Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.571
Filter
1.
Med Mycol J ; 65(2): 29-32, 2024.
Article in English | MEDLINE | ID: mdl-38825527

ABSTRACT

Mucormycosis is a fungal infectious disease caused by Rhizopus oryzae and other members of the order Mucorales, and it is known as one of the most lethal fungal infections. Early diagnosis of mucormycosis improves prognosis because of limited effective treatments and the rapid progression of the disease. On the other hand, the lack of characteristic clinical findings in mucormycosis and the challenge of early definitive diagnosis make early treatment difficult. Our goal was to establish a serodiagnostic method to detect Rhizopus specific antigen (RSA), and we have developed a diagnostic kit by Enzyme-linked immuno-sorbent assay (ELISA) using a monoclonal antibody against this antigen. RSA increased over time in the serum and alveolar lavage fluid of R. oryzae-infected mice. RSA was also detected in serum and alveolar fluid, even at an early stage (Day 1), when the tissue invasion of R. oryzae mycelium was not histopathologically detectable in the lungs of R. oryzae-infected mice. Further evaluation is needed to determine the feasibility of using this assay in clinical practice.


Subject(s)
Antigens, Fungal , Biomarkers , Enzyme-Linked Immunosorbent Assay , Mucormycosis , Rhizopus oryzae , Mucormycosis/diagnosis , Animals , Mice , Antigens, Fungal/immunology , Antigens, Fungal/blood , Biomarkers/blood , Bronchoalveolar Lavage Fluid/microbiology , Disease Models, Animal , Antibodies, Monoclonal , Rhizopus/isolation & purification , Lung/microbiology , Lung/pathology , Humans , Serologic Tests/methods
2.
Mycoses ; 67(5): e13730, 2024 May.
Article in English | MEDLINE | ID: mdl-38712824

ABSTRACT

BACKGROUND: Due to a delay in diagnosis by conventional techniques and high mortality, the development of a standardised and rapid non-culture-based technique is an unmet need in pulmonary, gastrointestinal, and disseminated forms of mucormycosis. Though limited studies have been conducted for molecular diagnosis, there are no established serologic tests for this highly fatal infection. OBJECTIVE: To develop and evaluate an indirect in-house enzyme-linked immunosorbent assay (ELISA) utilising antigens of Rhizopus arrhizus for detecting anti-Rhizopus antibodies (IgG and IgM) in sera of patients with mucormycosis. METHODS: We extracted both secretory and mycelial Rhizopus antigens using standardised protocols. Bradford assay was used for protein quantification. We then standardised an indirect ELISA using R. arrhizus mycelial and secretory antigens (10.0 µg/mL in bicarbonate buffer pH 9.2) for detecting anti-Rhizopus IgG and IgM antibodies in patient sera. We included patients with mucormycosis, other fungal infections, and healthy controls. Antibody index value (E-value) was calculated for each patient sample. RESULTS: Asparagine broth culture filtrate utilising 85% ammonium sulphate salt fractionation and mycelial homogenate grown in yeast extract peptone dextrose (YPD) broth precipitated with trichloroacetic acid (TCA) yielded a large amount of good-quality protein for the assay. We included 55 patients with mucormycosis (rhino-orbito-cerebral mucormycosis [ROCM, n = 39], pulmonary [n = 15], gastrointestinal [n = 1]), 24 with other fungal infections (probable aspergillosis [n = 14], candidiasis [n = 10]), and healthy controls (n = 16). The sensitivity of the antibody test for diagnosing mucormycosis ranged from 83.6-92.7% for IgG and 72.7-87.3% for IgM, with a specificity of 91.7-92.5% for IgG and 80-82.5% for IgM. The sera from patients with other fungal infections and healthy individuals did not show significant cross-reactivity. CONCLUSION: The detection of anti-Rhizopus IgG antibody performed significantly better in comparison to IgM-based ELISA for diagnosing both ROCM (sensitivity of 84.6% vs. 69.2%) and pulmonary cases (86.6% vs. 80.0%). More extensive studies are required to confirm our findings.


Subject(s)
Antibodies, Fungal , Antigens, Fungal , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G , Immunoglobulin M , Mucormycosis , Rhizopus , Sensitivity and Specificity , Serologic Tests , Mucormycosis/diagnosis , Mucormycosis/microbiology , Mucormycosis/immunology , Humans , Rhizopus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Antigens, Fungal/immunology , Antigens, Fungal/analysis , Serologic Tests/methods , Antibodies, Fungal/blood , Immunoglobulin M/blood , Immunoglobulin G/blood , Female , Male , Middle Aged
3.
Methods Mol Biol ; 2808: 225-246, 2024.
Article in English | MEDLINE | ID: mdl-38743374

ABSTRACT

There is increasing interest in evaluating antibody responses to multiple antigen targets in a single assay. Immunity to measles and rubella are often evaluated together because immunity is provided through combined vaccines and because routine immunization efforts and surveillance for measles and rubella pathogens are combined in many countries. The multiplex bead assay (MBA) also known as the multiplex immunoassay (MIA) described here combines the measurement of measles- and rubella-specific IgG antibodies in serum quantitatively according to international serum standards and has been successfully utilized in integrated serological surveillance.


Subject(s)
Antibodies, Viral , Immunoglobulin G , Measles , Rubella , Rubella/immunology , Rubella/epidemiology , Rubella/diagnosis , Rubella/blood , Measles/immunology , Measles/epidemiology , Measles/blood , Measles/diagnosis , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoassay/methods , Rubella virus/immunology , Measles virus/immunology , Serologic Tests/methods
4.
Amino Acids ; 56(1): 35, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698213

ABSTRACT

Chagas disease, caused by the protozoa Trypanosoma cruzi, continues to be a serious public health problem in Latin America, worsened by the limitations in its detection. Given the importance of developing new diagnostic methods for this disease, the present review aimed to verify the number of publications dedicated to research on peptides that demonstrate their usefulness in serodiagnosis. To this end, a bibliographic survey was conducted on the PubMed platform using the keyword "peptide" or "epitope" combined with "Chagas disease" or "Trypanosoma cruzi"; "diagno*" or "serodiagnosis" or "immunodiagnosis", without period restriction. An increasing number of publications on studies employing peptides in ELISA and rapid tests assays was verified, which confirms the expansion of research in this field. It is possible to observe that many of the peptides tested so far originate from proteins widely used in the diagnosis of Chagas, and many of them are part of commercial tests developed. In this sense, as expected, promising results were obtained for several peptides when tested in ELISA, as many of them exhibited sensitivity and specificity values above 90%. Furthermore, some peptides have been tested in several studies, confirming their diagnostic potential. Despite the promising results observed, it is possible to emphasize the need for extensive testing of peptides, using different serological panels, in order to confirm their potential. The importance of producing an effective assay capable of detecting the clinical stages of the disease, as well as new immunogenic antigens that enable new serological diagnostic tools for Chagas disease, is evident.


Subject(s)
Chagas Disease , Enzyme-Linked Immunosorbent Assay , Peptides , Trypanosoma cruzi , Chagas Disease/diagnosis , Chagas Disease/immunology , Chagas Disease/blood , Humans , Trypanosoma cruzi/immunology , Peptides/immunology , Peptides/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Immunologic Tests/methods , Antigens, Protozoan/immunology , Antigens, Protozoan/blood , Serologic Tests/methods
5.
BMC Infect Dis ; 24(1): 481, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730343

ABSTRACT

BACKGROUND: Tuberculosis (TB) poses a major public health challenge, particularly in children. A substantial proportion of children with TB disease remain undetected and unconfirmed. Therefore, there is an urgent need for a highly sensitive point-of-care test. This study aims to assess the performance of serological assays based on various antigen targets and antibody properties in distinguishing children (0-18 years) with TB disease (1) from healthy TB-exposed children, (2) children with non-TB lower respiratory tract infections, and (3) from children with TB infection. METHODS: The study will use biobanked plasma samples collected from three prospective multicentric diagnostic observational studies: the Childhood TB in Switzerland (CITRUS) study, the Pediatric TB Research Network in Spain (pTBred), and the Procalcitonin guidance to reduce antibiotic treatment of lower respiratory tract infections in children and adolescents (ProPAED) study. Included are children diagnosed with TB disease or infection, healthy TB-exposed children, and sick children with non-TB lower respiratory tract infection. Serological multiplex assays will be performed to identify M. tuberculosis antigen-specific antibody features, including isotypes, subclasses, Fc receptor (FcR) binding, and IgG glycosylation. DISCUSSION: The findings from this study will help to design serological assays for diagnosing TB disease in children. Importantly, those assays could easily be developed as low-cost point-of-care tests, thereby offering a potential solution for resource-constrained settings. GOV IDENTIFIER: NCT03044509.


Subject(s)
Serologic Tests , Tuberculosis , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Mycobacterium tuberculosis/immunology , Point-of-Care Testing , Prospective Studies , Serologic Tests/methods , Spain , Switzerland , Tuberculosis/diagnosis , Tuberculosis/blood
6.
PLoS One ; 19(5): e0304500, 2024.
Article in English | MEDLINE | ID: mdl-38820375

ABSTRACT

BACKGROUND: Puumala hantavirus (PUUV) causes nephropathia epidemica (NE), an endemic form of transient acute renal injury (AKI). Serological testing is the mainstay of diagnosis. It was the aim of the present study to assist decision-making for serological testing by constructing a simple tool that predicts the likelihood of PUUV positivity. METHODS: We conducted a comparative cohort study of all PUUV-tested cases at Aachen University tertiary care center in Germany between mid-2013 and mid-2021. N = 293 qualified for inclusion; N = 30 had a positive test result and clinical NE; N = 263 were negative. Two predictive point scores, the Aachen PUUV Score (APS) 1 and 2, respectively, were derived with the aid of logistic regression and receiver operating characteristic (ROC) analysis by determining the presence of four admission parameters. For internal validation, the internal Monte Carlo method was applied. In addition, partial external validation was performed using an independent historic cohort of N = 41 positive cases of NE. RESULTS: APS1 is recommended for clinical use as it estimated the probability of PUUV positivity in the entire medical population tested. With a range from 0 to 6 points, it yielded an area under the curve of 0.94 by allotting 2 points each for fever or headache and 1 point each for AKI or LDH>300 U/L. A point sum of 0-2 safely predicted negativity for PUUV, as was confirmed in the NE validation cohort. CONCLUSION: Here, we present a novel, easy-to-use tool to guide the diagnostic management of suspected PUUV infection/NE and to safely avoid unnecessary serological testing, as indicated by point sum class 0-2. Since 67% of the cohort fell into this stratum, half of the testing should be avoidable in the future.


Subject(s)
Hemorrhagic Fever with Renal Syndrome , Puumala virus , Humans , Male , Female , Hemorrhagic Fever with Renal Syndrome/diagnosis , Middle Aged , Adult , ROC Curve , Aged , Serologic Tests/methods , Cohort Studies , Unnecessary Procedures , Germany
7.
Diagn Microbiol Infect Dis ; 109(3): 116338, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718661

ABSTRACT

The diagnosis if leprosy is difficult, as it requires clinical expertise and sensitive laboratory tests. In this study, we develop a serological test for leprosy by using bioinformatics tools to identify specific B-cell epitopes from Mycobacterium leprae hypothetical proteins, which were used to construct a recombinant chimeric protein, M1. The synthetic peptides were obtained and showed good reactivity to detect leprosy patients, although the M1 chimera have showed sensitivity (Se) and specificity (Sp) values higher than 90.0% to diagnose both paucibacillary (PB) and multibacillary (MB) leprosy patients, but not those developing tegumentary or visceral leishmaniasis, tuberculosis, Chagas disease, malaria, histoplasmosis and aspergillosis, in ELISA experiments. Using sera from household contacts, values for Se and Sp were 100% and 65.3%, respectively. In conclusion, our proof-of-concept study has generated data that suggest that a new recombinant protein could be developed into a diagnostic antigen for leprosy.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Epitopes, B-Lymphocyte , Leprosy , Mycobacterium leprae , Sensitivity and Specificity , Humans , Mycobacterium leprae/immunology , Mycobacterium leprae/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Leprosy/diagnosis , Leprosy/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Enzyme-Linked Immunosorbent Assay/methods , Adult , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Male , Female , Serologic Tests/methods , Computational Biology/methods , Middle Aged , Young Adult , Adolescent
9.
Viruses ; 16(5)2024 05 15.
Article in English | MEDLINE | ID: mdl-38793670

ABSTRACT

The West Nile Virus (WNV), a member of the family Flaviviridae, is an emerging mosquito-borne flavivirus causing potentially severe infections in humans and animals involving the central nervous system (CNS). Due to its emerging tendency, WNV now occurs in many areas where other flaviviruses are co-occurring. Cross-reactive antibodies with flavivirus infections or vaccination (e.g., tick-borne encephalitis virus (TBEV), Usutu virus (USUV), yellow fever virus (YFV), dengue virus (DENV), Japanese encephalitis virus (JEV)) therefore remain a major challenge in diagnosing flavivirus infections. Virus neutralization tests are considered as reference tests for the detection of specific flavivirus antibodies, but are elaborate, time-consuming and need biosafety level 3 facilities. A simple and straightforward assay for the differentiation and detection of specific WNV IgG antibodies for the routine laboratory is urgently needed. In this study, we compared two commercially available enzyme-linked immunosorbent assays (anti-IgG WNV ELISA and anti-NS1-IgG WNV), a commercially available indirect immunofluorescence assay, and a newly developed in-house ELISA for the detection of WNV-NS1-IgG antibodies. All four tests were compared to an in-house NT to determine both the sensitivity and specificity of the four test systems. None of the assays could match the specificity of the NT, although the two NS1-IgG based ELISAs were very close to the specificity of the NT at 97.3% and 94.6%. The in-house WNV-NS1-IgG ELISA had the best performance regarding sensitivity and specificity. The specificities of the ELISA assays and the indirect immunofluorescence assays could not meet the necessary specificity and/or sensitivity.


Subject(s)
Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity , West Nile Fever , West Nile virus , West Nile virus/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Humans , West Nile Fever/diagnosis , West Nile Fever/immunology , Enzyme-Linked Immunosorbent Assay/methods , Serologic Tests/methods , Immunoglobulin G/blood , Immunoglobulin G/immunology , Fluorescent Antibody Technique, Indirect/methods , Cross Reactions/immunology , Animals
10.
Ann Biol Clin (Paris) ; 82(2): 215-224, 2024 06 05.
Article in French | MEDLINE | ID: mdl-38702909

ABSTRACT

The Westgard quality control (QC) rules are often applied in infectious diseases serology to validate the quality of results, but this requires a reasonable tradeoff between maximum sensitivity to errors and minimum false rejections. This article, in addition to illustrate the six sigma methodology in the QC management of the (anti-HCV Architect®) test, it discusses the main influencing factors on sigma value. Data from low positive and in-kit control materials spreading over 6 months and using four reagent kits, were used to calculate the precision of the test. The difference between the control material reactivity and the cut-off defined the error budget. Sigma values were > 6, which indicates that the method produces four erroneous results per million tests. The application of the six sigma concept made it possible to argue the choice of the new QC strategy (use of 13S rule with one positive control) and to relax the existing QC rules. This work provides a framework for infectious diseases serology laboratories to evaluate tests performances against a quality requirement and design an optimal QC strategy.


Subject(s)
Hepatitis C , Quality Control , Serologic Tests , Total Quality Management , Humans , Hepatitis C/blood , Hepatitis C/diagnosis , Total Quality Management/standards , Serologic Tests/standards , Serologic Tests/methods , Hepatitis C Antibodies/blood , Hepatitis C Antibodies/analysis , Hepacivirus/isolation & purification , Hepacivirus/immunology , Sensitivity and Specificity , Reagent Kits, Diagnostic/standards , Reproducibility of Results , Quality Assurance, Health Care/standards , Quality Assurance, Health Care/methods , Laboratories, Clinical/standards
11.
Front Cell Infect Microbiol ; 14: 1341332, 2024.
Article in English | MEDLINE | ID: mdl-38746783

ABSTRACT

Introduction: The Crimean-Congo hemorrhagic fever virus (CCHFV), the most geographically widespread tick-borne virus, is endemic in Africa, Eastern Europe and Asia, with infection resulting in mortality in up to 30% of cases. Currently, there are no approved vaccines or effective therapies available for CCHF. The CCHFV should only be manipulated in the BSL-4 laboratory, which has severely hampered basic seroprevalence studies. Methods: In the present study, two antibody detection methods in the forms of an enzyme-linked immunosorbent assay (ELISA) and a surrogate virus neutralization test (sPVNT) were developed using a recombinant glycoprotein (rGP) and a vesicular stomatitis virus (VSV)-based virus bearing the CCHFV recombinant glycoprotein (rVSV/CCHFV) in a biosafety level 2 (BSL-2) laboratory, respectively. Results: The rGP-based ELISA and rVSV/CCHFV-based sVNT were established by using the anti-CCHFV pre-GC mAb 11E7, known as a broadly cross-reactive, potently neutralizing antibody, and their applications as diagnostic antigens were validated for the specific detection of CCHFV IgG and neutralizing antibodies in experimental animals. In two tests, mAb clone 11E7 (diluted at 1:163840 or 512) still displayed positive binding and neutralization, and the presence of antibodies (IgG and neutralizing) against the rGP and rVSV/CCHFV was also determined in the sera from the experimental animals. Both mAb 11E7 and animal sera showed a high reactivity to both antigens, indicating that bacterially expressed rGP and rVSV/CCHFV have good immunoreactivity. Apart from establishing two serological testing methods, their results also demonstrated an imperfect correlation between IgG and neutralizing antibodies. Discussion: Within this limited number of samples, the rGP and rVSV/CCHFV could be safe and convenient tools with significant potential for research on specific antibodies and serological samples.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Immunoglobulin G , Neutralization Tests , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Neutralization Tests/methods , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G/blood , Immunoglobulin G/immunology , Hemorrhagic Fever, Crimean/diagnosis , Hemorrhagic Fever, Crimean/immunology , Animals , Humans , Glycoproteins/immunology , Serologic Tests/methods , Recombinant Proteins/immunology , Mice , Antibodies, Monoclonal/immunology
12.
J Clin Microbiol ; 62(5): e0013924, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38597655

ABSTRACT

We compared the performance of a new modified two-tier testing (MTTT) platform, the Diasorin Liaison chemiluminescent immunoassay (CLIA), to the Zeus enzyme-linked immunoassay (ELISA) MTTT and to Zeus ELISA/Viramed immunoblot standard two-tier testing (STTT) algorithm. Of 537 samples included in this study, 91 (16.9%) were positive or equivocal by one or more screening tests. Among these 91 samples, only 57 samples were concordant positive by first-tier screening tests, and only 19 of 57 were concordant by the three second-tier methods. For IgM results, positive percent agreement (PPA) was 68.1% for Diasorin versus 89.4% for Zeus compared to immunoblot. By contrast, the PPA for IgG for both Diasorin and Zeus was 100%. Using a 2-out-of-3 consensus reference standard, the PPAs for IgM were 75.6%, 97.8%, and 95.6% for Diasorin, Zeus, and immunoblot, respectively. The difference between Zeus MTTT and Diasorin MTTT for IgM detection was significant (P = 0.0094). PPA for both Diasorin and Zeus MTTT IgG assays was 100% but only 65.9% for immunoblot STTT (P = 0.0005). In total, second-tier positive IgM and/or IgG results were reported for 57 samples by Diasorin MTTT, 63 by Zeus MTTT, and 54 by Viramed STTT. While Diasorin CLIA MTTT had a much more rapid, automated, and efficient workflow, Diasorin MTTT was less sensitive for the detection of IgM than Zeus MTTT and STTT including in 5 early Lyme cases that were IgM negative but IgG positive. IMPORTANCE: The laboratory diagnosis of Lyme disease relies upon the detection of antibodies to Borrelia species. Standard two tier testing (STTT) methods rely upon immunoblots which have clinical and technical limitations. Modified two-tier testing (MTTT) methods have recently become available and are being widely adopted. There are limited independent data available assessing the performance of MTTT and STTT methods.


Subject(s)
Algorithms , Antibodies, Bacterial , Immunoglobulin G , Immunoglobulin M , Lyme Disease , Sensitivity and Specificity , Serologic Tests , Humans , Lyme Disease/diagnosis , Lyme Disease/immunology , Lyme Disease/blood , Immunoglobulin M/blood , Immunoglobulin G/blood , Serologic Tests/methods , Serologic Tests/standards , Antibodies, Bacterial/blood , Luminescent Measurements/methods , Immunoblotting/methods
13.
J Virol Methods ; 327: 114923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561124

ABSTRACT

This study describes the development and preliminary validation of a new serological assay using MERS-CoV S1 protein in an indirect enzyme-linked immunosorbent assay (ELISA) format. This assay has the advantage of being able to test MERS-CoV serum samples in a PC2 laboratory without the need for a high-level biocontainment laboratory (PC3 or PC4), which requires highly trained and skilled staff and a high level of resources and equipment. Furthermore, this MERS-CoV S1 ELISA enables a larger number of samples to be tested quickly, with results obtained in approximately five hours. The MERS-CoV S1 ELISA demonstrated high analytical specificity, with no cross-reactivity observed in serum of animals infected with other viruses, including different coronaviruses. We tested 166 positive and 40 negative camel serum samples and have estimated the diagnostic sensitivity (DSe) to be 99.4% (95% CI: 96.7 - 100.0%) and diagnostic specificity (DSp) to be 100% (95% CI: 97.2%-100.0%) relative to the assigned serology results (ppNT and VNT) using a S/P ratio cut-off value of >0.58. The findings of this study showed that our MERS-CoV S1 ELISA was more sensitive than the commercial EUROIMMUN ELISA (Se 99.4% vs 84.9%) and comparable to the ppNT assay, and therefore could be used as a diagnostic aid in countries in the Middle East where MERS-CoV is endemic in dromedary camels. The assay reagents and protocol were easily adapted and transferred from an Australian laboratory to a laboratory in the University of Hong Kong. Thus, the results described here show that the MERS-CoV S1 ELISA represents a cheap, rapid, robust, and reliable assay to support surveillance of MERS-CoV in camels in endemic regions.


Subject(s)
Antibodies, Viral , Camelids, New World , Camelus , Coronavirus Infections , Enzyme-Linked Immunosorbent Assay , Middle East Respiratory Syndrome Coronavirus , Sensitivity and Specificity , Animals , Camelus/virology , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Camelids, New World/virology , Antibodies, Viral/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology
14.
mBio ; 15(5): e0085924, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38639536

ABSTRACT

Visceral leishmaniasis is a deadly infectious disease and is one of the world's major neglected health problems. Because the symptoms of infection are similar to other endemic diseases, accurate diagnosis is crucial for appropriate treatment. Definitive diagnosis using splenic or bone marrow aspirates is highly invasive, and so, serological assays are preferred, including the direct agglutination test (DAT) or rK39 strip test. These tests, however, are either difficult to perform in the field (DAT) or lack specificity in some endemic regions (rK39), making the development of new tests a research priority. The availability of Leishmania spp. genomes presents an opportunity to identify new diagnostic targets. Here, we use genome data and a mammalian protein expression system to create a panel of 93 proteins consisting of the extracellular ectodomains of the Leishmania donovani cell surface and secreted proteins. We use these panel and sera from murine experimental infection models and natural human and canine infections to identify new candidates for serological diagnosis. We observed a concordance between the most immunoreactive antigens in different host species and transmission settings. The antigen encoded by the LdBPK_323600.1 gene can diagnose Leishmania infections with high sensitivity and specificity in patient cohorts from different endemic regions including Bangladesh and Ethiopia. In longitudinal sampling of treated patients, we observed reductions in immunoreactivity to LdBPK_323600.1 suggesting it could be used to diagnose treatment success. In summary, we have identified new antigens that could contribute to improved serological diagnostic tests to help control the impact of this deadly tropical infectious disease. IMPORTANCE: Visceral leishmaniasis is fatal if left untreated with patients often displaying mild and non-specific symptoms during the early stages of infection making accurate diagnosis important. Current methods for diagnosis require highly trained medical staff to perform highly invasive biopsies of the liver or bone marrow which pose risks to the patient. Less invasive molecular tests are available but can suffer from regional variations in their ability to accurately diagnose an infection. To identify new diagnostic markers of visceral leishmaniasis, we produced and tested a panel of 93 proteins identified from the genome of the parasite responsible for this disease. We found that the pattern of host antibody reactivity to these proteins was broadly consistent across naturally acquired infections in both human patients and dogs, as well as experimental rodent infections. We identified a new protein called LdBPK_323600.1 that could accurately diagnose visceral leishmaniasis infections in humans.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Leishmania donovani , Leishmaniasis, Visceral , Protozoan Proteins , Serologic Tests , Leishmania donovani/genetics , Leishmania donovani/immunology , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Animals , Humans , Mice , Dogs , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Serologic Tests/methods , Biomarkers/blood , Female , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Mice, Inbred BALB C , Membrane Proteins/genetics , Membrane Proteins/immunology , Sensitivity and Specificity , Dog Diseases/diagnosis , Dog Diseases/parasitology
15.
Microbiol Spectr ; 12(6): e0359323, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38682930

ABSTRACT

Lyme arthritis can present similarly to other causes of joint pain and swelling including septic arthritis and other acute and chronic arthropathies of childhood. Septic arthritis, although rare, constitutes an orthopedic emergency and requires early surgical intervention to reduce the risk of permanent joint damage. Currently, results of standard serologic tests to diagnose Lyme disease take days to weeks, which is unhelpful in acute clinical decision-making. Thus, some children with Lyme arthritis are treated empirically for septic arthritis undergoing unnecessary invasive procedures and hospital admission while on inappropriate antibiotic therapy. We retrospectively validated the Quidel Sofia Lyme Fluorescent Immunoassay, a rapid serologic assay that can detect IgG and/or IgM antibodies to Borrelia burgdorferi in 10 minutes, in residual serum samples collected from 51 children who had Lyme arthritis and 55 children with musculoskeletal presentations who were Lyme negative. The sensitivity and specificity of the Sofia IgG to identify cases of Lyme arthritis in children were 100% (95% confidence interval [CI] of 93.0%-100%) and 96.4% (95% CI: 87.5%-99.6%), respectively. The positive likelihood ratio (LR) was 27.5 (95% CI 7-107), and the negative LR was 0.00 (95% LR 0.00-0.15). We propose that the Sofia IgG, a rapid method for identifying Lyme arthritis, may be useful in differentiating Lyme arthritis from other forms of arthritis. Used in conjunction with readily available clinical and laboratory variables, it could help to rapidly identify children who are at low risk of septic arthritis in Lyme-endemic regions. IMPORTANCE: Lyme arthritis is a common manifestation of Lyme disease in children, with clinical features overlapping with other causes of acute and chronic joint pain/swelling in children. We have demonstrated that the Sofia IgG is a reliable test to rule in and rule out the diagnosis of Lyme arthritis in children with musculoskeletal presentations in a Lyme-endemic region. When used in conjunction with clinical and laboratory variables routinely considered when differentiating Lyme arthritis from other diagnoses, the Sofia IgG has the potential to fill an important gap in care, especially when acute decision-making is necessary. The Sofia IgG should be included in prospective research studies examining clinical prediction tools to identify children at low risk of septic arthritis.


Subject(s)
Antibodies, Bacterial , Arthritis, Infectious , Borrelia burgdorferi , Immunoglobulin G , Lyme Disease , Sensitivity and Specificity , Humans , Lyme Disease/diagnosis , Lyme Disease/blood , Child , Retrospective Studies , Male , Female , Antibodies, Bacterial/blood , Adolescent , Borrelia burgdorferi/immunology , Child, Preschool , Arthritis, Infectious/diagnosis , Arthritis, Infectious/microbiology , Diagnosis, Differential , Immunoglobulin G/blood , Immunoglobulin M/blood , Serologic Tests/methods
16.
BMC Infect Dis ; 24(Suppl 1): 313, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486194

ABSTRACT

INTRODUCTION: International guidelines recommend routine screening for syphilis (aetiological agent: Treponema pallidum subspecies pallidum) amongst key populations and vulnerable populations using tests detecting treponemal and non-treponemal antibodies. Whilst treponemal tests have high sensitivities and specificities, they differ regarding subjective or objective interpretation, throughput and workload. Chemiluminescence immunoassays (CLIAs) are cost- and time-effective automated methods for detecting treponemal antibodies. The Treponema pallidum particle agglutination assay (TPPA) has been considered the "gold standard" treponemal assay, however, this includes a highly manual procedure, low throughput and subjective interpretation. The present multi-country study evaluated the ADVIA Centaur® Syphilis CLIA (Siemens Healthcare) assay compared to the reference SERODIA-TP·PA® (Fujirebio Diagnostics) for the serodiagnosis of syphilis amongst men who have sex with men (MSM). METHOD: 1,485 MSM were enrolled in Brighton (UK), Malta, and Verona (Italy) as part of a larger WHO multi-country and multi-site ProSPeRo study. Ethical approval was obtained. Serum was tested with the ADVIA Centaur® Syphilis CLIA assay and SERODIA-TP·PA®, in accordance with the manufacturers' instructions, for a first round of validation. A second round of validation was carried out for discrepant results that were additionally tested with both Western Blot (Westernblot EUROIMMUN®) and an Immunoblot (INNO-LIA, Fujirebio Diagnostics). Sensitivity, specificity, positive and negative predictive value (PPV and NPV), likelihood ratios (positive/negative), and the Diagnostic Odds Ratio (DOR)/pre-post-test probability (Fagan's nomogram) were calculated. RESULTS: Out of 1,485 eligible samples analysed in the first phase, the SERODIA-TP·PA® identified 360 positive and 1,125 negative cases. The ADVIA Centaur® Syphilis CLIA assay (Siemens) identified 366 positives, missclassifying one TPPA-positive sample. In the second phase, the ADVIA Centaur® Syphilis CLIA resulted in 1 false negative and 4 false positive results. Considering the syphilis study prevalence of 24% (95% CI: 22-26.7), The sensitivity of the ADVIA Centaur® Syphilis CLIA assay was 99.7% (95% CI: 98.5-100), and the specificity was 99.4% (95% CI: 98.7-99.7). The ROC area values were 0.996 (95% CI: 0.992-0.999), and both the PPV and NPV values were above 98% (PPV 98.1%, 95% CI: 96.1-99.2; NPV 99.9%, 95% CI: 99.5-100). CONCLUSIONS: The ADVIA Centaur® Syphilis CLIA assay showed similar performance compared to the SERODIA-TP·PA®. Considering the study is based on QUADAS principles and with a homogeneous population, results are also likely to be generalisable to MSM population but potentially not applicable to lower prevalence populations routinely screened for syphilis. The automated CLIA treponemal assay confirmed to be accurate and appropriate for routine initial syphilis screening, i.e. when the reverse testing algorithm is applied.


Subject(s)
Sexual and Gender Minorities , Syphilis , Male , Humans , Treponema pallidum , Homosexuality, Male , Antibodies, Bacterial , Syphilis Serodiagnosis/methods , Serologic Tests/methods , Sensitivity and Specificity , Luminescent Measurements/methods , Agglutination
17.
Acta Parasitol ; 69(1): 1005-1015, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38498251

ABSTRACT

PURPOSE: Fascioliasis is a common parasitic disease in humans and herbivores which is caused by Fasciola hepatica and Fasciola gigantica and has a worldwide distribution. Serological tests such as the enzyme-linked immunosorbent assay (ELISA) technique play a prominent role in the fast diagnosis of the disease. However, there are diagnostic limitations, including cross-reactivity with other worms, which decline the specificity of the results. This study aimed to evaluate the structure of a recombinant multi-epitope antigen produced from linear and conformational B-cell epitopes of three parasitic proteins with sera of individuals with fasciolosis, healthy controls, and those with other diseases to gain accurate sensitivity and specificity. METHODS: After designing the multi-epitope structure of cathepsin L1, FhTP16.5, and SAP-2 antigens and then synthesizing, cloning, and expressing, the extracted purified protein was evaluated by indirect ELISA to detect IgG antibodies against Fasciola hepatica parasite among the sera of 39 serum samples of Fasciola hepatica, 35 healthy individual samples, and 20 samples of other types of parasitic diseases. The synthesized multi-epitope produced from cathepsin L1, FhTP16.5, and SAP-2 antigens was evaluated using the indirect ELISA. RESULTS: The analysis of the samples mentioned for IgG antibody diagnosis against Fasciola hepatica showed 97.43% (95% confidence interval, 94.23-100%) sensitivity and 100% (95% confidence interval, 97-100%) specificity. CONCLUSION: The recombinant B-cell multi-epitope with high antigenic potency may increase the specificity of epitopic peptides and ultimately help improve and develop indirect ELISA commercial kits for the diagnosis of fascioliasis in humans.


Subject(s)
Antibodies, Helminth , Antigens, Helminth , Enzyme-Linked Immunosorbent Assay , Fasciola hepatica , Fascioliasis , Immunoglobulin G , Recombinant Proteins , Sensitivity and Specificity , Serologic Tests , Fascioliasis/diagnosis , Fascioliasis/immunology , Animals , Humans , Antigens, Helminth/immunology , Antigens, Helminth/genetics , Enzyme-Linked Immunosorbent Assay/methods , Fasciola hepatica/immunology , Fasciola hepatica/genetics , Antibodies, Helminth/blood , Serologic Tests/methods , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Immunoglobulin G/blood , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Helminth Proteins/immunology , Helminth Proteins/genetics , Epitopes/immunology , Cathepsin L/immunology , Cathepsin L/genetics
18.
Vet Parasitol ; 328: 110173, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537410

ABSTRACT

Toxoplasma gondii is a paradigmatic zoonotic parasite from the One Health perspective, since it is broadly distributed and virtually infects all warm-blooded species. A wide variety of serological techniques have been developed to detect T. gondii infection in humans and animals. Our aim was to describe and compare the main characteristics of these serological tests and validation processes and to critically analyze whether these tests meet the standards required to ensure an accurate serological diagnosis. The current systematic review and meta-analysis included 134 studies that were published from 2013 to 2023. QUADAS 2 tool was used to evaluate the quality of the included studies. A total of 52 variables related to the characteristics of the techniques and analytical and diagnostic validation parameters were studied. A wider panel of tests was developed for humans, including techniques exclusively developed for humans that involve costly equipment and the measurement of different Ig isotypes that are considered biomarkers of congenital toxoplasmosis. Studies conducted in humans frequently employed commercial techniques as reference tests, measured different immunoglobulin isotypes with a predominance for IgG (>50%) and discriminated between acute and chronic infections. In animals, the most commonly used reference techniques were in-house tests, which almost exclusively detected IgG. Common limitations identified in a large number of studies were some misunderstandings of the terms "gold standard" and "reference test" and the absence of information about the negative and positive control sera used or the exact cutoff employed, which were independent of the quality of the study. There is a lack of analytical validation, with few evaluations of cross-reactivity with other pathogens. Diagnostic odds ratio values showed that indirect ELISA based on native or chimeric antigens performed better than other tests. The reproducibility of serological test results in both humans and animals is not guaranteed due to a lack of relevant information and analytical validation. Thus, several key issues should be considered in the future, including interlaboratory ring trials.


Subject(s)
Antibodies, Protozoan , Serologic Tests , Toxoplasma , Toxoplasmosis, Animal , Toxoplasmosis , Animals , Humans , Antibodies, Protozoan/blood , Reproducibility of Results , Serologic Tests/veterinary , Serologic Tests/standards , Serologic Tests/methods , Toxoplasma/immunology , Toxoplasmosis/diagnosis , Toxoplasmosis/immunology , Toxoplasmosis/blood , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/blood
19.
Microbiol Spectr ; 12(5): e0009524, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38534120

ABSTRACT

Bovine fasciolosis is a parasitic disease with a global reach. Coprological based on egg detection in fecal samples and liver inspection to evaluate the presence of the parasite is currently the gold standard for diagnosing chronic fasciolosis in cattle. However, these techniques are labor-intensive and ineffective during the acute phase of the disease. Serodiagnosis using native and recombinant antigens has become an interesting alternative in efforts to identify cattle fasciolosis. We evaluated cattle from abattoir (n = 139) and farms (n = 500) through liver inspection and coprological examination, respectively. Our laboratory team optimized and validated enzyme-linked immunosorbent assay tests based on somatic antigen, excretory/secretory proteins, and the recombinant antigen cathepsin L-1 to detect serum antibodies against fasciolosis in cattle. For animals from abattoir, 10 were positive for fasciolosis according to liver inspection. Both FhES and FhrCL-1 presented an area under the receiver operating characteristic (AUROC) curve of 0.80, with a sensitivity of 0.80 (95% CI: 0.46-0.95) and 0.70 (95% CI: 0.38-0.90) and specificity of 0.81 (95% CI: 0.73-0.87) and 0.87 (95% CI: 0.80-0.92), respectively. For those cattle from farms, 28 were positive only for fasciolosis according to coprological examination. In this scenario, FhES gave the best performance, with an AUROC of 0.84, sensitivity of 0.79 (95% CI: 0.60-0.90), and specificity of 0.86 (95% CI: 0.82-0.89). In conclusion, our study highlights the potential of serodiagnosis for accurately screening cattle fasciolosis. The promising sensitivity and specificity values of FhES when compared to liver inspection or coprological examination enhance its importance for cattle fasciolosis diagnosis. IMPORTANCE: The aim of this article was to identify antibodies against fasciolosis in cattle in Brazil. The methodology was reproduced in our laboratory and applied for the first time to the Brazilian cattle herd. The antigens tested can be used as a screening test and thus speed up the diagnosis of bovine fascioliasis.


Subject(s)
Antibodies, Helminth , Antigens, Helminth , Cattle Diseases , Enzyme-Linked Immunosorbent Assay , Fascioliasis , Sensitivity and Specificity , Animals , Cattle , Fascioliasis/diagnosis , Fascioliasis/veterinary , Fascioliasis/immunology , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Cattle Diseases/diagnosis , Cattle Diseases/parasitology , Antigens, Helminth/immunology , Brazil , Antibodies, Helminth/blood , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Feces/parasitology , Serologic Tests/methods , Serologic Tests/veterinary , Fasciola hepatica/immunology , Abattoirs , ROC Curve , Liver/parasitology
20.
Diagn Microbiol Infect Dis ; 109(2): 116238, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554539

ABSTRACT

The interpretation for Zika virus serology results is challenging due to high antibody cross reactivity with other flaviviruses. This limits availability of reliable and accurate methods for serosurveillance studies to understand the disease burden. Therefore, we conducted study to harmonize anti-Zika IgG antibody detection assays with 1st WHO International Standard (16/352) and working standard (16/320) for anti-Zika virus antibody.Additionally, evaluated NuGenTMZIKA-IgG and NovaLisa®ZIKA virus IgG-Capture ELISA using a panel of 278 seraFurther, 106 samples positive for other-flavi viruses were taken for assessing cross-reactivity of the assay, all serums were further tested by Zika-PRNT. The results of this study indicates satisfactory performance of both the assays. Serological and neutralization assays were calibrated according to the international standards. This will help in understanding antibody dynamics in serosurveillance and vaccine studies. However the performance of the kits with possibilities of cross-reactivity will have to be verified by coupling ZIKV and DENV specific ELISA.


Subject(s)
Antibodies, Viral , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G , Zika Virus Infection , Zika Virus , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Zika Virus/immunology , Immunoglobulin G/blood , Humans , Antibodies, Viral/blood , Zika Virus Infection/diagnosis , Zika Virus Infection/immunology , Zika Virus Infection/blood , Reagent Kits, Diagnostic/standards , Serologic Tests/standards , Serologic Tests/methods , Sensitivity and Specificity , Female , Adult , Adolescent , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...