINE | ID: mdl-37282654

ABSTRACT

BACKGROUND: To create effective medicines, researchers must first identify the common or unique genes that drive oncogenic processes in human cancers. Serine protease 27 (PRSS27) has been recently defined as a possible driver gene in esophageal squamous cell carcinoma. However, no thorough pan-cancer study has been performed to date, including breast cancer. METHODS: Using the TCGA (The Cancer Genome Atlas), the GEO (Gene Expression Omnibus) dataset, and multiple bioinformatic tools, we investigated the function of PRSS27 in 33 tumor types. In addition, prognosis analysis of PRSS27 in breast cancer was carried out, as well as in vitro experiments to verify its role as an oncogene. We first explored the expression of PRSS27 in over 10 tumors and then we looked into PRSS27 genomic mutations. RESULTS: We discovered that PRSS27 has prognostic significance in breast cancer and other cancers' survival, and we developed a breast cancer prognostic prediction model by combining a defined set of clinical factors. Besides, we confirmed PRSS27 as an oncogene in breast cancer using some primary in vitro experiments. CONCLUSION: Our pan-cancer survey has comprehensively reviewed the oncogenic function of PRSS27 in various human malignancies, suggesting that it may be a promising prognostic biomarker and tumor therapeutic target in breast cancer.


Subject(s)
Breast Neoplasms , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Prognosis , Endopeptidases , Serine Proteases/genetics , Biomarkers , Serine Endopeptidases/genetics
17.
Cell Cycle ; 22(23-24): 2538-2551, 2023.
Article in English | MEDLINE | ID: mdl-38146687

ABSTRACT

Cervical cancer is one of the most common gynecological cancers with high metastasis, poor prognosis and conventional chemotherapy. The long non-coding RNA (lncRNA) ABHD11 antisense RNA 1 (ABHD11-AS1) plays a vital role in tumorigenesis and is involved in cell proliferation, differentiation, and apoptosis. Especially for cervical cancer, the functions and mechanisms of ABHD11-AS1 are still undetermined. In this study, we explored the role and underlying mechanism of ABHD11-AS1 in cervical cancer. We found that ABHD11-AS1 is highly expressed in cervical cancer tissue. The roles of ABHD11-AS1 and EGFR have investigated the loss of function analysis and cell movability in SiHa and Hela cells. Knockdown of ABHD11-AS1 and EGFR significantly inhibited the proliferation, migration, and invasion and promoted apoptosis of SiHa and Hela cells by up-regulating p21 and Bax and down-regulating cyclin D1, Bcl2, MMP9, and Vimentin. ABHD11-AS1 knockdown could decrease the expression of EGFR. In addition, ABHD11-AS1 could regulate the EGFR signaling pathway, including p-EGFR, p-AKT, and p-ERK. Spearman's correlation analysis and cell experiments demonstrated that ABHD11 was highly expressed in tumor tissue and partially offset the effect of shABHD11-AS1 on the proliferation, migration, and invasion of SiHa and Hela cells. Then, RNA pulldown was used to ascertain the mechanisms of ABHD11-AS1 and FUS. ABHD11-AS1 inhibited ABHD11 mRNA degradation by bounding to FUS. A subcutaneous xenograft of SiHa cells was established to investigate the effect of ABHD11-AS1 in tumor tissue. Knockdown of ABDH11-AS1 inhibited tumor growth and decreased the tumor volume. ABHD11-AS1 knockdown inhibited the expression of Ki67 and Vimentin and up-regulated the expression of Tunel. Our data indicated that ABHD11-AS1 promoted cervical cancer progression by activating EGFR signaling, preventing FUS-mediated degradation of ABHD11 mRNA. Our findings provide novel insights into the potential role of lncRNA in cervical cancer therapy.


Subject(s)
MicroRNAs , RNA, Long Noncoding , RNA-Binding Protein FUS , Uterine Cervical Neoplasms , Female , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Uterine Cervical Neoplasms/genetics , Vimentin/metabolism , HeLa Cells , RNA, Messenger/genetics , Cell Line, Tumor , Signal Transduction/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , MicroRNAs/genetics , Serine Proteases/genetics , Serine Proteases/metabolism
18.
Sci Adv ; 9(51): eadk2756, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38117884

ABSTRACT

Melanization and Toll pathway activation are essential innate immune mechanisms in insects, which result in the generation of reactive compounds and antimicrobial peptides, respectively, to kill pathogens. These two processes are mediated by phenoloxidase (PO) and Spätzle (Spz) through an extracellular network of serine proteases. While some proteases have been identified in Drosophila melanogaster in genetic studies, the exact order of proteolytic activation events remains controversial. Here, we reconstituted the serine protease framework in Drosophila by biochemical methods. This system comprises 10 proteases, i.e., ModSP, cSP48, Grass, Psh, Hayan-PA, Hayan-PB, Sp7, MP1, SPE and Ser7, which form cascade pathways that recognize microbial molecular patterns and virulence factors, and generate PO1, PO2, and Spz from their precursors. Furthermore, the serpin Necrotic negatively regulates the immune response progression by inhibiting ModSP and Grass. The biochemical approach, when combined with genetic analysis, is crucial for addressing problems that long stand in this important research field.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Serine Proteases/genetics , Serine Proteases/metabolism
19.
Mol Genet Metab ; 140(4): 107713, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922835

ABSTRACT

Neuronal ceroid lipofuscinosis type 2 (CLN2) is an autosomal recessive neurodegenerative disorder with enzyme replacement therapy available. We present two siblings with a clinical diagnosis of CLN2 disease, but no identifiable TPP1 variants after standard clinical testing. Long-read sequencing identified a homozygous deep intronic variant predicted to affect splicing, confirmed by clinical DNA and RNA sequencing. This case demonstrates how traditional laboratory assays can complement emerging molecular technologies to provide a precise molecular diagnosis.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Tripeptidyl-Peptidase 1 , Humans , Serine Proteases/genetics , Aminopeptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Neuronal Ceroid-Lipofuscinoses/genetics
20.
Sci Rep ; 13(1): 19229, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932327

ABSTRACT

Batten disease is a group of mostly pediatric neurodegenerative lysosomal storage disorders caused by mutations in the CLN1-14 genes. We have recently shown that acidified drinking water attenuated neuropathological changes and improved motor function in the Cln1R151X and Cln3-/- mouse models of infantile CLN1 and juvenile CLN3 diseases. Here we tested if acidified drinking water has beneficial effects in Cln2R207X mice, a nonsense mutant model of late infantile CLN2 disease. Cln2R207X mice have motor deficits, muscle weakness, develop tremors, and die prematurely between 4 and 6 months of age. Acidified water administered to Cln2R207X male mice from postnatal day 21 significantly improved motor function, restored muscle strength and prevented tremors as measured at 3 months of age. Acidified drinking water also changed disease trajectory, slightly delaying the death of Cln2R207X males and females. The gut microbiota compositions of Cln2R207X and wild-type male mice were markedly different and acidified drinking water significantly altered the gut microbiota of Cln2R207X mice. This suggests that gut bacteria might contribute to the beneficial effects of acidified drinking water. Our study demonstrates that drinking water is a major environmental factor that can alter disease phenotypes and disease progression in rodent disease models.


Subject(s)
Drinking Water , Neuronal Ceroid-Lipofuscinoses , Animals , Female , Male , Mice , Aminopeptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Membrane Glycoproteins , Molecular Chaperones , Neuronal Ceroid-Lipofuscinoses/pathology , Serine Proteases/genetics , Tremor , Tripeptidyl-Peptidase 1 , Disease Models, Animal , Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...