Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 444
Filter
1.
Psychopharmacology (Berl) ; 241(7): 1477-1490, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710856

ABSTRACT

RATIONALE: Medications are urgently needed to treat symptoms of drug withdrawal and mitigate dysphoria and psychiatric comorbidities that drive opioid abuse and relapse. ITI-333 is a novel molecule in development for treatment of substance use disorders, psychiatric comorbidities, and pain. OBJECTIVE: Characterize the preclinical profile of ITI-333 using pharmacological, behavioral, and physiological assays. METHODS: Cell-based assays were used to measure receptor binding and intrinsic efficacy of ITI-333; animal models were employed to assess effects on opioid reinstatement, precipitated oxycodone withdrawal, and drug abuse liability. RESULTS: In vitro, ITI-333 is a potent 5-HT2A receptor antagonist (Ki = 8 nM) and a biased, partial agonist at µ-opioid (MOP) receptors (Ki = 11 nM; lacking ß-arrestin agonism) with lesser antagonist activity at adrenergic α1A (Ki = 28 nM) and dopamine D1 (Ki = 50 nM) receptors. In vivo, ITI-333 blocks 5-HT2A receptor-mediated head twitch and MOP receptor-mediated effects on motor hyperactivity in mice. ITI-333 alone is a naloxone-sensitive analgesic (mice) which suppresses somatic signs of naloxone-precipitated oxycodone withdrawal (mice) and heroin cue-induced reinstatement responding without apparent tolerance or physical dependence after chronic dosing (rats). ITI-333 did not acutely impair gastrointestinal or pulmonary function (rats) and was not intravenously self-administered by heroin-maintained rats or rhesus monkeys. CONCLUSIONS: ITI-333 acts as a potent 5-HT2A receptor antagonist, as well a biased MOP receptor partial agonist with low intrinsic efficacy. ITI-333 mitigates opioid withdrawal/reinstatement, supporting its potential utility as a treatment for OUD.


Subject(s)
Substance Withdrawal Syndrome , Animals , Mice , Male , Substance Withdrawal Syndrome/drug therapy , Rats , Humans , Rats, Sprague-Dawley , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/metabolism , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/administration & dosage , Substance-Related Disorders/drug therapy , Opioid-Related Disorders/drug therapy , Dose-Response Relationship, Drug , Oxycodone/pharmacology , Oxycodone/administration & dosage , Analgesics, Opioid/pharmacology , Analgesics, Opioid/administration & dosage , Self Administration , Cricetulus , CHO Cells
2.
Epilepsia ; 65(7): e125-e130, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38738911

ABSTRACT

Because of its involvement in breathing control and neuronal excitability, dysregulation of the serotonin (5-HT) 2C receptor (5-HT2C) might play a key role in sudden unexpected death in epilepsy. Seizure-induced respiratory arrest is thus prevented by a 5-HT2B/C agonist in different seizure model. However, the specific contribution of 5-HT2C in chronic epilepsy-related respiratory dysfunction remains unknown. In a rat model of temporal lobe epilepsy (EPI rats), in which we previously reported interictal respiratory dysfunctions and a reduction of brainstem 5-HT tone, quantitative reverse transcriptase polymerase chain reaction showed overexpression of TPH2 (5-HT synthesis enzyme), SERT (5-HT reuptake transporter), and 5-HT2C transcript levels in the brainstem of EPI rats, and of RNA-specific adenosine deaminase (ADAR1, ADAR2) involved in the production of 5-HT2C isoforms. Interictal ventilation was assessed with whole-body plethysmography before and 2 h after administration of SB242084 (2 mg/kg), a specific antagonist of 5-HT2C. As expected, SB242084 administration induced a progressive decrease in ventilatory parameters and an alteration of breathing stability in both control and EPI rats. However, the size of the SB242084 effect was lower in EPI rats than in controls. Increased 5-HT2C gene expression in the brainstem of EPI rats could be part of a compensatory mechanism against epilepsy-related low 5-HT tone and expression of 5-HT2C isoforms for which 5-HT affinity might be lower.


Subject(s)
Brain Stem , Disease Models, Animal , Epilepsy, Temporal Lobe , Receptor, Serotonin, 5-HT2C , Animals , Receptor, Serotonin, 5-HT2C/genetics , Receptor, Serotonin, 5-HT2C/metabolism , Rats , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/metabolism , Brain Stem/metabolism , Brain Stem/drug effects , Male , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Indoles/pharmacology , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Rats, Sprague-Dawley , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Aminopyridines , Thiophenes
3.
Biomed Pharmacother ; 176: 116814, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820974

ABSTRACT

Diabetes and derived complications, especially diabetic nephropathy and neuropathy annually cause great morbimortality worldwide. 5-hydroxytryptamine (5-HT) acts as a modulator of renal sympathetic input and vascular tone. In this line, 5-HT2 receptor blockade has been linked with reduced incidence and progression of diabetic microvascular alterations. In this work, we aimed to determine, in diabetic rats, whether 5-HT2 blockade ameliorates renal function and to characterize the serotonergic modulatory action on renal sympathetic neurotransmission. Diabetes was induced in male Wistar rats by alloxan administration (150 mg/kg, s.c.), and sarpogrelate (30 mg/kg·day, p.o.; 5-HT2 antagonist) was administered for 14 days (DM-S). Normoglycemic and diabetic (DM) animals were maintained as aged-matched controls. At 28th day, DM-S animals were anesthetized and prepared for the in situ autoperfusion of the kidney. Renal vasoconstrictor responses were induced electrically or by i.a. noradrenaline (NA) administration. The role of 5-HT and selective 5-HT agonist/antagonist were studied on these renal vasopressor responses. Sarpogrelate treatment decreased renal sympathetic-induced vasopressor responses, reduced renal hypertrophy and kidney damage markers increased in DM. Intraarterial 5-HT inhibited the sympathetic-induced renal vasoconstrictions, effect reproduced by 5-CT, AS-19, L-694,247 and LY 344864 (5-HT1/5/7, 5-HT7, 5-HT1D and 5-HT1F receptor agonists, respectively). Blocking 5-HT1D/1F/7 receptors completely abolished the 5-CT sympatho-inhibition. NA vasoconstrictions were not altered by any of the 5-HT agonists tested. Thus, in experimental diabetes, chronic sarpogrelate treatment reduces renal damage markers, kidney hypertrophy and renal sympathetic hyperactivity and modifies serotonergic modulation of renal sympathetic neurotransmission, causing a sympatho-inhibition by prejunctional 5-HT1D/1F and 5-HT7 activation.


Subject(s)
Diabetes Mellitus, Experimental , Kidney , Rats, Wistar , Succinates , Sympathetic Nervous System , Animals , Succinates/pharmacology , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/physiopathology , Kidney/drug effects , Kidney/innervation , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , Rats , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Serotonin/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/physiopathology , Vasoconstriction/drug effects
4.
Mol Pharmacol ; 106(2): 92-106, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38821630

ABSTRACT

Bipolar disorder impacts millions of patients in the United States but the mechanistic understanding of its pathophysiology and therapeutics is incomplete. Atypical antipsychotic serotonin2A (5-HT2A) receptor antagonists, such as quetiapine and olanzapine, and mood-stabilizing voltage-gated sodium channel (VGSC) blockers, such as lamotrigine, carbamazepine, and valproate, show therapeutic synergy and are often prescribed in combination for the treatment of bipolar disorder. Combination therapy is a complex task for clinicians and patients, often resulting in unexpected difficulties with dosing, drug tolerances, and decreased patient compliance. Thus, an unmet need for bipolar disorder treatment is to develop a therapeutic agent that targets both 5-HT2A receptors and VGSCs. Toward this goal, we developed a novel small molecule that simultaneously antagonizes 5-HT2A receptors and blocks sodium current. The new compound, N-(4-bromo-2,5-dimethoxyphenethyl)-6-(4-phenylbutoxy)hexan-1-amine (XOB) antagonizes 5-HT-stimulated, Gq-mediated, calcium flux at 5-HT2A receptors at low micromolar concentrations while displaying negligible affinity and activity at 5-HT1A, 5-HT2B, and 5-HT2C receptors. At similar concentrations, XOB administration inhibits sodium current in heterologous cells and results in reduced action potential (AP) firing and VGSC-related AP properties in mouse prefrontal cortex layer V pyramidal neurons. Thus, XOB represents a new, proof-of-principle tool that can be used for future preclinical investigations and therapeutic development. This polypharmacology approach of developing a single molecule to act upon two targets, which are currently independently targeted by combination therapies, may lead to safer alternatives for the treatment of psychiatric disorders that are increasingly being found to benefit from the simultaneous targeting of multiple receptors. SIGNIFICANCE STATEMENT: The authors synthesized a novel small molecule (XOB) that simultaneously antagonizes two key therapeutic targets of bipolar disorder, 5-HT2A receptors and voltage-gated sodium channels, in heterologous cells, and inhibits the intrinsic excitability of mouse prefrontal cortex layer V pyramidal neurons in brain slices. XOB represents a valuable new proof-of-principle tool for future preclinical investigations and provides a novel molecular approach to the pharmacological treatment of complex neuropsychiatric disease, which often requires a combination of therapeutics for sufficient patient benefit.


Subject(s)
Receptor, Serotonin, 5-HT2A , Animals , Mice , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Humans , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Voltage-Gated Sodium Channels/metabolism , Voltage-Gated Sodium Channels/drug effects , Male , Mice, Inbred C57BL , HEK293 Cells , Cricetulus
5.
Science ; 384(6702): eadn6354, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38753765

ABSTRACT

AlphaFold2 (AF2) models have had wide impact but mixed success in retrospective ligand recognition. We prospectively docked large libraries against unrefined AF2 models of the σ2 and serotonin 2A (5-HT2A) receptors, testing hundreds of new molecules and comparing results with those obtained from docking against the experimental structures. Hit rates were high and similar for the experimental and AF2 structures, as were affinities. Success in docking against the AF2 models was achieved despite differences between orthosteric residue conformations in the AF2 models and the experimental structures. Determination of the cryo-electron microscopy structure for one of the more potent 5-HT2A ligands from the AF2 docking revealed residue accommodations that resembled the AF2 prediction. AF2 models may sample conformations that differ from experimental structures but remain low energy and relevant for ligand discovery, extending the domain of structure-based drug design.


Subject(s)
Deep Learning , Drug Discovery , Molecular Docking Simulation , Receptor, Serotonin, 5-HT2A , Serotonin 5-HT2 Receptor Agonists , Serotonin 5-HT2 Receptor Antagonists , Humans , Cryoelectron Microscopy , Drug Design , Drug Discovery/methods , Ligands , Protein Conformation , Protein Folding , Receptor, Serotonin, 5-HT2A/chemistry , Receptor, Serotonin, 5-HT2A/ultrastructure , Receptors, sigma/chemistry , Receptors, sigma/metabolism , Small Molecule Libraries/chemistry , Serotonin 5-HT2 Receptor Agonists/chemistry , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/chemistry , Serotonin 5-HT2 Receptor Antagonists/pharmacology
6.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792047

ABSTRACT

Compound 7-16 was designed and synthesized in our previous study and was identified as a more potential selective 5-HT2A receptor antagonist and inverse agonist for treating Parkinson's disease psychosis (PDP). Then, the metabolism, disposition, and excretion properties of 7-16 and its potential inhibition on transporters were investigated in this study to highlight advancements in the understanding of its therapeutic mechanisms. The results indicate that a total of 10 metabolites of 7-16/[14C]7-16 were identified and determined in five species of liver microsomes and in rats using UPLC-Q Exactive high-resolution mass spectrometry combined with radioanalysis. Metabolites formed in human liver microsomes could be covered by animal species. 7-16 is mainly metabolized through mono-oxidation (M470-2) and N-demethylation (M440), and the CYP3A4 isozyme was responsible for both metabolic reactions. Based on the excretion data in bile and urine, the absorption rate of 7-16 was at least 74.7%. 7-16 had weak inhibition on P-glycoprotein and no effect on the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 transporters. The comprehensive pharmacokinetic properties indicate that 7-16 deserves further development as a new treatment drug for PDP.


Subject(s)
Microsomes, Liver , Parkinson Disease , Humans , Animals , Rats , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Microsomes, Liver/metabolism , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Male , Serotonin 5-HT2 Receptor Agonists/pharmacology
7.
Acta Pharmacol Sin ; 45(5): 926-944, 2024 May.
Article in English | MEDLINE | ID: mdl-38286832

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive loss of motor neurons in the spinal cord, cerebral cortex and brain stem. ALS is characterized by gradual muscle atrophy and dyskinesia. The limited knowledge on the pathology of ALS has impeded the development of therapeutics for the disease. Previous studies have shown that autophagy and astrocyte-mediated neuroinflammation are involved in the pathogenesis of ALS, while 5HTR2A participates in the early stage of astrocyte activation, and 5HTR2A antagonism may suppress astrocyte activation. In this study, we evaluated the therapeutic effects of desloratadine (DLT), a selective 5HTR2A antagonist, in human SOD1G93A (hSOD1G93A) ALS model mice, and elucidated the underlying mechanisms. HSOD1G93A mice were administered DLT (20 mg·kg-1·d-1, i.g.) from the age of 8 weeks for 10 weeks or until death. ALS onset time and lifespan were determined using rotarod and righting reflex tests, respectively. We found that astrocyte activation accompanying with serotonin receptor 2 A (5HTR2A) upregulation in the spinal cord was tightly associated with ALS-like pathology, which was effectively attenuated by DLT administration. We showed that DLT administration significantly delayed ALS symptom onset time, prolonged lifespan and ameliorated movement disorders, gastrocnemius injury and spinal motor neuronal loss in hSOD1G93A mice. Spinal cord-specific knockdown of 5HTR2A by intrathecal injection of adeno-associated virus9 (AAV9)-si-5Htr2a also ameliorated ALS pathology in hSOD1G93A mice, and occluded the therapeutic effects of DLT administration. Furthermore, we demonstrated that DLT administration promoted autophagy to reduce mutant hSOD1 levels through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocyte neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice. In summary, 5HTR2A antagonism shows promise as a therapeutic strategy for ALS, highlighting the potential of DLT in the treatment of the disease. DLT as a 5HTR2A antagonist effectively promoted autophagy to reduce mutant hSOD1 level through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocytic neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice.


Subject(s)
Amyotrophic Lateral Sclerosis , Astrocytes , Loratadine , Loratadine/analogs & derivatives , Mice, Transgenic , Spinal Cord , Superoxide Dismutase-1 , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord/metabolism , Mice , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Loratadine/pharmacology , Loratadine/therapeutic use , Humans , Receptor, Serotonin, 5-HT2A/metabolism , Disease Models, Animal , Male , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/therapeutic use , Mice, Inbred C57BL
8.
J Med Chem ; 66(16): 11536-11554, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37566000

ABSTRACT

The recombination of natural product (NP) fragments in unprecedented ways has emerged as an important strategy for bioactive compound discovery. In this context, we propose that privileged primary fragments predicted to be enriched in activity against a specific target class can be coupled to diverse secondary fragments to engineer selectivity among closely related targets. Here, we report the synthesis of an alkaloid-inspired compound library enriched in spirocyclic ring fusions, comprising 58 compounds from 12 tropane- or quinuclidine-containing scaffolds, all of which can be considered pseudo-NPs. The library displays excellent predicted drug-like properties including high Fsp3 content and Lipinski's rule-of-five compliance. Targeted screening against selected members of the serotonin and dopamine G protein-coupled receptor family led to the identification of several hits that displayed significant agonist or antagonist activity against 5-HT2A and/or 5-HT2C, and subsequent optimization of one of these delivered a lead dual 5-HT2B/C antagonist with a highly promising selectivity profile.


Subject(s)
Alkaloids , Quinuclidines , Serotonin , Alkaloids/pharmacology , Receptor, Serotonin, 5-HT2A , Receptor, Serotonin, 5-HT2C , Receptors, Serotonin , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Tropanes , Quinuclidines/chemistry , Quinuclidines/pharmacology
10.
J Nat Prod ; 85(9): 2149-2158, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36001775

ABSTRACT

Aporphine alkaloids have shown affinity for serotonin receptors (5-HTRs), and there has been a recent upsurge of interest in aporphines as 5-HT2CR ligands. 1,2,9,10-Tetraoxygenated aporphine alkaloids in particular have demonstrated good affinity for 5-HTRs. In continued efforts to understand the impacts of structural modification of the 1,2,9,10-tetraoxygenated aporphine template on affinity, selectivity, and activity at 5-HT2R subtypes, we used (+)-boldine (8) as a semisynthetic feedstock in the preparation of C-2-alkoxylated (+)-predicentrine analogues. Compound 10n, which contains a benzyloxy group at C-2, has been identified as a novel 5-HT2CR ligand with strong affinity (4 nM) and moderate selectivity versus 5-HT2BR and 5-HT2AR (12-fold and 6-fold, respectively). Compound 10n functions as an antagonist at 5-HT2A and 5-HT2C receptors. Computational experiments indicate that several hydrophobic interactions as well as strong H-bond and salt bridge interactions between the protonated amine moiety in 10n and Asp134 are responsible for the potent 5-HT2CR affinity of this compound. Furthermore, compound 10n displays favorable predicted drug-like characteristics, which is encouraging toward future optimization.


Subject(s)
Aporphines , Serotonin 5-HT2 Receptor Antagonists , Aporphines/chemistry , Aporphines/pharmacology , Caco-2 Cells , Humans , Ligands , Serotonin 5-HT2 Receptor Antagonists/chemical synthesis , Serotonin 5-HT2 Receptor Antagonists/chemistry , Serotonin 5-HT2 Receptor Antagonists/pharmacology
11.
Neuropsychopharmacology ; 47(7): 1304-1314, 2022 06.
Article in English | MEDLINE | ID: mdl-35449450

ABSTRACT

Psychedelic-assisted psychotherapy gained considerable interest as a novel treatment strategy for fear-related mental disorders but the underlying mechanism remains poorly understood. The serotonin 2A (5-HT2A) receptor is a key target underlying the effects of psychedelics on emotional arousal but its role in fear processing remains controversial. Using the psychedelic 5-HT2A/5-HT2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and 5-HT2A receptor knockout (KO) mice we investigated the effect of 5-HT2A receptor activation on emotional processing. We show that DOI administration did not impair performance in a spontaneous alternation task but reduced anxiety-like avoidance behavior in the elevated plus maze and elevated zero maze tasks. Moreover, we found that DOI did not block memory recall but diminished fear expression in a passive avoidance task. Likewise, DOI administration reduced fear expression in an auditory fear conditioning paradigm, while it did not affect retention of fear extinction when administered prior to extinction learning. The effect of DOI on fear expression was abolished in 5-HT2A receptor KO mice. Administration of DOI induced a significant increase of c-Fos expression in specific amygdalar nuclei. Moreover, local infusion of the 5-HT2A receptor antagonist M100907 into the amygdala reversed the effect of systemic administration of DOI on fear expression while local administration of DOI into the amygdala was sufficient to suppress fear expression. Our data demonstrate that activation of 5-HT2A receptors in the amygdala suppresses fear expression but provide no evidence for an effect on retention of fear extinction.


Subject(s)
Fear , Hallucinogens , Amphetamines/pharmacology , Animals , Anxiety/drug therapy , Extinction, Psychological , Fear/physiology , Hallucinogens/pharmacology , Humans , Mice , Receptor, Serotonin, 5-HT2A , Receptor, Serotonin, 5-HT2C , Serotonin 5-HT2 Receptor Antagonists/pharmacology
12.
Lancet Psychiatry ; 9(1): 46-58, 2022 01.
Article in English | MEDLINE | ID: mdl-34861170

ABSTRACT

BACKGROUND: Negative symptoms of schizophrenia are associated with adverse clinical outcomes, but there are few effective treatments. We aimed to assess the effects of pimavanserin, a selective 5-HT2A inverse agonist and antagonist, on negative symptoms of schizophrenia. METHODS: The ADVANCE study was a phase 2, 26-week, randomised, double-blind, placebo-controlled study of pimavanserin in stable outpatients with schizophrenia aged 18-55 years with predominant negative symptoms. Patients were randomly assigned (1:1) across 83 sites (18 in North America and 65 in Europe) to receive pimavanserin or placebo daily, added to an ongoing antipsychotic medication, per a computer-generated schedule (stratification by geographical region). Eligible patients had a score of at least 20 on the sum of seven Positive and Negative Syndrome Scale (PANSS) Marder negative factor items (and scores of ≥4 on at least three or ≥5 on at least two of negative symptom items). The starting dosage of 20 mg of pimavanserin or placebo could be adjusted to 34 mg or 10 mg within the first 8 weeks of the study, after which dosage remained stable until the end of the study. Both pimavanserin and placebo were administered orally once daily as two individual tablets (pimavanserin tablets were either 10 mg or 17 mg). The primary endpoint was change in total score using the 16-item Negative Symptom Assessment (NSA-16) from baseline to week 26. Primary outcomes were analysed in patients who received at least one dose of the study drug and had NSA-16 assessments at baseline and at least once post-baseline (full analysis set). Safety outcomes were analysed in patients who had received at least one dose of the study drug. This trial is registered with ClinicalTrials.gov, NCT02970305, and is complete. FINDINGS: Between Nov 4, 2016, and April 16, 2019, we randomly assigned 403 patients to pimavanserin (n=201; 131 [65%] male; 187 [93%] White) or placebo (n=202; 137 [68%] male, 186 (92%) White), of whom 400 were included in the efficacy analysis (199 in the pimavanserin group, 201 in the placebo group). Mean age was 37·7 years (SD 9·4) in the pimavanserin group and 36·7 (9·2) years in the placebo group. The change in total NSA-16 score from baseline to week 26 was significantly improved with pimavanserin (least squares mean -10·4 [SE 0·67]) versus placebo (least squares mean -8·5 [0·67]; p=0·043; effect size: 0·211). The number of patients with treatment-emergent adverse events (TEAEs) was similar between groups: 80 (40%) patients experienced TEAEs in the pimavanserin group and 71 (35%) in the placebo group. Most TEAEs were headache (6% [n=13] vs 5% [n=10]) and somnolence (5% [n=11] vs 5% [n=10]). One patient from the placebo group reported severe headache (0·5%), rhinorrhoea (0·5%), cough (0·5%), and influenza (0·5%). In the pimavanserin group, one patient reported severe toothache (0·5%), and two patients had worsening of schizophrenia (1%). Mean change in QTcF interval was higher with pimavanerin (4·5 ms [SD 18·0]) than with placebo (0·0 ms [16·0]). INTERPRETATION: Stable patients with predominant negative symptoms of schizophrenia showed a reduction in negative symptoms after treatment with pimavanserin. However, given the small effect size, further investigation with optimised dosing is warranted to determine the clinical significance of this effect. FUNDING: Acadia Pharmaceuticals.


Subject(s)
Piperidines/pharmacology , Schizophrenia/drug therapy , Schizophrenia/physiopathology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Urea/analogs & derivatives , Adolescent , Adult , Double-Blind Method , Europe , Female , Humans , Male , Middle Aged , North America , Outcome Assessment, Health Care , Piperidines/administration & dosage , Piperidines/adverse effects , Serotonin 5-HT2 Receptor Antagonists/administration & dosage , Serotonin 5-HT2 Receptor Antagonists/adverse effects , Urea/administration & dosage , Urea/adverse effects , Urea/pharmacology , Young Adult
13.
Biomed Pharmacother ; 145: 112424, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34785417

ABSTRACT

Small drug-like molecules that can block the function of serotonin 5-HT2A receptors have garnered considerable attention due to their ability to inhibit platelet aggregation and the possible prevention of atherosclerotic lesions. Although clinical data provided compelling evidence for the efficacy of this approach in the prevention of various cardiovascular conditions, the chemical space of 5-HT2A receptor antagonists is limited to ketanserin and sarpogrelate. To expand the portfolio of novel chemical motifs with potential antiplatelet activity, we evaluated the antiplatelet activity of a series of 6-fluorobenzo[d]isoxazole derivatives that possess a high affinity for 5-HT2A receptor. Here we describe in vitro studies showing that 6-fluorobenzo[d]isoxazole derivatives exert promising antiplatelet activity in three various in vitro models of platelet aggregation, as well as limit serotonin-induced vasoconstriction. Compound AZ928 showed in vitro activity greater than the clinically approved drug sarpogrelate. In addition to promising antiplatelet activity, the novel series was characterized by a favorable safety profile. Our findings show that the novel series exerts promising antiplatelet efficacy while being deprived of potential side effects, such as hemolytic activity, which render these compounds as potential substances for further investigation in the field of cardiovascular research.


Subject(s)
Cardiovascular Diseases/prevention & control , Isoxazoles/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Animals , Humans , Isoxazoles/chemistry , Isoxazoles/toxicity , Male , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/toxicity , Rats , Rats, Wistar , Serotonin 5-HT2 Receptor Antagonists/chemistry , Serotonin 5-HT2 Receptor Antagonists/toxicity , Structure-Activity Relationship , Succinates/pharmacology , Vasoconstriction/drug effects
14.
Neuropharmacology ; 206: 108926, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34921828

ABSTRACT

Perseveration is a characteristic of patients with obsessive-compulsive disorder (OCD). Clinically, neuronal activity in the lateral orbitofrontal cortex (OFC) is increased in OCD patients. Successful treatment with selective serotonin reuptake inhibitors (SSRIs) reduces activity in the lateral OFC of OCD patients, but the precise mechanisms underlying this effect are unclear. Previously, we reported that repeated injection of the dopamine D2 receptor agonist quinpirole (QNP) resulted in OCD-like deficits, including perseveration in a reversal learning task. QNP-treated mice showed hyperactivity in lateral OFC pyramidal neurons. The present study demonstrated that 4-week administration of an SSRI increased the rate of correct choice in a reversal learning task. Using the electrophysiological approach, we revealed that an SSRI decreased the activity of lateral OFC pyramidal neurons in QNP-treated mice by potentiating inhibitory inputs. The 4-week administration of an SSRI inhibited the potentiation of neuronal activity induced by a 5-HT2C receptor agonist. Additionally, both 4-week administration of SSRI and acute application of 5-HT2C receptor antagonist prevented the QNP-induced potentiation of inhibitory inputs to fast-spiking interneurons in the lateral OFC. Administration of a 5-HT2C receptor antagonist to mice for 4 days increased the rate of correct choice in a reversal learning task. Collectively, these results indicate that chronic SSRI ameliorated perseverative behavior in QNP-treated mice by modulating inhibitory inputs in the lateral OFC. Short-term 5-HT2C receptor blockade also ameliorated QNP-induced behavioral and neurological abnormalities by, at least in part, a common mechanism with chronic SSRI.


Subject(s)
Behavior, Animal/drug effects , Obsessive-Compulsive Disorder/drug therapy , Prefrontal Cortex/drug effects , Receptor, Serotonin, 5-HT2C/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Disease Models, Animal , Interneurons/drug effects , Mice , Pyramidal Cells/drug effects , Reversal Learning/drug effects , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Signal Transduction/drug effects
15.
J Neurophysiol ; 127(1): 150-160, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34936830

ABSTRACT

Serotonin (5-HT) is a neuromodulator that is critical for regulating the excitability of spinal motoneurons and the generation of muscle torque. However, the role of 5-HT in modulating human motor unit activity during rapid contractions has yet to be assessed. Nine healthy participants (23.7 ± 2.2 yr) ingested 8 mg of the competitive 5-HT2 antagonist cyproheptadine in a double-blinded, placebo-controlled, repeated-measures experiment. Rapid dorsiflexion contractions were performed at 30%, 50%, and 70% of maximal voluntary contraction (MVC), where motor unit activity was assessed by high-density surface electromyographic decomposition. A second protocol was performed where a sustained, fatigue-inducing dorsiflexion contraction was completed before undertaking the same 30%, 50%, and 70% MVC rapid contractions and motor unit analysis. Motor unit discharge rate (P < 0.001) and rate of torque development (RTD; P = 0.019) for the unfatigued muscle were both significantly lower for the cyproheptadine condition. Following the fatigue inducing contraction, cyproheptadine reduced motor unit discharge rate (P < 0.001) and RTD (P = 0.024), whereas the effects of cyproheptadine on motor unit discharge rate and RTD increased with increasing contraction intensity. Overall, these results support the viewpoint that serotonergic effects in the central nervous system occur fast enough to regulate motor unit discharge rate during rapid powerful contractions.NEW & NOTEWORTHY We have shown that serotonin activity in the central nervous system plays a role in regulating human motor unit discharge rate during rapid contractions. Our findings support the viewpoint that serotonergic effects in the central nervous system are fast and are most prominent during contractions that are characterized by high motor unit discharge rates and large amounts of torque development.


Subject(s)
Central Nervous System/metabolism , Motor Neurons/physiology , Muscle Contraction/physiology , Muscle Fatigue/physiology , Recruitment, Neurophysiological/physiology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Serotonin/metabolism , Adult , Central Nervous System/drug effects , Cyproheptadine/pharmacology , Double-Blind Method , Electromyography , Female , Humans , Male , Motor Neurons/drug effects , Muscle Contraction/drug effects , Muscle Fatigue/drug effects , Recruitment, Neurophysiological/drug effects , Young Adult
16.
Elife ; 102021 12 17.
Article in English | MEDLINE | ID: mdl-34919051

ABSTRACT

Metastasis is responsible for approximately 90% of cancer-associated mortality but few models exist that allow for rapid and effective screening of anti-metastasis drugs. Current mouse models of metastasis are too expensive and time consuming to use for rapid and high-throughput screening. Therefore, we created a unique screening concept utilizing conserved mechanisms between zebrafish gastrulation and cancer metastasis for identification of potential anti-metastatic drugs. We hypothesized that small chemicals that interrupt zebrafish gastrulation might also suppress metastatic progression of cancer cells and developed a phenotype-based chemical screen to test the hypothesis. The screen used epiboly, the first morphogenetic movement in gastrulation, as a marker and enabled 100 chemicals to be tested in 5 hr. The screen tested 1280 FDA-approved drugs and identified pizotifen, an antagonist for serotonin receptor 2C (HTR2C) as an epiboly-interrupting drug. Pharmacological and genetic inhibition of HTR2C suppressed metastatic progression in a mouse model. Blocking HTR2C with pizotifen restored epithelial properties to metastatic cells through inhibition of Wnt signaling. In contrast, HTR2C induced epithelial-to-mesenchymal transition through activation of Wnt signaling and promoted metastatic dissemination of human cancer cells in a zebrafish xenotransplantation model. Taken together, our concept offers a novel platform for discovery of anti-metastasis drugs.


Subject(s)
Cell Movement/drug effects , Embryo, Nonmammalian/drug effects , Epithelial-Mesenchymal Transition , Gastrulation/drug effects , High-Throughput Screening Assays/methods , Pizotyline/pharmacology , Receptor, Serotonin, 5-HT2C/genetics , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Animals , Drug Discovery , Female , Humans , Mice, Inbred BALB C , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/prevention & control , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Transplantation, Heterologous , Zebrafish , Zebrafish Proteins/genetics
17.
Sci Rep ; 11(1): 19714, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34611182

ABSTRACT

Serotonin 5-HT2 receptors are expressed in many tissues and play important roles in biological processes. Although the 5-HT2A receptor is primarily known for its role in central nervous system, it is also expressed in peripheral tissues. We have found that 5-HT2A receptor antagonists inhibit human subcutaneous primary adipocyte differentiation. We also show that siRNA knockdown of the 5-HT2A receptor blocks differentiation. Using gene expression analysis in combination with receptor antagonists we found that activity of 5-HT2A receptors is necessary very early in the differentiation process to mediate expression of adipogenic genes, including peroxisome proliferator-activated receptor gamma (ppar-γ), adipocyte protein 2 (aP2), adiponectin, and serine/threonine-protein kinase 1 (sgk1). We show here for the first time that 5-HT2A receptor activity is necessary for differentiation of human primary subcutaneous preadipocytes to adipocytes, and that 5-HT2A receptor activity mediates key genes related to adipogenesis during this process. Importantly, this work contributes to a greater understanding of the adipocyte differentiation process, as well as to the role of 5-HT2A receptors in peripheral tissues, and may be relevant to the development of novel therapeutic strategies targeting this receptor for the treatment of obesity related diseases.


Subject(s)
Adipocytes/cytology , Adipocytes/metabolism , Adipogenesis , Cell Differentiation , Gene Expression Regulation , Receptor, Serotonin, 5-HT2A/metabolism , Adipocytes/drug effects , Adipogenesis/genetics , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Dose-Response Relationship, Drug , Humans , Models, Biological , RNA, Messenger/genetics , Receptor, Serotonin, 5-HT2A/genetics , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology
18.
BMC Pharmacol Toxicol ; 22(1): 64, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702339

ABSTRACT

BACKGROUND: Dopamine D2 receptor agonists, bromocriptine and cabergoline, are notable medications in the treatment of Parkinsonism, hyperprolactinemia, and hyperglycemia. An affiliation was found between the initiation of myocardial injury ailment and long term treatment with dopamine D2 agonist drugs identified with the partial activation of 5-hydroxytryptamine receptor 2 A (5-HT2A). The investigation aimed to examine the activity of sarpogrelate (a 5-HT2A receptor blocker) in reducing myocardial injury prompted by extended haul utilisation of D2 receptor agonists in rats with alloxan-induced diabetes. METHODS: Both bromocriptine and cabergoline were managed independently and combined with sarpogrelate for about a month in diabetic nephropathy rats. Both tail-cuff blood pressure and the BGL were recorded weekly. For all animals, the kidney hypertrophy index, serum creatinine, blood urea nitrogen, alanine transaminase, and aspartate transaminase levels were measured after one month of treatment. The severity of the cardiac injury was assessed by the estimation of lactate dehydrogenase-1 (LDH-1), cardiac troponin I, and tumor necrosis factor alpha 1 (TNF1). The triphenyltetrazolium chloride (TTC) staining method was used to determine the experimental myocardial infarction (MI) size. RESULTS: Bromocriptine and cabergoline created a significant reduction in BGL, BP, and kidney hypertrophy index in diabetic nephropathy rats. Administration of bromocriptine and cabergoline, alone, or in combination with sarpogrelate fundamentally diminished the blood concentrations of alkaline phosphatase (ALP), Aspartate aminotransferase (AST), urea, and creatinine. Bromocriptine and cabergoline alone showed a noteworthy increase in the LDH-1, Troponin I, and TNF1 levels in the serum (p < 0.05). Paradoxically, utilising bromocriptine or cabergoline with sarpogrelate treatment altogether decreased the levels of the myocardial biomarkers in the serum. A mix of bromocriptine or cabergoline with sarpogrelate diminished the level of the myocardial infarct size in the heart assessed through the TTC staining method. CONCLUSIONS: The examination demonstrated that the combined use of sarpogrelate with bromocriptine or cabergoline decreased the potential adverse effects of these two drugs on the myocardial tissues.


Subject(s)
Bromocriptine/therapeutic use , Cabergoline/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Dopamine Agonists/therapeutic use , Myocardial Infarction/drug therapy , Serotonin 5-HT2 Receptor Antagonists/therapeutic use , Succinates/therapeutic use , Animals , Blood Glucose/drug effects , Bromocriptine/pharmacology , Cabergoline/pharmacology , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/blood , Diabetic Nephropathies/pathology , Dopamine Agonists/pharmacology , Drug Therapy, Combination , Isoenzymes/blood , Kidney/drug effects , Kidney/pathology , L-Lactate Dehydrogenase/blood , Male , Myocardial Infarction/blood , Myocardial Infarction/pathology , Myocardium/pathology , Rats, Wistar , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Succinates/pharmacology , Troponin I/blood , Tumor Necrosis Factor-alpha/blood
19.
Naunyn Schmiedebergs Arch Pharmacol ; 394(12): 2381-2388, 2021 12.
Article in English | MEDLINE | ID: mdl-34550406

ABSTRACT

PURPOSE: Antagonising serotonin (5-HT) type 2A receptors (5-HT2AR) is an effective strategy to alleviate both dyskinesia and psychosis in Parkinson's disease (PD). We have recently shown that activation of metabotropic glutamate 2 receptors (mGluR2), via either orthosteric stimulation or positive allosteric modulation, enhances the anti-dyskinetic and anti-psychotic effects of 5-HT2AR antagonism. Here, we investigated if greater therapeutic efficacy would be achieved by combining 5-HT2AR antagonism with concurrent mGluR2 orthosteric stimulation and mGluR2 positive allosteric modulation. METHODS: Five 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmosets exhibiting dyskinesia and psychosis-like behaviours (PLBs) were administered L-3,4-dihydroxyphenylalanine (L-DOPA) in combination with vehicle or the 5-HT2AR antagonist EMD-281,014. EMD-281,014 was itself administered alone or with the mGluR2 orthosteric agonist (OA) LY-354,740, the mGluR2 positive allosteric modulator (PAM) LY-487,379 and combination thereof, after which the severity of dyskinesia, PLBs and parkinsonism was rated. RESULTS: EMD-281,014 reduced dyskinesia and PLBs by up to 47% and 40%, respectively (both P < 0.001). The addition of LY-354,740, LY-487,379 and LY-354,740/LY-487,379 decreased dyskinesia by 56%, 65% and 77%, while PLBs were diminished by 55%, 63% and 71% (all P < 0.001). All treatment combinations provided anti-dyskinetic and anti-psychotic benefits significantly greater than those conferred by EMD-281,014 alone (all P < 0.05). The combination of EMD-281,014/LY-354,740/LY-487,379 resulted in anti-dyskinetic and anti-psychotic effects significantly greater than those conferred by EMD-281,014 with either LY-354,740 or LY-487,379 (both P < 0.05). No deleterious effects on L-DOPA anti-parkinsonian action were observed. CONCLUSION: Our results suggest that combining 5-HT2AR antagonism with mGluR2 activation results in greater reduction of L-DOPA-induced dyskinesia and PD psychosis. They also indicate that further additive effect can be achieved when a mGluR2 OA and a mGluR2 PAM are combined with a 5-HT2AR antagonist than when a mGluR2 OA or a mGluR2 PAM are added to a 5-HT2AR antagonist.


Subject(s)
Antiparkinson Agents/pharmacology , Levodopa/pharmacology , Parkinsonian Disorders/drug therapy , Psychotic Disorders/drug therapy , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/toxicity , Behavior, Animal/drug effects , Bridged Bicyclo Compounds/administration & dosage , Bridged Bicyclo Compounds/pharmacology , Callithrix , Drug Therapy, Combination , Dyskinesia, Drug-Induced/etiology , Dyskinesia, Drug-Induced/prevention & control , Female , Indoles/administration & dosage , Indoles/pharmacology , Levodopa/administration & dosage , Levodopa/toxicity , Male , Parkinsonian Disorders/psychology , Piperazines/administration & dosage , Piperazines/pharmacology , Psychotic Disorders/etiology , Pyridines/administration & dosage , Pyridines/pharmacology , Receptors, Metabotropic Glutamate/drug effects , Receptors, Metabotropic Glutamate/metabolism , Serotonin 5-HT2 Receptor Antagonists/administration & dosage , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Sulfonamides/administration & dosage , Sulfonamides/pharmacology
20.
Pharmacol Biochem Behav ; 210: 173276, 2021 11.
Article in English | MEDLINE | ID: mdl-34555392

ABSTRACT

Serotonin (5-HT) receptors have been implicated in responses to aversive stimuli in mammals and fish, but its precise role is still unknown. Moreover, since at least seven families of 5-HT receptors exist in vertebrates, the role of specific receptors is still debated. Aversive stimuli can be classified as indicators of proximal, distal, or potential threat, initiating responses that are appropriate for each of these threat levels. Responses to potential threat usually involve cautious exploration and increased alertness, while responses to distal and proximal threat involve a fight-flight-freeze reaction. We exposed adult zebrafish to a conspecific alarm substance (CAS) and observed behavior during (distal threat) and after (potential threat) exposure, and treated with the 5-HT2C receptor agonists MK-212 or WAY-161503 or with the antagonist RS-102221. The agonists blocked CAS-elicited defensive behavior (distal threat), but not post-exposure increases in defensive behavior (potential threat), suggesting inhibition of responses to distal threat. MK-212 blocked changes in freezing elicited by acute restraint stress, a model of proximal threat, while RS-102221 blocked changes in geotaxis elicited this stressor. We also found that RS-102221, a 5-HT2C receptor antagonist, produced small effect on behavior during and after exposure to CAS. Preprint: https://www.biorxiv.org/content/10.1101/2020.10.04.324202; Data and scripts: https://github.com/lanec-unifesspa/5-HT-CAS/tree/master/data/5HT2C.


Subject(s)
Behavior, Animal/drug effects , Escape Reaction/drug effects , Fear/drug effects , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Animals , Anxiety/drug therapy , Anxiety/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Receptors, Serotonin/metabolism , Serotonin/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...